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Abstract—Hierarchically sparse signals and Kronecker prod-
uct structured measurements arise naturally in a variety of
applications. The simplest example of a hierarchical sparsity
structure is two-level (s, σ)-hierarchical sparsity which features
s-block-sparse signals with σ-sparse blocks. For a large class
of algorithms recovery guarantees can be derived based on
the restricted isometry property (RIP) of the measurement
matrix and model-based variants thereof. We show that given
two matrices A and B having the standard s-sparse and σ-
sparse RIP their Kronecker product A⊗B has two-level (s, σ)-
hierarchically sparse RIP (HiRIP). This result can be recursively
generalized to signals with multiple hierarchical sparsity levels
and measurements with multiple Kronecker product factors. As a
corollary we establish the efficient reconstruction of hierarchical
sparse signals from Kronecker product measurements using the
HiHTP algorithm. We argue that Kronecker product measure-
ment matrices allow to design large practical compressed sensing
systems that are deterministically certified to reliably recover
signals in a stable fashion. We elaborate on their motivation
from the perspective of applications.

I. INTRODUCTION

The field of compressed sensing studies the solution of the

underdetermined inverse problem of reconstructing a suitably

structured signal x ∈ Kd from linear noisy samples y =
Ax + e ∈ Km, where A ∈ Km×d, m < d, is a measurement

matrix and e accounts for additive noise. The most prominent

structure assumption on x is thereby sparsity. By K we denote

a field that is either that of real numbers R or of complex

numbers C.

The recovery of x from y and A is guaranteed with high

probability for a variety of algorithms when the measurement

matrix A is drawn from a suitable random ensemble. A

working-horse in proving such recovery guarantees is that

a random measurement matrix A often fulfills the so-called

restricted isometry property (RIP) with high probability. This

means that there exist δ ∈ [0, 1) such that

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 (1)

for all s-sparse x ∈ K
d. Here ‖x‖2 =

∑d
i=1 |xi|2 denotes

the ℓ2-norm. Typical examples of such measurement ensemble

fulfilling a RIP ensuring reconstruction from m ≥ m0 samples

with m0 ∈ Õ(s) are sub-Gaussian matrices or subsampled

Fourier matrices. In practice, however, matrices are most

often ‘less random’. In fact, in many applications it is highly

desirable to make use of as little randomness as possible.

This work will focus on measurement matrices that can be

written as the Kronecker product of smaller matrices. In this

sense, this work contributes to the broader scheme of partially

derandomising recovery schemes.

A. Kronecker product measurements

Measurement matrices that are the Kronecker product of

a number of smaller matrices naturally appear in various

practical applications. As an illustrative example let us con-

sider the following simple multi-user communication model: A

potentially very large number N of users simultaneously send

messages xi of length n to a central base station. They thereby

encode their messages with a common compressed sensing

matrix A. At the base station m different superpositions

yj =
∑

i bj,iAxi of the individual encoded messages Axi are

measured. One can, for instance, think of a massive MIMO

system, where the different weights bj,i arise from the fact

that the encoded messages Axi scatter along different paths

to arrive at the base station. Hence, at the base station we

want to recover the entire signal x = [xT
1 , . . . ,xN

T ]T from

the linear measurements of the form y = (B ⊗ A)x where

B is the m × N matrix with entries bj,i. We conclude that

Kronecker product measurements are typically encountered

when the superposition of multiple parties that share a com-

mon sensing/coding matrix are observed.

Another important class of examples is constituted by

unit rank measurements on matrices as they can be cast as

Kronecker product measurements. Consider measurements on

X ∈ KN,n of the form Yi,j = Tr(aib
T
j X), where ai and bj

denote the columns of a matrix A ∈ KM×N and B ∈ Km×n,

respectively. Then using column-wise vectorisation it holds

that vec(Y) = A⊗BT vec(X). Such unit rank measurements

often arise in bilinear compressed sensing problems that are

lifted [11] to linear matrix problems. The results of this work

are for example applied in angle-delay pair estimation in

massive MIMO in Ref. [14] along those lines.

From the computational perspective, Kronecker products

have a number of highly desirable properties. For instance,

they can to some extent be applied in parallel computations

or stored more efficiently. A Kronecker product A ⊗ B ∈
KM×N ⊗ Km×n is described by MN + mn parameters,

whereas a general matrix C ∈ KMm×Nn needs MNmn
parameters. At the same time, this significantly reduces the

amount of randomness that is required to generate such
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matrices. This is, in fact, an obstacle for proving that such

matrices obey the standard RIP property.

The relation between the RIP-constants of a group of

matrices A1, . . . ,AL and the corresponding constant for the

Kronecker product A1 ⊗ · · · ⊗AL have been investigated in

Refs. [1], [2]. Therein, the authors use a slightly different

convention for the RIP constants, namely

(1− δ) ‖x‖ ≤ ‖Ax‖ ≤ (1 + δ) ‖x‖ . (2)

In short, a Kronecker product has the k-RIP if and only if

each of its blocks has the k-RIP. More concretely,

max
1≤l≤L

δk(Aℓ) ≤ δk(A1 ⊗ · · · ⊗AL) ≤
L
∏

ℓ=1

(1 + δk(Aℓ))− 1.

For us, in particular the lower bound is interesting. It tells

us that if we intend to build a matrix A1 ⊗ · · · ⊗ AL with

the s-RIP, we need each Aℓ to exhibit the s-RIP! We can in

particular not ensure to be able to reconstruct arbitrary signals

of higher sparsity than s if one of the matrices Aℓ fails to

reconstruct s-sparse signals.

B. Hierarchically sparse vectors

Motivated by a variety of applications, more restricted

sparsity structures have intensively been studied over the last

decade. Classic examples of structured sparse signals are

signals that have only a small number of non-vanishing but

possibly dense blocks, block-sparsity, [4], [5] or signals that

feature sparse blocks (see, e.g., Ref. [15]). The combination

and generalisation of these structure leads to the concept of

hierarchically sparse signals. The simplest example are two-

level (s, σ)-hierarchically sparse signals (see, e.g., Refs. [3],

[16], [17]).

More precisely, let x ∈ KNn. We can partition x into N
blocks xi, each of size n.

Definition 1 (Hierarchical sparsity). A vector x ∈ K
nN is

(s, σ)-hierarchically sparse if at most s blocks have non-

vanishing entries and each of these blocks is σ-sparse.

For convenience, we will call a hierarchically (s, σ)-sparse

vector simply (s, σ)-sparse in this work. In the applications

discussed above, hierarchically sparse signals are a reasonable

restriction. In our simple communication model for example,

an (s, σ)-sparse signal x arises if we demand that at a given

time only a maximum of s users are active and the messages xi

itself are each σ-sparse. The exploitation of such finer structure

assumptions has been identified as crucial in the development

of future scalable mobile communication systems [18], [19]

and they have been studied in the task of channel estimation

and user activity detection, e.g., in Ref. [20].

Similarly, in bilinear compressed sensing problems where

both arguments are sparse, the resulting vectorisation of the

lifted matrix is hierarchically sparse [14], [21]. Note that in

lifted problems the signals will also have a low-rank structure

and thus be more structured than being merely hierarchically

sparse. For this reason, hierarchically sparse recovery meth-

ods are not expected to achieve an information theoretically

Algorithm 1 (HiHTP)

Input: measurement matrix A, measurement vector y, block

column sparsity (s, σ)
1: x0 = 0
2: repeat

3: Ωk+1 = Ls,σ(x
k +A∗(y −Axk))

4: xk+1 = argminz∈CNn{‖y−Az‖, supp(z) ⊂ Ωk+1}
5: until stopping criterion is met at k̃ = k

Output: (s, σ)-sparse vector xk̃

optimal sampling complexity in these settings. But they are

still of interest because of their low computational demands.

These are important examples; it goes without saying that hi-

erarchically sparse signals are ubiquitous in signal processing,

in physics and in the life sciences.

By adopting the notion of model-based sparse recovery [6],

three of the five authors of this paper designed an iterative

thresholding algorithm, HiHTP, for recovering (s, σ)-sparse

and more general hierarchically sparse vectors, see Ref. [3].

The algorithm follows the same strategy as the original hard-

thresholding pursuit (HTP) algorithm of [10]. In every iteration

it estimates the support using a thresholding operation on

a gradient step and subsequently solves the least-squares

fitting problem restricted to the estimated support. The main

modification for the recovery of (s, σ)-sparse vectors is to

employ the projection onto vectors with (s, σ)-sparse support

Ls,σ(x) := supp argmin
(s, σ)-sparse z

‖x− z‖ . (3)

As argued in Ref. [3] this projection can be efficiently calcu-

lated. Algorithm 1 shows the resulting HiHTP algorithm. The

algorithm was proven to converge to the correct signal under

an HiRIP-assumption on the measurement matrix. A matrix is

thereby said to have the HiRIP property if an inequality like

(4) is satisfied for all (s, σ)-sparse x. Since the set of (s, σ)-
sparse vectors is contained in the set of s · σ-sparse vectors,

the HiRIP is a weaker condition compared to standard RIP.

This work is dedicated to deriving statements about the

HiRIP-properties of Kronecker products A⊗B. We will prove

that the (s, σ)-HiRIP constant of A ⊗ B is bounded by the

s-RIP constant of A and σ-RIP constant of B as follows:

δA⊗B

(s,σ) ≤ δAs + δBσ + δAs δBσ .

Hence, the Kronecker product of matrices with good RIP-

constants has a non-trivial HiRIP constant. This is in sharp

contrast to the properties of the RIP discussed above. This dis-

crepancy indicates that one can derive much stronger recovery

results when dealing with hierarchical sparsity patterns, rather

than unstructured ones.

We will argue that a similar statement holds for multilevel

hierarchical structures and Kronecker products of the form

A1⊗· · ·⊗AL. So we find that that tensor products in general

inherit multilevel HiRIP from the RIP of the constituents.

From a more information theoretic perspective, the result

opens up a new possibility to actually certify HiRIP for a given



matrix. In principle, given a matrix A, a sparsity level s and

a constant δ > 0, it is an NP-hard problem to decide whether

the RIP constant δs of A is smaller than δ [8], [9]. However,

our result indicates that certifying that a HiRIP constant of the

matrix A is smaller than δ can be done by checking that all

Ai have (sufficiently) smaller RIP-constants. If the dimension

of the matrices Ai are small enough it is even practical to

certify their RIP by brute-force calculations of a spectral norm

for all possible sparse supports. In fact, we find that in certain

parameter regimes the complexity of certification of HiRIP

of a matrix A = A⊗l
1 with the brute-force algorithm scales

polynomial in the size of the large matrix A.

The rest of the paper is organized as follows. In Section

II, we present the technical statement of our main results and

some fundamental consequences of them. In Section III, we

discuss on how our main result can be used to design matrices

that are known to have HiRIP.

II. MAIN RESULTS

In the following, let [d] be the subset {1, . . . , d} ⊂ N of

integers smaller or equal than d ∈ N. Furthemore, for x ∈ Kd

and Ω ∈ [d] we define the vector x|Ω that coincides with x

on the indices in Ω and vanishes otherwise. Let us begin by

formally defining the HiRIP for (s, σ)-hierarchical sparsity.

Definition 2 (HiRIP). Given a matrix A ∈ Km×nN , we

denote by δs,σ the smallest δ ≥ 0 such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 (4)

for all (s, σ)-hierarchically sparse vectors x ∈ KnN .

As has been advertised in the introduction, we can prove

the following result

Theorem 1 (Main result). Given A ∈ KM×N having s-sparse

RIP with constant δAs and B ∈ Km×n with σ-sparse RIP with

constant δBσ , then

A⊗B : KNn → K
Mm (5)

has (s, σ)-sparse HiRIP with constant

δ(s,σ) ≤ δAs + δBσ + δAs δBσ . (6)

Before presenting the proof of Theorem 1, we need to

introduce some notation. First, we let vec : KN×n → KNn

denote the canonical isomorphism of column-wise vectorisa-

tion. In other words, vec is defined by linear extension of the

requirement vec(Ei,j) = ei⊗ ej , where Ei,j = eie
T
j ∈ KN×n

denotes the matrix with only one non-vanishing unit entry in

the i-th row and j-th column. The Kronecker product is always

understood as

A⊗B =







a1,1B . . . a1,NB
...

. . .
...

am,1B . . . am,NB






. (7)

This convention justifies the term column-wise vectorisation.

It will be convenient to also implicitly make use of row-

wise vectorisation, which can be defined as X 7→ vec(XT ).

Passing from one vector representation to the other amounts to

applying the flip operator FN,n : KNn → KNn, that linearly

extends the mapping ei ⊗ ej 7→ ej ⊗ ei.

The action induced by switching between the column-wise

to row-wise vectorisation in the space of operators acting on

the vector space is the swap of the tensor product components.

To be precise:

Lemma 2. For A ∈ K
M×N and B ∈ K

m×n and X ∈ K
N×n

it holds that

(A⊗B) vec(X) = Fm,M (B⊗A)FN,n vec(X)

and

FN,n vec(X) = vec(XT ).

We now have all the tools we need to prove Theorem 1.

Proof of Theorem 1. Let x ∈ KNn be hierarchically (s, σ)-
sparse. With the help of Lemma 2 we find

‖(A⊗B)x‖2 = ‖(A⊗ Idn)(IdN ⊗B)x‖2

= ‖Fm,M (Idn ⊗A)FN,n(IdN ⊗B)x‖2

= ‖(Idn ⊗A)FN,n(IdN ⊗B)x‖2 ,
where the last line follows from the fact that Fm,M is

unitary. The vector (IdN ⊗B)x has only non-vanishing entries

in s of its N blocks. Therefore, the flipped vector h :=
FN,n(IdN ⊗B)x consists of blocks hi ∈ KN with i ∈ [n]
that are at most s-sparse each. This allows us to apply the

s-sparse RIP property of A for each of the blocks

‖(Idn ⊗A)h‖2 =
∑

i∈[n]

‖Ahi‖2 ≤ (1 + δs) ‖h‖2 .

Making use of the unitarity of the flip once again, the ℓ2-norm

of h is identical to

‖h‖2 = ‖(IdN ⊗B)x‖ =
∑

i∈[N ]

‖Bxi‖ , (8)

where xi ∈ Kn i ∈ [N ] are the σ-sparse blocks of x. Every

term of the sum is bounded by the σ-sparse RIP of B yielding

‖h‖2 ≤ (1 + δσ) ‖x‖2 .
In summary, we have established

‖(A⊗B)x‖2 ≤ (1 + δs)(1 + δσ) ‖x‖ .
The lower RIP bound can be derived in the same way,

completing the proof.

The main consequence of Theorem 1 is that it allows to

construct a new class of measurement matrices for which the

HiHTP algorithm is guaranteed succeed. More precisely, we

get the following corollary.

Corollary 3. Let A ∈ KM×N and B ∈ Km×n, and suppose

that the following RIP-conditions hold

δA3s, δ
B

2σ ≤

√√
3 + 1√
3

− 1.



Then, for x ∈ K
nN , e ∈ K

Mm and Ω ⊆ [N ]× [n] and (s, σ)-
sparse support set, the sequence xk defined by the HiHTP

Algorithm 1 with y = (A⊗B)x|Ω+e satisfies, for any k ≥ 0
∥

∥xk − x|Ω
∥

∥ ≤ ρk
∥

∥x0 − x|Ω
∥

∥+ τ ‖e‖ ,
where

ρ =

(

2(δA3s + δB2σ + δA3sδ
B
2σ)

1− (δA3s + δB2σ + δA3sδ
B
2σ)

2

)

< 1.

Proof. We simply need to note that Theorem 1 implies that

δA⊗B

3s,2σ ≤ (δA3s + δB2σ + δA3sδ
B

2σ) <
1√
3
.

The rest follows from Theorem 1 of [3].

In Ref. [3] one example has been given of a class of ma-

trices guaranteed to possess the HiRIP with high probability.

Concretely, it was shown that a random dense Gaussian matrix

G ∈ Km×Nn has the (s, σ)-HiRIP with high probability under

the assumption

m & sσ log(N) + σ log(Nn).

These are slightly less measurements than the sσ log(Nn)
measurements needed to secure the (unstructured) sσ-RIP with

high probability [7].

We can now describe a new class: Taking any pair of random

matrices A ∈ KM×N and B ∈ Km×n both guaranteed to

possess the s- and σ-RIP with high probability, A ⊗ B will

have the (s, σ)-HiRIP. As an example, we can use random

Gaussian matrices with M & s log(N) and m & σ log(n),
resulting in a measurement matrices A⊗B ∈ K

µ×nN with

µ & sσ log(N) log(n).

Hence, a measurement scheme using Kronecker matrices will

need slightly more measurements than the fully Gaussian

matrices to have the HiRIP.

This price could, however, sometimes be worth paying.

First, we get a vast reduction in space needed to store the

matrix ((MN + mn) instead of MN · mn). Also, as has

been discussed in the introduction, there are applications where

the Kronecker structure of a measurement process is inherent.

Moreover, the results and notions of this section can readily be

generalized to hierarchical sparsity with more than two levels.

Definition 3 (Multilevel hierarchical sparsity, HiRIP). Let L ≥
3, n1, . . . , nL and s1, . . . , sL be natural numbers.

1) A vector x ∈ Kn1···nL is called (s1, . . . , sL)-
(hierarchically) sparse if it consists of n1 blocks xi ∈
Kn2···nL such that only s1 blocks are non-zero, and each

xi is (s2, . . . , sL)-sparse.

2) For Am×n1···nL , we define δs1,...,sL as the smallest δ ≥
0 for which Inequality (4) holds for all (s1, . . . , sL)-
sparse vectors x.

The following result is a generalization of Theorem 1.

Theorem 4. Let A ∈ Km×n1 be a matrix with RIP-constant

δAs1 and B ∈ KM×N one with HiRIP constant δBs2,...,sL . Then

the hierarchical RIP-constant δs1,...,sn of A⊗B ∈ K
mM×nN

satisfies

δs1,...,sL ≤ δAs1 + δBs2,...,sL + δAs1 · δ
B

s2,...,sL .

In particular, through induction, we obtain for matrices Ai ∈
Kmi×ni , i = 1, . . . , L, with si-th RIP constants δAi

si :

δs1,...,sL(A1 ⊗ · · · ⊗AL) ≤
L
∏

i=1

(1 + δAi
si )− 1.

The techniques of the proof of Theorem 1 can readily be

adapted to prove also Theorem 4.

Proof of Theorem 4. The proofs reads exactly as the proof of

Theorem 1 up to equation (8), with an adapted version of the

flipping operator. Here, we use that the blocks xi are not σ-

sparse, but (s2, . . . , sL)-sparse, and apply the corresponding

RIP of B. The statement now follows in exactly the same

manner as above.

Analogously, to Corollary 3 we can derive a recovery

guarantee for a generalisation of HiHTP to more general

hierarchically sparse vectors including multiple layers using

the results of Ref. [3].

III. EFFICIENTLY CHECKABLE HIRIP

Theorem 4 has a consequence that may be surprising. Given

a matrix A ∈ KM×N and some δ > 0, to certify whether

the standard RIP constant δs is smaller than δ is in general

an NP-hard problem [8], [9]. To this date, no deterministic

constructions of measurement matrices are known that achieve

an optimal scaling in sampling complexity. For a variety of

ensembles of matrices there exist guarantees that with high

probability a random instance with optimal scaling complexity

fulfils the RIP. However, checking whether one was lucky or

not is not feasible already for intermediate sized systems.

The brute-force approach for certifying the normal S-sparse

RIP of a matrix A ∈ KM×N is to calculate ‖A†
ΩAΩ − IdS‖

for all
(

N
S

)

S-sized supports Ω and taking the maximum.

The computational effort of this approach scales at least as

(N/S)SS3, which grows exponentially in N for fixed ratios

(N/S). Note that the number of hierarchically sparse supports

also scales exponentially in the overall system size. Hence, a

brute force calculation to certify the HiRIP of an arbitrary

matrix is also exponentially expensive.

If we, however, let A = B⊗L, where B ∈ Km×n. We

can certify the s = (s, . . . , s) =: (s,L)-HiRIP of A by

simply brute-force checking the s-RIP of the matrix B, and

subsequently invoking Theorem 4, which in this case reads:

Corollary 5. Given a matrix B with s-sparse RIP with

constant δs, the matrix B⊗L has (s,L)-HiRIP with

δ(s,L) ≤ (1 + δs)
l − 1. (9)

The brute-force calculation of the s-sparse RIP of B thereby

only takes an order of (n/s)ss3 = (N/S)
S1/L

L S3/L com-

putations, where N = nL and S = sL denotes the total



system size and total sparsity, respectively. In the regime where

S ≤ cLL for some constant c ∈ R, we arrive at a polynomial

scaling in the overall system size N . Hence, we can certify

that A = B⊗L ∈ KM×N has (s,L)-HiRIP in an efficient

way. More generally, our approach applies to all measurement

matrices A with a known tensor decomposition of the form

M =
∑r

i=1 Mi1 ⊗ . . . ⊗ MiL . Checking RIP individually

for all compound matrices Mij induces an additional factor

of rL in the computational costs of certifying HiRIP for M

compared to a matrix of the form B⊗L.

Let us verify that this efficient scheme is actually practical

for real applications by evaluating the computational costs for

reasonable parameter values. Let us assume L = 3 levels

with block size n = 102 and sparsity s = 10 on each

level.This amounts to N = 106 and S = 103. Hence, the brute-

force approach for checking RIP or HiRIP for an arbitrary

measurement matrix requires order of 1010
3

computations. In

comparison, if we let as many of today’s fastest computing

devices (with around 100 Peta FLOPS) as there are atoms in

the universe run for the entire estimated age of the universe,

we would be able perform around 10115 computations. On the

contrary, we can check δ10 for B with n = 102 with order

of 1010 computations, which is practically feasible on current

desktop hardware.

This scheme, however, has a catch in the form of a

suboptimal sampling complexity M . To ensure that δ(s,L) is

smaller than a constant δ̃ using Corollary 5 one has to have

δs ≤ (δ̃ + 1)1/L − 1. Typically, for a matrix B ∈ Km×n to

have RIP with δs ≤ δ requires m ≥ m0 with m0 scaling

at least as m0 ∼ 1/δ ∼ L/ log(1 + δ̃) − 1/2 + O(1/L)
for large L. Therefore, in the regime of efficiently checkable

HiRIP S ≤ cLL, we get an overall sampling complexity

M = mL & (Ls)L & S2 scaling quadratically in S. This

is reminiscent of the quadratic bottleneck that also plagues

most deterministic constructions of RIP matrices.

IV. CONCLUSIONS

The recovery of hierarchically sparse vectors from lin-

ear measurements of Kronecker type naturally appears in a

plethora of practical applications. The HiHTP algorithm, an

efficient algorithm for achieving such a recovery, is guaranteed

to work under a HiRIP condition. In this work, we have

shown that a Kronecker product A⊗B has the (s, σ)-HiRIP

property as soon as its components exhibit the RIP. The

analogous result holds for Kronnecker products with multiple

factors and multi-level hierarchically sparse vectors. This is in

contrast to the standard s-RIP, where each component needs

to have the s-RIP. As a further application of our result, we

described measurement schemes in which it can be efficiently

checked to have the HiRIP, in sharp contrast to the general

computational hardness of deciding whether a RIP constant

is smaller than a given constant. These schemes, however,

exhibit a suboptimal sample complexity. On a higher level,

the present work contributes to the program of identifying

ways of achieving recovery of structured vectors with as little

randomness as possible.
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