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Abstract

This paper studies an information-theoretic one-shot variable-length secret key agreement problem with public discussion. Let
X and Y be jointly distributed random variables, each taking values in some measurable space. Alice and Bob observe X and
Y respectively, can communicate interactively through a public noiseless channel, and want to agree on a key length and a key
that is approximately uniformly distributed over all bit sequences with the agreed key length. The public discussion is observed
by an eavesdropper, Eve. The key should be approximately independent of the public discussion, conditional on the key length.
We show that the optimal expected key length is close to the mutual information I(X;Y ) within a logarithmic gap. Moreover,
an upper bound and a lower bound on the optimal expected key length can be written down in terms of I(X;Y ) only. This
means that the optimal one-shot performance is always within a small gap of the optimal asymptotic performance regardless of
the distribution of the pair (X,Y ). This one-shot result may find applications in situations where the components of an i.i.d. pair
source (Xn, Y n) are observed sequentially and the key is output bit by bit with small delay, or in situations where the random
source is not an i.i.d. or ergodic process.

I. INTRODUCTION

The information theoretic secret key agreement problem in the source model has been considered in the asymptotic regime

with fixed-length keys by Maurer [1] and Ahlswede and Csiszár [2] (see also [3], [4], [5], [6]). The model is that Alice and

Bob observe the components of an i.i.d. pair source (Xn, Y n), where (Xi, Yi) are i.i.d. and n tends to infinity. Alice and Bob

want to agree on a secret key with length nR bits using interactive noiseless public discussion, such that an eavesdropper,

Eve, observing the public discussion, asymptotically gets zero information about the key. The optimal key rate is given by the

mutual information I(X ;Y ) [1], [2]. These previous works also consider the case where Eve observes side information Zn,

but we will not consider side information at Eve in this paper.

An asymptotic model of this sort is not relevant in settings where the number of samples of the pair source available is

limited, or its statistics do not follow i.i.d. or other structures that allow asymptotic analysis. This motivates us to consider a

general one-shot setting where Alice and Bob observe the components X and Y respectively of a jointly distributed pair of

random variables (X,Y ), where each component takes values in some measurable space. They wish to agree on the longest

secret key possible using noiseless public discussion, which is also observed by Eve. For example, in an Internet of Things

(IoT) deployment, one can envision improving the security of communication by generating secret keys in real time using the

techniques in this paper. The jointly distributed random variables accessible to the two IoT devices creating such a secret key

could be the result of noise associated to prior transmissions in the network or generated deliberately. For a concrete scenario

of this kind, if Alice and Bob have earlier received a broadcast message from Charles, they could use the noise from their

respective receptions to then create a secret key for private communication with each other. If sufficient resources are available,

the broadcast from Charles might even be simply aimed at generating such dependent randomness at Alice and Bob. The

important constraint, in contrast to asymptotic approaches, is the real time nature required of secret key generation, since IoT

applications are typically delay-constrained.

Previous one-shot secrecy results usually work with a fixed-length setting (e.g. [7], [8], [9]). Here we argue that a variable-

length setting is more suitable, for a similar reason as why a variable-length code is more suitable than a fixed-length code

for one-shot compression. Each value of X and Y may contain a different amount of information. For example, let the pair

(X,Y ) be received signals when the same Gaussian signal is sent through an additive Gaussian noise broadcast channel. If X
is large, then the amplitude of the signal and the signal-to-noise ratio is likely to be large, allowing Alice and Bob to agree

on a longer key. Unlike the asymptotic setting, we cannot invoke the law of large numbers to argue that the amount of usable

information is close to the average. If we require the key length to be fixed, we have to reduce the key length to accommodate

the worse values of X and Y , leading to a waste of information. To make use of all the usable information in X and Y , it

is natural to consider a variable-length setting where Alice and Bob agree on the length of the secret key and this length can

adapt to the values of X and Y . We also note that a universal finite blocklength variable-length key agreement problem has

been studied in [10]. Nevertheless, the variability of key length in their setting comes from the unknown distribution or type

of the source sequence, whereas the variability in this paper comes from the one-shot nature of our setting and the variability

of the values of X,Y (or their information density).

In this paper, we show that the optimal expected key length for one-shot variable-length secret key agreement with public

discussion is close to I(X ;Y ) within a logarithmic gap. An upper bound and a lower bound on the optimal expected key length
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can be stated in terms of I(X ;Y ) only, meaning that the optimal one-shot expected key length is always within a small gap

of the optimal asymptotic rate I(X ;Y ), regardless of the distribution of (X,Y ). Such a result is impossible for fixed-length

keys.

In Section II, we precisely formulate the one-shot variable-length secret key agreement setting. In Section III, we establish

upper and lower bounds on the optimal expected key length in terms of I(X ;Y ). In Section IV, we show that variable-length

keys can be concatenated to form a fixed-length key in the asymptotic regime. In Section V, we show that a variable-length

key can be applied in situations where a task is to be performed multiple times.

Notation

Throughout this paper, we assume that log is to base 2 and the entropy H is in bits. The binary entropy function is denoted

by Hb(p) = −p log p− (1 − p) log(1 − p), for p ∈ [0, 1]. We write Z for the set of integers, Z≥0 for the set of nonnegative

integers, and Z>0 for the set of positive integers. We use the notation: Xb
a := (Xa, . . . , Xb), X

n := Xn
1 and [a : b] := [a, b]∩Z,

where := denotes equality by definition. We also use
def
= for equality by definition. We write αmodβ for the remainder of α

divided by β > 0; this lies in the range [0, β). We write {0, 1}∗ for
⋃∞

i=0{0, 1}i. The length of w ∈ {0, 1}∗ is denoted as |w|.
The concatenation of w1, w2 ∈ {0, 1}∗ is written as w1‖w2. For discrete X , we write the probability mass function as pX .

For continuous X , we write the probability density function as fX . The Bernoulli distribution pX(0) = 1− α, pX(1) = α is

denoted as Bern(α). The uniform distribution over a finite set S is denoted as Unif(S). The total variation distance between

probability distributions on the same finite set is denoted as dTV(pX , qX) ∈ [0, 1] and equals 1
2

∑

x |pX(x)− qX(x)|.

II. PROBLEM FORMULATION

Suppose Alice and Bob observe X and Y respectively, where (X,Y ) is jointly distributed, with each component taking

values in some measurable space. Alice sends the finite random variable W1 (the output of a stochastic mapping on X) to

Bob. Bob sends the finite random variable W2 (the output of a stochastic mapping on (Y,W1)) to Alice, and so forth for

W3, . . . ,WN until they agree to stop at time N ∈ Z≥0 (which can be random). Here N = 0 corresponds to the situation with

no public discussion. The public discussion WN is also available to Eve. After public discussion, Alice and Bob agree on a

key length L ∈ Z≥0 (i.e., L is a deterministic function of (X,WN ), and a deterministic function of (Y,WN )). Alice produces

A ∈ [1 : 2L], and Bob produces B ∈ [1 : 2L]. We want A = B with high probability, A,B close to being uniform over [1 : 2L]
and close to being independent of Eve’s observation WN . This is captured by the following condition on the total variation

distance

sup
l∈Z≥0

dTV

(

pA,B,WN |L=l ,U2[1 : 2l]× pWN |L=l

)

≤ ǫ, (1)

where we write U2[1 : 2l] for the distribution Unif({(a, a) : a ∈ [1 : 2l]}). Here, on the left hand side of (1) the supremum is

over l ∈ Z≥0 such that P (L = l) > 0, and we call the left hand side the distance from the ideal distribution. It measures the

distance between the actual distribution pA,B,WN |L=l and the ideal distribution where the keys are equal, distributed uniformly

over [1 : 2l] and independent of WN , and where we require the distance to be small for all l, not only averaged over l, so

we can guarantee the quality of the key for any key length.1 Define the maximal expected key length at distance ǫ, written as

L∗
ǫ (X ;Y ), as the supremum of E[L] among all schemes satisfying (1).

To demonstrate the advantage of variable-length keys in one-shot settings, consider X ∼ Unif[1 : 2m] independent of

Q ∼ Bern(7/8), and Y = X if Q = 0, otherwise Y |{X = x,Q = 1} ∼ Unif[1 : 2m]. To generate a variable-length key,

Alice and Bob can send the first t bits of X and Y (containing m bits) respectively through public discussion. If they match,

output L = m − t and let A,B be the remaining bits of X,Y respectively. Otherwise, output L = 0. Then we can achieve

ǫ = 7 · 2−t, and E[L] ≥ (m − t)/8. On the other hand, for one-shot fixed-length schemes, any A,B ∈ {0, 1} generated by

Alice and Bob respectively has

dTV(pA,B,WN , Unif{(0, 0), (1, 1)} × pWN )

≥ dTV(pA,B,WN |Q=1, Unif{(0, 0), (1, 1)} × pWN |Q=1)− 2/8

=
∑

wn

pWN |Q=1(w
n)

1
∑

a=0

max

{

1

2
− pA,B|WN=wn,Q=1(a, a), 0

}

− 1

4

(a)
=
∑

wn

(

pWN |Q=1(w
n)

1In [10], a variable-length key with a constraint on the average total variation distance over key lengths is studied. Considering the average distance (instead
of the maximum distance in our paper) is undesirable because it is possible for Alice and Bob to declare an extremely long key with low probability, which
has an arbitrarily small impact on the average distance, but can increase the expected key length arbitrarily.
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·
1
∑

a=0

max

{

1

2
− pA|WN=wn,Q=1(a)pB|WN=wn,Q=1(a), 0

})

− 1

4

≥
∑

wn

pWN |Q=1(w
n) inf

α,β∈[0,1]

(

max

{

1

2
− αβ, 0

}

+max

{

1

2
− (1− α)(1 − β), 0

})

− 1

4

=
√
2− 1− 1/4 ≈ 0.16.

Here (a) is because conditioned on Q = 1, X,Y are independent, and I(X ;Y |WN , Q = 1) ≤ I(X ;Y |Q = 1) = 0 by Lemma

2.2 in [2] since WN is generated by public discussion, and hence A−WN −B forms a Markov chain conditioned on Q = 1.

Further, the last equality can be obtained by direct minimization. This means Alice and Bob cannot even generate 1 bit secret

keys that are approximately Bern(1/2), approximately independent of WN and agree with high probability.

Moreover, for the case X = Y , the expected length of a variable-length key can be within a logarithmic gap from H(X)
(which can be observed in the entropy model defined in the next section). This is impossible in general for fixed-length keys

due to the nonuniformity of information in X .

III. MAIN RESULTS

We present our main result, which is a bound on the gap between L∗
ǫ (X ;Y ) and I(X ;Y ), which can be stated in terms of

ǫ and I(X ;Y ) only.

Theorem 1. For any X,Y and 0 < ǫ < 1, if I(X ;Y ) < ∞, we have

L∗
ǫ (X ;Y ) ≥ I(X ;Y )− 3 log(I(X ;Y ) + 1)− 2 log

1

ǫ
− 15,

L∗
ǫ (X ;Y ) ≤ (1− ǫ)−1 (I(X ;Y ) + log 3 + 1) .

If I(X ;Y ) = ∞ and ǫ > 0, then L∗
ǫ (X ;Y ) = ∞.

The following corollary concerns the regimes ǫ = (I(X ;Y ))−λ and ǫ = 2−νI(X;Y ), when I(X ;Y ) < ∞.

Corollary 1. For any X,Y , we have (write I = I(X ;Y ) and assume I < ∞):

1. If λ ≥ 1 and I ≥ 2, then

I − (3 + 2λ) log(I + 1)− 15 ≤ L∗
I−λ(X ;Y ) ≤ I + 8.

2. If ν > 0 and I ≥ ν−1, then

(1− 2ν)I − 3 log(I + 1)− 15 ≤ L∗
2−νI (X ;Y ) ≤ I + ν−1 + 6.

An implication of this corollary is that the performance of one-shot variable-length key agreement (i.e., L∗
ǫ(X ;Y )), when

ǫ = (I(X ;Y ))−λ and λ is fixed, is always within a logarithmic gap from the performance of asymptotic key agreement (i.e.,

I(X ;Y )). For example, if the asymptotic key rate 500 bit/symbol is achievable, then we know that it is possible to generate

a one-shot variable-length key with ǫ = 1/500 and expected length ≥ 440 bits.

When applied to i.i.d. (Xn, Y n) for fixed ǫ, the lower bound in Theorem 1 has a O(log n) gap from nI(X ;Y ). This is

smaller than the O(
√
n) gap in [7] (for fixed-length keys) due to the inherent advantage of variable-length keys. A similar

logarithmic gap also appears in one-shot variable-length channel simulation and source coding results [11], [12], [13], [14].

Also note that the multiplicative gap (1− ǫ)−1 in the upper bound in Theorem 1 is necessary. Consider the erasure source

X ∼ Unif[1 : 2m], Y = X with probability 1 − ǫ, Y = e with probability ǫ. Then Alice can output A = X , and Bob can

output B = Y if Y 6= e, and output a random B of length m otherwise. The key length is m, which has a multiplicative gap

from I(X ;Y ) = (1− ǫ)m.

Before we prove the main result, we introduce an abstract setting, the entropy model, as an approximation of the variable-

length key model. While the entropy model does not have a concrete operational meaning, it is easier to analyze and is an

important step in proving the main result.

Definition 1 (Entropy model). Alice and Bob observe X and Y respectively and engage in public discussion WN as in

the variable-length key model. After public discussion, Alice and Bob generate KA ∈ Z>0 and KB ∈ Z>0 respectively as

the “secret key” (instead of A, B). Here KA is a deterministic function of (X,WN ) and KB is a deterministic function of

(Y,WN ). There are no independence requirements between KA,KB and WN . Define the maximal coinciding entropy, written

as κ(X ;Y ), as the supremum of

H=(KA;KB|WN )
def
= P{KA = KB}H(KA|WN , KA = KB)
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over all schemes.

We first show that Lǫ can be upper and lower bounded in terms of κ.

Lemma 1. For any X,Y and 0 < ǫ < 1, if κ(X ;Y ) < ∞, we have

L∗
ǫ(X ;Y ) ≥ κ(X ;Y )− log (κ(X ;Y ) + 1)− 2 log

1

ǫ
− 7.082,

L∗
ǫ (X ;Y ) ≤ (1− ǫ)−1(κ(X ;Y ) + log 3).

If κ(X ;Y ) = ∞ and ǫ > 0, then L∗
ǫ (X ;Y ) = ∞.

Proof: We first consider the case κ(X ;Y ) < ∞. We prove the lower bound and upper bound separately. For the lower

bound, assume Alice and Bob have created KA,KB ∈ K respectively, where K ⊂ Z>0 contains the range of KA and KB.

We may assume without loss of generality that P (KA = KB) > 0, since otherwise the lower bound (with H=(KA;KB|WN )
replacing κ(X ;Y )) is trivially true. We show how Alice and Bob can generate secret keys A,B respectively using KA,KB

and further public discussion. The main idea is to partition K into subsets, and have Alice and Bob send which subset KA

and KB are in. If the two subsets match, Alice and Bob output the indices of KA and KB within that subset. Otherwise they

declare failure (output L = 0). The purpose of the partition is twofold: to group KA’s and KB’s with similar probabilities

into the same subset so the final key is close to being uniform conditioned on its length, and to detect errors (KA 6= KB) by

checking whether KA,KB belong to the same subset. Errors are only penalized slightly in the entropy model (we simply do

not count the entropy when KA 6= KB), but are controlled tightly in the key agreement setting to have a probability bounded

by ǫ (though the probability of failure, i.e. P (L = 0), is not bounded by ǫ), and hence error detection is necessary. This

technique is similar to spectrum slicing [15], [7], but here we perform the slicing or partition on the tentative keys KA,KB

at the last stage of the scheme, whereas in [7] the slicing is performed on X at the first stage of the scheme.

For simplicity, we first assume that Alice and Bob have not used any public discussion yet (the general case will be addressed

later). Fix 0 < δ ≤ 1, 0 < ǫ < 1. For k ∈ K such that pKA|KA=KB
(k) > 0, let ℓ(k) := ⌊−δ−1 log pKA|KA=KB

(k)⌋. For t

in the range of ℓ(·), let ℓ−1(t) := {k : ℓ(k) = t}. Note that |ℓ−1(t)| ≥ 1 for all such t. Let |ℓ−1(t)| =
∑βt

i=1 2
αt,i be the

binary representation of |ℓ−1(t)| for such t, where the αt,i’s are sorted in descending order along i. We partition ℓ−1(t) by

first selecting the 2αt,1 elements k ∈ ℓ−1(t) with the largest pKA|KA=KB
(k) and putting them in the first subset, then the

next 2αt,2 k’s and putting them in the second subset, and so on. Let {Si} be the collection of all these subsets (note that each

of them has a size which is a power of 2) among the partitions of ℓ−1(t) for t in the range of ℓ(·). For k ∈ K such that

pKA|KA=KB
(k) > 0, let cS(k) be the index of the Si that contains k (i.e., k ∈ ScS(k)), and write ℓ(Si) for ℓ(k) where k ∈ Si

(all k’s in Si have the same ℓ(k)). By the construction of the partition, we have

E

[

log |ScS(KA)|
∣

∣

∣
KA = KB

]

≥ E

[

log |ℓ−1(ℓ(KA))|
∣

∣

∣
KA = KB

]

− 2. (2)

For each Si, let

ρi = P{KA = KB |KA,KB ∈ Si},

mi = max {⌊log(ǫρi|Si|)⌋, 0} .

Since pKA|KA=KB
(k) > 0 for each k ∈ Si, we have ρi > 0. Further partition Si into S̃i,1, . . . , S̃i,2−mi |Si| each with size 2mi .

If we select the partition uniformly at random,

P

{

KA 6= KB, ∃j : KA,KB ∈ S̃i,j |KA,KB ∈ Si

}

=
∑

kA 6=kB∈Si

pKAKB |KA,KB∈Si
(kA, kB)P

{

∃j : kA, kB ∈ S̃i,j

}

=
∑

kA 6=kB∈Si

pKAKB |KA,KB∈Si
(kA, kB) ·

2mi − 1

|Si| − 1

≤ ǫρi,

where the last line can be obtained by considering the 2 cases of mi. Hence there exists a fixed partition S̃i,1, . . . , S̃i,2mi

satisfying

P{KA 6= KB | ∃j : KA,KB ∈ S̃i,j}
= P

{

KA 6= KB ∧ ∃j : KA,KB ∈ S̃i,j |KA,KB ∈ Si

}

/P
{

∃j : KA,KB ∈ S̃i,j |KA,KB ∈ Si

}
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≤ ǫρi/ρi = ǫ. (3)

Let cS̃(k) be the index j of S̃i,j containing k (i.e., k ∈ S̃cS(k), cS̃(k)
). Like cS(k), cS̃(k) is defined for k ∈ K such that

pKA|KA=KB
(k) > 0.

If cS(KA) and cS̃(KA) are well defined, Alice sends W1 = (cS(KA), cS̃(KA)) through public discussion; otherwise Alice

sends a failure symbol. If cS(KB) and cS̃(KB) are well defined, Bob sends W2 = (cS(KB), cS̃(KB)); otherwise Bob sends

a failure symbol. Declare failure (output L = 0) if either party sends a failure symbol. If W1 = W2, Alice outputs the index A
of KA in S̃cS(KA), cS̃(KA) (containing L = log |S̃cS(KA), cS̃(KA)| bits), and Bob outputs the index B of KB in S̃cS(KB), cS̃(KB).

Declare failure if W1 6= W2 (output L = 0). We have

E[L] ≥ E[L1{KA = KB}] = P{KA = KB}E[L |KA = KB],

where

E[L |KA = KB]

= E

[

mcS(KA)

∣

∣

∣
KA = KB

]

≥ E

[

log |ScS(KA)| − log
1

ǫρcS(KA)
− 1

∣

∣

∣
KA = KB

]

≥ E

[

log |ℓ−1(ℓ(KA))|
∣

∣

∣
KA = KB

]

− E

[

log
1

ρcS(KA)

∣

∣

∣
KA = KB

]

− log
1

ǫ
− 3, (4)

where the last inequality is by (2). For the first term,

E

[

log |ℓ−1(ℓ(KA))|
∣

∣

∣
KA = KB

]

=

∞
∑

t=0

P{ℓ(KA) = t |KA = KB} log |ℓ−1(t)|

(a)

≥
∞
∑

t=0

P{ℓ(KA) = t|KA = KB} log
P{ℓ(KA) = t|KA = KB}

2−δt

= δE[ℓ(KA) |KA = KB]−H(ℓ(KA) |KA = KB)

(b)

≥ δE[ℓ(KA) |KA = KB]− log e

− log (E[ℓ(KA) |KA = KB] + 1)

(c)

≥ δE
[

−δ−1 log pKA|KA=KB
(KA)− 1 |KA = KB

]

− log e

− log
(

E
[

−δ−1 log pKA|KA=KB
(KA) |KA = KB

]

+ 1
)

= H(KA|KA = KB)− log
(

δ−1H(KA|KA = KB) + 1
)

− δ − log e

(d)

≥ H(KA|KA = KB)− log (H(KA|KA = KB) + 1)

− log
1

δ
− δ − log e,

where (a) and (c) are because 2−δ(i+1) ≤ pKA|KA=KB
(k) ≤ 2−δi for all k ∈ ℓ−1(i), (b) is due to H(J) ≤ log(E[J ] + 1) +

E[J ] log(1 + 1/E[J ]) ≤ log(E[J ] + 1) + log e for any random variable J ∈ Z≥0 since the geometric distribution maximizes

the entropy for a given mean, and (d) is because δ ≤ 1. For the second term,

E

[

log
1

ρcS(KA)

∣

∣

∣
KA = KB

]

=
∑

i

P{cS(KA) = cS(KB) = i |KA = KB} log
1

ρi

=
∑

i

P{cS(KA) = cS(KB) = i}
P{KA = KB}

ρi log
1

ρi

≤
∑

i

P{cS(KA) = cS(KB) = i}
P{KA = KB}

(e−1 log e)

≤ e−1 log e

P{KA = KB}
.
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Substituting back to (4),

E[L]

≥ P{KA = KB}
· (H(KA|KA = KB)− log (H(KA|KA = KB) + 1))

− log
1

δ
− δ − log

1

ǫ
− e−1 log e− log e− 3

≥ P{KA = KB}H(KA|KA = KB)

− log (P{KA = KB}H(KA|KA = KB) + 1)

− log
1

δ
− δ − log

1

ǫ
− 4.974. (5)

Note that the length of the key is L = 1{W1 = W2}mcS(KA). Next we analyze the distribution of the key. Fix i, j. For any

a ∈ [1 : 2mi ],

P

{

A = B = a |KA,KB ∈ S̃i,j

}

= P{KA = KB |KA,KB ∈ S̃i,j}P{A = a |KA = KB ∈ S̃i,j}

≥ P{KA = KB |KA,KB ∈ S̃i,j}
2−δ(ℓ(Si)+1)

2−δℓ(Si)2mi

= P{KA = KB |KA,KB ∈ S̃i,j}2−mi−δ,

since 2−δ(ℓ(Si)+1) ≤ pKA|KA=KB
(k) ≤ 2−δℓ(Si) for all k ∈ Si. Write U2([1 : 2l]) = Unif

(

{(a, a) : a ∈ [1 : 2l]}
)

.

dTV

(

pA,B|KA,KB∈S̃i,j
, U2([1 : 2mi ])

)

=

2mi
∑

a=1

max
{

2−mi − P

{

A = B = a |KA,KB ∈ S̃i,j

}

, 0
}

≤
2mi
∑

a=1

max
{

2−mi − P{KA = KB|KA,KB ∈ S̃i,j}2−mi−δ, 0
}

= 1− 2−δ
P{KA = KB |KA,KB ∈ S̃i,j}.

Hence

dTV

(

pA,B,W 2|W1=W2, cS(KA)=i,

U2([1 : 2mi ])× pW 2|W1=W2, cS(KA)=i

)

=

2−mi |Si|
∑

j=1

(

pW 2|W1=W2, cS(KA)=i((i, j), (i, j))

· dTV

(

pA,B|W1=W2=(i,j) , U2([1 : 2mi ])
)

)

=

2−mi |Si|
∑

j=1

(

P

{

KA ∈ S̃i,j | ∃j′ : KA,KB ∈ S̃i,j′

}

· dTV

(

pA,B|KA,KB∈S̃i,j
, U2([1 : 2mi ])

)

)

≤
2−mi |Si|
∑

j=1

(

P

{

KA ∈ S̃i,j | ∃j′ : KA,KB ∈ S̃i,j′

}

·
(

1− 2−δ
P{KA = KB |KA,KB ∈ S̃i,j}

)

)

= 1− 2−δ

2−mi |Si|
∑

j=1

P

{

KA = KB ∈ S̃i,j | ∃j′ : KA,KB ∈ S̃i,j′

}

≤ 1− 2−δ(1 − ǫ),



7

where the last inequality is by (3). For l ≥ 1,

dTV

(

pA,B,W 2|L=l , U2([1 : 2l])× pW 2|L=l

)

=
∑

i

(

P{cS(KA) = i |W1 = W2, mcS(KA) = l}

· dTV

(

pA,B,W 2|W1=W2, cS(KA)=i,

U2([1 : 2mi ])× pW 2|W1=W2, cS(KA)=i

)

)

≤ 1− 2−δ(1− ǫ)

≤ 1− (1− δ/ log e)(1 − ǫ)

≤ ǫ+ δ/ log e.

For any 0 < ǫ′ < 1, let ǫ = (3/5)ǫ′, δ = (2/5)ǫ′ log e, then dTV(pA,B,W 2|L=l , U2([1 : 2l])× pW 2|L=l) ≤ ǫ′, and by (5),

E[L] ≥P{KA = KB}H(KA|KA = KB)

− log (P{KA = KB}H(KA|KA = KB) + 1)

− 2 log
1

ǫ′
− 7.082. (6)

The case κ(X ;Y ) = ∞ can be handled by considering a sequence of schemes with H=(KA;KB|WN) finite and tending to

infinity.

For the case where Alice and Bob have already used some public discussion WN to generate KA,KB , we apply the same

arguments for pKA,KB |WN=wn for each wn. The additional public discussion is appended at the end of WN so the overall

public discussion is WN+2. We still have dTV(pA,B,WN+2|L=l , U2([1 : 2l])×pWN+2|L=l) ≤ ǫ′ by convexity of dTV. Further,

we have

Ewn∼p
WN

[

P{KA = KB|WN = wn}H(KA|WN = wn,KA = KB)
]

= P{KA = KB}H(KA|WN ,KA = KB).

Therefore (6) still holds after replacing H(KA|KA = KB) with H(KA|WN ,KA = KB).

For the upper bound, assume Alice and Bob have A and B respectively. Let C satisfy C|{L = l, WN = wn} ∼ Unif[1 : 2l]
for any l, wn. By the coupling characterization of total variation distance, we have

P{A = B = C |L = l}
= 1− dTV

(

pA,B,WN |L=l, U2([1 : 2l])× pWN |L=l

)

≥ 1− ǫ.

We have

κ(X ;Y )

≥ P{A = B}H(A|WN , A = B)

= H(A1{A = B} |WN , 1{A = B})
≥ H(A1{A = B}, 1{A = B = C} |WN )

−H(1{A = B = C}, 1{A = B})
≥ H(C1{A = B = C} |WN)− log 3

≥
∞
∑

l=0

P{L = l}H(C1{A = B = C} |WN , L = l)− log 3

(a)

≥
∞
∑

l=0

P{L = l} · l · P{A = B = C |L = l} − log 3

≥ (1 − ǫ)E[L]− log 3,

where (a) is because C|{L = l, WN = wn} ∼ Unif[1 : 2l] and

H(C1{A = B = C} |WN = wn, L = l)

≥ −
∑

c∈[1:2l]

(

P
{

C1{A = B = C} = c |WN = wn, L = l
}
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· log P
{

C1{A = B = C} = c |WN = wn, L = l
}

)

≥ −
∑

c∈[1:2l]

P

(

{

C1{A = B = C} = c |WN = wn, L = l
}

· log P
{

C = c |WN = wn, L = l
}

)

=
∑

c∈[1:2l]

P
{

C1{A = B = C} = c |WN = wn, L = l
}

· l

= l · P
{

A = B = C |WN = wn, L̂ = l
}

.

Since L∗
ǫ can be upper and lower bounded by κ, in order to prove Theorem 1, we can bound κ instead. The following

lemma bounds κ in terms of I(X ;Y ).

Lemma 2. For any X,Y , if I(X ;Y ) < ∞, we have

κ(X ;Y ) ≥ I(X ;Y )− 2 log(I(X ;Y ) + 1)− 7.034,

κ(X ;Y ) ≤ I(X ;Y ) + 1.

If I(X ;Y ) = ∞, then κ(X ;Y ) = ∞.

Proof: Assume that I(X ;Y ) < ∞. We first prove the upper bound.

I(X ;Y ) = I(X ;Y )− I(X ;Y |WN ) + I(X ;Y |WN ,KB)

+ I(X ;KB|WN )− I(X ;KB|WN , Y )

(a)

≥ I(X ;KB|WN )

(b)

≥ I(KA;KB|WN )

≥ I(KA;KB|WN , 1{KA = KB})− 1

≥ P{KA = KB}H(KA|WN , KA = KB)− 1,

where (a) is due to I(X ;Y |WN ) ≤ I(X ;Y ) by Lemma 2.2 in [2] since WN is generated by interactive communication, and

the Markov chain X − (Y,WN )−KB, and (b) is due to the Markov chain KA − (X,WN )−KB.

We now prove the lower bound. The main idea is to transmit X from Alice to Bob, who has side information Y , using

interactive communication, and then use the part of X not leaked by the interactive communication as the key. While this

is similar to Slepian-Wolf coding [16] studied in a one-shot interactive setting in [17], [18], here we are concerned with the

leakage of information by the interactive communication, not the amount of communication. Note that if we use the results

in [17], [18], we obtain a gap on the order of
√

H(X |Y ) instead of log I(X ;Y ), which is undesirable since H(X |Y ) can be

much larger than I(X ;Y ), or even infinite.

We design a scheme for the entropy model as follows. First consider the case where X ∼ Unif[0, 1] and Y is discrete and

finite. The general case will be addressed later. Fix m ∈ Z>0, 0 < ǫ < 1/2. Alice generates X̃2, . . . , X̃2m
iid∼ Unif[0, 1]. Let

S1 := {X, X̃2, . . . , X̃2m}. At time i, Alice sends Si (as an unordered set, or equivalently a sorted sequence, of size 2m−i+1)

through public discussion, then Bob finds X̂i = argmaxx∈Si
fX|Y (x|Y ). If fX|Y (X̂i|Y )/

∑

x∈Si
fX|Y (x|Y ) ≥ 1 − ǫ, then

Bob declares through public discussion to stop, and Alice produces KA ∈ [1 : 2m−i+1] as the rank of X in Si, Bob produces

KB as the rank of X̂i in Si. Otherwise, Bob declares through public discussion to continue, Alice selects Si+1 ⊆ Si uniformly

among all subsets with size 2m−(i+1)+1 that contain X , and continues to time i+ 1. The scheme will continue up to at most

time m+1 (at which only Sm+1 = {X} is left). While in this scheme the variable S1, which is part of the public discussion,

is not finite (the other Si’s can be transmitted as indices with reference to S1 and are therefore finite), we will later see that

it can also be reduced to a finite discrete random variable.

We now analyze the scheme. Let the time at which Bob declares to stop be T . Note that the posterior probability of

{X = x} (where x ∈ Si) at Bob at time i is fX|Y (x|Y )/
∑

x′∈Si
fX|Y (x

′|Y ). The posterior error probability is always less

than or equal to ǫ when Bob declares to stop. Hence P{KA 6= KB |Y = y, T = t, St = st} ≤ ǫ for any y, t, st, implying

P{KA 6= KB} ≤ ǫ and P{KA 6= KB |Y } ≤ ǫ almost surely. Let Q ∼ Unif[0, 1], independent of all random variables defined

before. Define the event

E =

{

KA 6= KB orQ ≤ 1− 1− ǫ

1− P{KA 6= KB |Y }

}

,
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then P{E|Y } = ǫ almost surely, and

pc(X,Y )
def
= P{Ec|X,Y } (7)

= P{KA = KB |X,Y } · 1− ǫ

1− P{KA 6= KB |Y } .

Condition on the event {X = x, Y = y} from now on until otherwise stated. Let γ = fX|Y (x|y). Assume Alice continues

to generate Si’s after time T . Let Sm+1 = {X̄1}, Sm = {X̄1, X̄2}, Sm−1 = {X̄1, . . . , X̄4}, ..., S1 = {X̄1, . . . , X̄2m}. Then

X̄1 = x and X̄2, . . . , X̄2m
iid∼ Unif[0, 1]. We also define X̄2m+1, X̄2m+2, . . . so that X̄2, X̄3, . . .

iid∼ Unif[0, 1]. Assume X̄∞
2 is

independent of Q. Let Vi = fX|Y (X̄i|y). Note that Vi has expectation 1 (conditioned on {X = x, Y = y}). Let

R = min

{

i :

i+1
∑

j=2

Vj >
γǫ

1− ǫ

}

,

then T ≤ m + 1 − min{⌊logR⌋, m} (since by that time we have fX|Y (x|y)/
∑

x′∈Si
fX|Y (x

′|y) ≥ 1 − ǫ). For α < 1, by

Markov inequality,

P

{

R ≤ αγǫ

1− ǫ

}

= P

{⌊αγǫ
1−ǫ⌋+1
∑

j=2

Vj >
γǫ

1− ǫ

}

≤ α.

Hence,

E[m− T + 1 |Ec]

≥ E [min{⌊logR⌋, m} |Ec]

=

m
∑

i=1

P {⌊logR⌋ ≥ i |Ec}

≥
m
∑

i=1

max

{

1− P
{

R < 2i
}

P(Ec)
, 0

}

≥
m
∑

i=1

max

{

1− 2i
1− ǫ

γǫP(Ec)
, 0

}

≥
ˆ m+1

1

max

{

1− 2t
1− ǫ

γǫP(Ec)
, 0

}

dt

≥ 1

{

1− ǫ

γǫP(Ec)
≤ 1

2

}(

2
1− ǫ

γǫP(Ec)
log e− log

1− ǫ

γǫP(Ec)
− 1− log e

)

−max

{

− log

(

1− ǫ

γǫP(Ec)

)

− (m+ 1), 0

}

≥ − log
1− ǫ

γǫP(Ec)
− 1− log e

−max

{

− log

(

1− ǫ

γǫP(Ec)

)

− (m+ 1), 0

}

.

Also note that KA 6= KB if and only if there exists t ∈ [1 : m + 1], i ∈ [2 : 2m+1−t] such that Vi ≥ (1 − ǫ)
∑2m+1−t

j=1 Vj ,
which is equivalent to

Vi ≥
1− ǫ

ǫ

(

γ +
∑

j∈[2:2m+1−t]\{i}

Vj

)

.

Hence P{KA = KB|X = x, Y = y} only depends on y and γ = fX|Y (x|y), and is nondecreasing in γ for fixed y. By (7),

pc(x, y) = P{Ec|X = x, Y = y} is nondecreasing in P{KA = KB|X = x, Y = y} for fixed y, and therefore is nondecreasing

in γ for fixed y.

We now remove the conditioning on {X = x, Y = y}.

E[m− T + 1 |Ec]

≥ E

[

− log
1− ǫ

fX|Y (X |Y )ǫpc(X,Y )

∣

∣

∣
Ec

]

− 1− log e

− E

[

max

{

− log
1− ǫ

fX|Y (X |Y )ǫpc(X,Y )
−m− 1, 0

}

∣

∣

∣
Ec

]
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≥ E

[

log
fX|Y (X |Y )pc(X,Y )

1− ǫ

∣

∣

∣
Ec

]

+ log ǫ− δǫ,m
1− ǫ

− 1− log e, (8)

where

δǫ,m
def
= E

[

max

{

− log
1− ǫ

fX|Y (X |Y )ǫ
− (m+ 1), 0

}]

= I(X ;Y ) + log
ǫ

1− ǫ

− E

[

min

{

− log
1− ǫ

fX|Y (X |Y )ǫ
, m+ 1

}]

,

which tends to 0 as m → ∞ by Fatou’s lemma. For the other term, since P{Ec|Y } = 1− ǫ, Ec is independent of Y , and

E

[

log
fX|Y (X |Y )pc(X,Y )

1− ǫ

∣

∣

∣
Ec

]

=

ˆ ˆ 1

0

fX|Y (x|y)pc(x, y)
1− ǫ

log
fX|Y (x|y)pc(x, y)

1− ǫ
dxdPY (y).

Fix y. Let Gy = {x ∈ [0, 1] : pc(x, y) ≤ 1 − ǫ}, Gc
y = [0, 1]\Gy. Since pc(x, y) is nondecreasing in fX|Y (x|y), we have

fX|Y (x1|y) ≤ fX|Y (x2|y) for any x1 ∈ Gy , x2 ∈ Gc
y . Let ℓ(t) = t log t, then ℓ′(t) = log t+ log e is increasing,

ˆ 1

0

ℓ

(

fX|Y (x|y)pc(x, y)
1− ǫ

)

dx−
ˆ 1

0

ℓ(fX|Y (x|y))dx

(a)
= −

ˆ

Gy

ˆ fX|Y (x|y)

fX|Y (x|y)pc(x,y)/(1−ǫ)

ℓ′(t)dtdx

+

ˆ

Gc
y

ˆ fX|Y (x|y)pc(x,y)/(1−ǫ)

fX|Y (x|y)

ℓ′(t)dtdx

≥ 0,

since ℓ′(t) is increasing, all the t’s in the negative integral in (a) is not greater than the t’s in the positive integral in (a), and

ˆ

Gc
y

ˆ fX|Y (x|y)pc(x,y)/(1−ǫ)

fX|Y (x|y)

dtdx−
ˆ

Gy

ˆ fX|Y (x|y)

fX|Y (x|y)pc(x,y)/(1−ǫ)

dtdx

=

ˆ 1

0

(

fX|Y (x|y)pc(x, y)
1− ǫ

− fX|Y (x|y)
)

dx

=
P{Ec|Y = y}

1− ǫ
− 1 = 0.

Hence
ˆ ˆ 1

0

ℓ

(

fX|Y (x|y)pc(x, y)
1− ǫ

)

dxdPY (y)

≥
ˆ ˆ 1

0

ℓ(fX|Y (x|y))dxdPY (y) = I(X ;Y ).

Substituting back to (8),

E[m− T + 1 |Ec]

≥ I(X ;Y ) + log ǫ− (1− ǫ)−1δǫ,m − 1− log e. (9)

Assume Alice selects Si in the following way: Alice observes X , generates X̃2, . . . , X̃2m
iid∼ Unif[0, 1], and S1 = {X, X̃2, . . . , X̃2m}

(let X̃1 = X). Alice generates a permutation Φ over [1 : 2m] uniformly at random. At time i, Alice selects Si = {X̃j : Φ(j) ≡
Φ(1) (mod 2i−1)}. It is straightforward to check that Si+1 is distributed uniformly among all subsets of Si with size 2m−(i+1)+1

that contains X . Hence we can assume Si’s are generated this way.

H(KA|T, ST ,Φ, Ec)

= H(X |T, ST ,Φ, Ec)

= Et∼pT |Ec

[

H(X |S1,Φ, E
c, T = t)
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−
t
∑

i=2

I(X ; Si |Si−1,Φ, Ec, T = t)

]

= H(X |S1,Φ, T, E
c)

−
∞
∑

i=2

P{T ≥ i |Ec}I(X ; Si |Si−1,Φ, T, Ec, T ≥ i)

≥ H(X |S1,Φ, E
c)−H(T |Ec)−

∞
∑

i=2

P{T ≥ i |Ec}, (10)

where the last inequality is because Si only has two possibilities given Si−1 and Φ (depending on whether Φ(1)mod 2i−1 =
Φ(1)mod 2i−2 or (Φ(1)mod 2i−2) + 2i−2). For the first term,

H(X |S1,Φ, E
c)

= E

[

∑

x∈S1

P{X = x|S1,Φ, E
c} log 1

P{X = x|S1,Φ, Ec}
∣

∣

∣
Ec

]

≥ E

[

∑

x∈S1

P{X = x|S1,Φ, E
c} log P{Ec|S1,Φ}

P{X = x|S1,Φ}
∣

∣

∣
Ec

]

= E

[

∑

x∈S1

P{X = x|S1,Φ, E
c} log P{Ec|S1,Φ}

2−m

∣

∣

∣
Ec

]

= m+ E [logP{Ec|S1,Φ} |Ec]

= m+ (1− ǫ)−1
E [P{Ec|S1,Φ} logP{Ec|S1,Φ}]

≥ m− (1− ǫ)−1e−1 log e

≥ m− 2e−1 log e,

where the last inequality is by ǫ < 1/2. For the second and third term in (10),

−H(T |Ec)−
∞
∑

i=2

P{T ≥ i |Ec}

= −m−H(T |Ec) + E[m− T + 1|Ec]

(a)

≥ −m− (E[m− T + 1|Ec] + 1)Hb

(

1

E[m− T + 1|Ec] + 1

)

+ E[m− T + 1|Ec]

≥ −m+ E[m− T + 1|Ec]− log (E[m− T + 1|Ec] + 1)− log e

(b)

≥ −m+max
{

I(X ;Y ) + log ǫ− (1− ǫ)−1δǫ,m − 1− log e, 0
}

− log
(

max
{

I(X ;Y ) + log ǫ− (1 − ǫ)−1δǫ,m − 1− log e, 0
}

+ 1
)

− log e − 0.0861

≥ −m+ I(X ;Y ) + log ǫ − (1− ǫ)−1δǫ,m

− log
(

max
{

I(X ;Y ) + log ǫ− (1 − ǫ)−1δǫ,m, 0
}

+ 1
)

− 3.9715. (11)

where (a) is because H(T |Ec) = H(m − T + 1|Ec) and the geometric distribution maximizes the entropy of a nonnegative

integer-valued random variable with fixed mean, and (b) is by (9) and that t 7→ t − log(t + 1) decreases by at most 0.0861.

Substituting back in (10),

H(KA|T, ST ,Φ, Ec)

≥ I(X ;Y ) + log ǫ− (1 − ǫ)−1δǫ,m

− log
(

max
{

I(X ;Y ) + log ǫ− (1− ǫ)−1δǫ,m, 0
}

+ 1
)

− 5.033.

Recall that Ec ⊆ {KA = KB}. Hence

H=(KA;KB|T, ST ,Φ)

= P{KA = KB}H(KA|T, ST ,Φ,KA = KB)

= H(KA1{KA = KB} |T, ST ,Φ, 1{KA = KB})
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≥ H(KA1{KA = KB},1{Ec}|T, ST ,Φ,1{KA = KB},1{Ec})− 1

≥ H(KA1{Ec} |T, ST ,Φ, 1{KA = KB}, 1{Ec})− 1

= H(KA1{Ec} |T, ST ,Φ, 1{Ec})− 1

= (1− ǫ)H(KA|T, ST ,Φ, Ec)− 1

≥ (1− ǫ)
(

I(X ;Y ) + log ǫ− (1− ǫ)−1δǫ,m

− log
(

max
{

I(X ;Y ) + log ǫ − (1− ǫ)−1δǫ,m, 0
}

+ 1
)

)

− 6.033. (12)

Since δǫ,m → 0 as m → ∞, for m large enough, we have (write I = I(X ;Y ))

κ ≥ (1− ǫ) (I + log ǫ − log (max {I + log ǫ, 0}+ 1))− 6.034.

If I > 2, substitute ǫ = I−1 , we have

κ ≥ I − log I − log (I − log I + 1)

+
log I + log (I − log I + 1)

I
− 7.034

≥ I − 2 log(I + 1)− 7.034.

It can also be checked that the lemma is true when I ≤ 2, since the right hand side is negative.

Next we consider the case where X,Y ∈ Z>0 are discrete are finite. Let X̂ |{X = x} ∼ Unif[FX(x − 1), FX(x)]. Then

X̂ ∼ Unif[0, 1] and I(X̂;Y ) = I(X ;Y ). We apply the above scheme over (X̂, Y ). Since the scheme makes no distinction

between values of x̂ in the same interval (FX(x − 1), FX(x)] mapped to the same x (they have the same fX̂|Y (x̂|y) for all

y), to transmit S1 we only need to transmit the sizes |S1 ∩ (FX(x− 1), FX(x)]|, which are finite.

For the general case where each component of the pair (X,Y ) lies in a general measurable space, we apply the above

scheme over (g1(X), g2(Y )), where g1(X) and g2(Y ) are discretized version of X and Y lying in finite sets. Since (see [19])

I(X ;Y ) = sup
g1,g2: g1(X ),g2(Y) finite

I(g1(X); g2(Y )),

the proof is completed by considering a sequence of discretizations approaching the mutual information. This approach also

handles the case where I(X ;Y ) = ∞.

We now complete the proof of Theorem 1.

Proof of Theorem 1: The upper bound follows from Lemma 1 and 2. For the lower bound, by Lemma 1 and 2,

L∗
ǫ (X ;Y )

≥ κ(X ;Y )− log (κ(X ;Y ) + 1)− 2 log
1

ǫ
− 7.082

(a)

≥ I(X ;Y )− 2 log(I(X ;Y ) + 1)− 7.034

− log (max {I(X ;Y )− 2 log(I(X ;Y ) + 1)− 6.238, 0}+ 1)

− 2 log
1

ǫ
− 0.0861− 7.082

≥ I(X ;Y )− 3 log(I(X ;Y ) + 1)− 2 log
1

ǫ
− 14.2021

where (a) is because t 7→ t− log(t+ 1) decreases by at most 0.0861.

IV. CONCATENATING VARIABLE-LENGTH KEYS

Consider the situation where Alice and Bob observe the respective coordinates of a random process {(Xi, Yi)}i∈Z>0

sequentially, where we assume that the pairs (Xi, Yi) are independent over i. Instead of grouping the source symbols into large

blocks to allow the generation of fixed-length keys, they may reduce the delay of key generation by generating a variable-length

key upon observing the respective coordinates of each source symbol pair. These variable-length keys can be concatenated to

form a stream of secret key bits that can be used as soon as they become available.

Suppose we have two independent variable-length keys with expected lengths E[L1], E[L2] and distances from ideal

distributions ǫ1, ǫ2 respectively. Then we can concatenate them to form a variable-length key with expected length E[L3] =
E[L1] + E[L2] and distance from ideal distribution ǫ3 ≤ ǫ1 + ǫ2. The distance from ideal distribution grows linearly with the

number of variable-length keys concatenated, which prevents us from concatenating too many keys. Instead of considering the

distance from ideal distribution, we may consider the entropy and bit error probability instead, as shown below.
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Proposition 1. Let (A,B) be a variable-length key with expected length E[L] and distance from ideal distribution ǫ. Then,

for all l ∈ Z≥0 and i ∈ [1 : l] , we have

P {A[i] 6= B[i] |L = l} ≤ ǫ, (13)

and

H(A |WN , L = l), H(B |WN , L = l) ≥ l (1− 2ǫ) , (14)

where we write A[i] for the i-th bit of A, and WN denotes the public discussion, stopping at the random time N . As a result, if

we concatenate two independent keys (A1, B1), (A2, B2) with lengths L1, L2 and public discussions WN1

1 ,WN2

2 respectively,

both with distances from ideal distributions bounded by ǫ, i.e., A = A1‖A2, B = B1‖B2, L = L1 + L2, then the same

guarantees are preserved, i.e., P {A[i] 6= B[i] |L = l} ≤ ǫ, which is (13) for the concatenated key, and

H(A|WN1

1 ,WN2

2 , L = l), H(B|WN1

1 ,WN2

2 , L = l) ≥ l (1− 2ǫ) . (15)

Proof: It is straightforward to prove (13). We first prove (14). Let g(t) = −t log t for t ∈ [0, 1]. Then, by the concavity

of g, for any γ ∈ [0, 1],

g(t) ≥ g(γ)

(

1− max{γ − t, 0}
γ

− max{t− γ, 0}
1− γ

)

.

For l ≥ 1,

H(A|WN = wn, L = l)

=

2l
∑

a=1

g(pA|WN=wn,L=l(a))

≥
2l
∑

a=1

g(2−l)

(

1−
max{2−l − pA|WN=wn,L=l(a), 0}

2−l

−
max{pA|WN=wn,L=l(a)− 2−l, 0}

1− 2−l

)

≥ l2−l

(

2l −
dTV(pA|WN=wn,L=l, Unif[1 : 2l])

2−l

−
dTV(pA|WN=wn,L=l, Unif[1 : 2l])

1− 2−l

)

≥ l
(

1− 2dTV(pA|WN=wn,L=l, Unif[1 : 2l])
)

.

Since dTV(pA,WN |L=l , Unif[1 : 2l]× pWN |L=l) ≤ ǫ, we have

H(A|WN , L = l) ≥ l (1− 2ǫ) .

Suppose now that we concatenate two independent keys (A1, B1), (A2, B2) with lengths L1, L2 and public discussions

WN1

1 ,WN2

2 respectively, both with distances from ideal distributions bounded by ǫ, i.e., A = A1‖A2, B = B1‖B2, L = L1+L2.

It is straightforward to prove (13) for the concatenated key. To prove (15), note that

H(A|WN1

1 ,WN2

2 , L = l)

≥ H(A|WN1

1 ,WN2

2 , L1, L = l)

=
l
∑

t=0

P {L1 = t |L = l}
(

H(A1|WN1

1 , L1 = t)

+H(A2|WN2

2 , L2 = l − t)
)

≥
l
∑

t=0

P {L1 = t |L = l} (t(1− 2ǫ) + (l − t)(1 − 2ǫ))

= l(1− 2ǫ).

Then we show that it is possible to construct a fixed-length key in the asymptotic regime using i.i.d. variable-length keys

and a simple outer code. The following proposition shows that the asymptotic fixed-length result is implied by the one-shot

variable-length result (by applying Theorem 1 on Xt, Y t, ǫ = t−2, and taking t → ∞).
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Proposition 2. Fix R < µ(1−Hb(2ǫ)). For i ∈ Z>0, let (Ai, Bi) be i.i.d. variable-length keys with respective public discussion

Wi (we let Wi := WNi

i and omit the superscript), expected length µ and distance from ideal distribution ǫ. Then we can

construct a sequence of fixed-length keys {(KA,n,KB,n)}∞n=1, where KA,n,KB,n ∈ [1 : 2⌊nR⌋] is generated using An, Bn,

and possibly using additional public discussion, where

lim
n→∞

P {KA,n 6= KB,n} = 0,

lim inf
n→∞

1

n
H(KA,n) ≥ R − 2ǫµ,

and

lim sup
n→∞

1

n
I(KA,n; W̃n) ≤ 2ǫµ,

where W̃n denotes all the public discussion used to generate KA,n,KB,n (including the Wi’s and the additional public

discussion). Similar conditions hold for KB,n.

Proof: If ǫ > 0 is small enough, then for all ξ > 0 small enough we have R < (µ+ξ)(1−Hb(2(ǫ+ξ))). Fix such a ξ > 0

and fix n. Let K̃A ∈ F
n(µ+ξ)
2 be the first ⌈n(µ+ ξ)⌉ bits of A1‖A2‖ · · · ‖An (append zeroes if there are not enough bits), and

similarly define K̃B. Let P ∈ F
(⌈n(µ+ξ)⌉−⌊nR⌋)×⌈n(µ+ξ)⌉
2 be the parity check matrix of a linear code with minimum distance at

least 2(ǫ+ ξ)n(µ+ ξ). This is possible by the Gilbert-Varshamov bound [20], [21] since ⌊nR⌋ < n(µ+ ξ)(1−Hb(2(ǫ+ ξ))).
Alice sends PK̃A through public discussion, and Bob finds K̂ with the smallest Hamming distance from K̃B satisfying

PK̂ = PK̃A. By Proposition 1 and law of large numbers, P{|{i : K̃A[i] 6= K̃B[i]}| ≤ ǫn(µ + ξ)} → 1, and hence the code

can correct the error and K̂ = K̃A with probability tending to 1. Alice outputs KA ∈ F
⌊nR⌋
2 , the coordinates of K̃A in the affine

subspace {v : Pv = PK̃A}. Bob outputs KB , the coordinates of K̂ in the affine subspace {v : Pv = PK̃A} (Alice and Bob

agree beforehand on the same basis of the subspace). Note that the public discussion is (W1, . . . ,Wn, P K̃A) = (Wn, P K̃A).
We have

H(KA|Wn, P K̃A)

≥ H(KA|Wn, Ln, P K̃A)

≥ P

{

∣

∣

∣

1

n

n
∑

i=1

Li − µ
∣

∣

∣
≤ ξ

}

·H
(

KA

∣

∣

∣

∣

Wn, Ln, P K̃A,
∣

∣

∣

1

n

n
∑

i=1

Li − µ
∣

∣

∣
≤ ξ

)

.

By law of large numbers, P {|(1/n)∑i Li − µ| ≤ ξ} → 1. We have

H

(

KA

∣

∣

∣

∣

Wn, Ln, P K̃A,
∣

∣

∣

1

n

∑

i

Li − µ
∣

∣

∣
≤ ξ

)

(a)
= H

(

An

∣

∣

∣

∣

Wn, Ln, P K̃A,
∣

∣

∣

1

n

∑

Li − µ
∣

∣

∣
≤ ξ

)

≥ H

(

An

∣

∣

∣

∣

Wn, Ln,
∣

∣

∣

1

n

∑

Li − µ
∣

∣

∣
≤ ξ

)

− n(µ− ξ) + ⌊nR⌋

(b)

≥ n(µ− ξ)(1− 2ǫ)− n(µ− ξ) + ⌊nR⌋
= ⌊nR⌋ − 2ǫn(µ− ξ)

where (a) is because A1‖A2‖ · · · ‖An has length at most n(µ+ ξ) if |(1/n)∑i Li − µ| ≤ ξ, and K̃A is a function of PK̃A

and KA; and (b) is by Proposition 1. Hence for sufficiently large n,

1

n
H(KA|Wn, P K̃A) ≥ R− 2ǫ(µ− ξ)− ξ.

Since I(KA;W
n, P K̃A) ≤ ⌊nR⌋ −H(KA|Wn, P K̃A), for sufficiently large n,

1

n
I(KA;W

n, P K̃A) ≤ 2ǫ(µ− ξ) + ξ.

The proof is completed by letting ξ → 0.
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V. SPLITTING A VARIABLE-LENGTH KEY

Another way to obtain fixed-length keys from a variable-length secret key is by splitting the key. Suppose Alice and Bob

share a variable-length key A,B with length L. They want to perform a task multiple times (e.g. communicating an encrypted

message), each time requiring a fixed-length key with length t. Alice and Bob can perform the task M = ⌊L/t⌋ times using

different segments of A and B (treated as bit sequences) as the keys. Let the segments be Ã⌊L/t⌋ = Ã1, . . . , Ã⌊L/t⌋ and

B̃⌊L/t⌋, defined similarly. By the definition of variable-length keys, we have the following secrecy guarantee for any m:

dTV

(

pÃm,B̃m,WN |M=m, U2([1 : 2t]⊗m)× pWN |M=m

)

≤ ǫ,

where U2([1 : 2t]⊗m) denotes Unif{(am, am) : a1, . . . , am ∈ [1 : 2t]}. This means the total variation distance between the

actual distribution and the ideal one (where Ãm = B̃m, i.i.d. uniform over [1 : 2t] independent of WN ) is bounded by ǫ. Any

event on Ãm, B̃m,WN (e.g. an error event, Eve correctly guessing some functions of Ã, B̃, etc.) has a probability within ǫ
from the probability of that event measured in the ideal distribution (the probability of error, the advantage of Eve, etc. are

bounded by ǫ). Therefore Alice and Bob can perform the task an expected E[M ] ≥ E[L]/t− 1 times while guaranteeing the

advantage of Eve is bounded by ǫ.
Consider the payoff function g(ã, b̃, v) ∈ [gmin, gmax] (which can be negative), where ã, b̃ ∈ [1 : 2t] are the keys,

and v is Eve’s action (e.g. Eve’s guess of the message). The total payoff is
∑M

i=1 g(Ãi, B̃i, Vi). To make the secrecy

guarantee stronger, we allow for the hypothetical possibility that Eve observes Ãi, B̃i strictly causally, i.e., Vi can depend

on WN , Ãi−1, B̃i−1, V i−1. This rules out the possibility of simply reusing the same key for each i and provides a stronger

guarantee without actually implying that Eve has access to the previous keys (which would result in compromising previous

communications). Let g∗ = infv E[g(C,C, v)] be the worst-case expected payoff in the ideal distribution where C ∼ Unif[1 : 2t]
(since Eve’s observation WN is independent of C in the ideal distribution she can only fix her output at some v). Assume

g∗ > 0 (otherwise we cannot have a positive payoff even if we have a perfect secret key). The expected payoff

E

[

M
∑

i=1

g(Ãi, B̃i, Vi)

]

(a)

≥ E

[

E

[

∑

g(Ci, Ci, Vi)
∣

∣

∣
M
]

− dTV

(

pÃM ,B̃M ,WN |M , pCM ,CM ,WN |M

)

M(gmax − gmin)
]

(b)

≥ E [M (g∗ − ǫ(gmax − gmin))]

≥
(

E[L] + 1

t
− 1

)

(g∗ − ǫ(gmax − gmin)) , (16)

where in (a), Ci are i.i.d. uniform over [1 : 2t] independent of WN , and we assume Vi|{WN = wn, Ci−1 = ci−1, V i−1 =
vi−1} ∼ pVi|WN ,Ãi−1,B̃i−1,V i−1(·|wn, ci−1, ci−1, vi−1), and (b) is because Ci is independent of WN , Ci−1, V i−1 and therefore

Ci is independent of Vi. We can see that this is close to the ideal payoff E[L]g∗/t when ǫ is small.
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