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Abstract

Locally repairable codes (LRCs) are considered with equal or unequal localities, local distances and local field

sizes. An explicit two-layer architecture with a sum-rank outer code is obtained, having disjoint local groups and

achieving maximal recoverability (MR) for all families of local linear codes (MDS or not) simultaneously, up to a

specified maximum locality r. Furthermore, the local linear codes (thus the localities, local distances and local fields)

can be efficiently and dynamically modified without global recoding or changes in architecture or outer code, while

preserving the MR property, easily adapting to new configurations in storage or new hot and cold data. In addition,

local groups and file components can be added, removed or updated without global recoding. The construction requires

global fields of size roughly gr, for g local groups and maximum or specified locality r. For equal localities, these

global fields are smaller than those of previous MR-LRCs when r ≤ h (global parities). For unequal localities, they

provide an exponential field size reduction on all previous best known MR-LRCs. For bounded localities and a large

number of local groups, the global erasure-correction complexity of the given construction is comparable to that of

Tamo-Barg codes or Reed-Solomon codes with local replication, while local repair is as efficient as for the Cartesian

product of the local codes. Reed-Solomon codes with local replication and Cartesian products are recovered from

the given construction when r = 1 and h = 0, respectively. The given construction can also be adapted to provide

hierarchical MR-LRCs for all types of hierarchies and parameters. Finally, subextension subcodes and sum-rank

alternant codes are introduced to obtain further exponential field size reductions, at the expense of lower information

rates.
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I. INTRODUCTION

Distributed storage systems (DSSs) are of increasing importance for various cloud-based services and other

applications, but are usually vulnerable to node erasures (due to disk failures). This has recently motivated several

interesting and highly non-trivial coding-theoretic problems. A simple solution is data replication, but it suffers

from low information rate. Optimal information rates are achieved by maximum distance separable (MDS) codes.

However, repairing a single node with MDS codes requires contacting a large number of nodes and decoding all

information symbols, resulting in high repair latency. Hybrid solutions are MDS codes with local replication and

Cartesian products of MDS codes, but these suffer from low information rate and low global erasure-correction

capability, respectively.

Among different proposals, locally repairable codes (LRCs) [1]–[3] have attracted considerable attention recently,

since they allow a failed node to be repaired by contacting only a small number r (called locality) of other nodes

while simultaneously having a good global erasure-correction capability. LRCs have already been implemented in

practice by Microsoft [4] and Facebook [5]. Singleton-type bounds on the global distance of LRCs were given in

[3], [6]. Optimal LRCs, meaning LRCs whose global distance attain such bounds, were obtained in [3], [6]–[11],

and the first general construction with linear field sizes (i.e., scaling linearly with block length) was obtained in

[12]. Recently, optimal LRCs with larger code lengths than the field size were obtained for certain choices of global

distance, local distance and/or locality in [13]–[16].

Later, LRCs where each local group has a different locality ri (depending on the local group index i) were

introduced independently in [17] and [18]. The main motivation is that different storage configurations may be

required, or some nodes may need faster local repair or access (hot data), while global erasure correction is

improved by also considering the different non-maximum localities. Including also multiple local distances δi ≥ 2

was considered independently in [19] and [20]. In particular, [17], [20] obtain optimal LRCs with multiple localities

(and local distances in [20]), for arbitrary parameters, by adapting the construction from [8] based on Gabidulin

codes [21], [22], which requires field sizes that are exponential in the code length. General optimal LRCs with

multiple localities, local distances and subexponential field sizes are not known yet, to the best of our knowledge.

In another line of research, LRCs with maximal recoverability (MR-LRCs, also known as partial MDS or PMDS

codes) have been introduced successively in [23]–[25]. MR-LRCs are a strictly stronger class of LRCs than “optimal”

LRCs, in spite of the terminology. Not only do they attain optimal global distance, but they can correct any erasure

pattern that is information-theoretically correctable given the local constraints (while optimal LRCs, such as [12],

cannot). MR-LRCs over relatively small fields are significantly harder to obtain than optimal LRCs. In fact, certain

parameters of MR-LRCs require super-linear field sizes [26], and slightly more complex topologies require super-

polynomial field sizes [27]. Not many explicit constructions are known. Some families for certain parameters are

given in [24], [25], [28], [29]. Constructions for general parameters are given in [30]–[33]. See Section VI for a

detailed description of the code parameters and field sizes achieved by the works [12], [24], [25], [28]–[33].

In this work, we propose replacing Gabidulin codes [21], [22] by linearized Reed-Solomon codes [34] in known

MR-LRC constructions [8], [17], [20], [30]. The key idea is that the only property of Gabidulin codes used here
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is that they are maximum sum-rank distance (MSRD) block codes for the sum-rank length partition N =
∑g

i=1 ri

(= gr for equal localities) for g local groups, see Section II. Linearized Reed-Solomon codes are a hybrid between

Gabidulin codes [21], [22] and Reed-Solomon codes [35] that are MSRD and attain the minimum field-size exponent,

r = maxi ri, for the corresponding sum-rank length partition (see Proposition 2).

As a consequence, we obtain new general MR-LRCs for any choice of (equal or unequal) localities up to a

specified number r, arbitrary (equal or unequal) local distances, and with local field sizes of order O(r). The global

field size is roughly gr, for g local groups, independent of the code dimension k or the number of global parities

h = gr− k, and global erasure correction has quadratic complexity in gr over such fields. For bounded and small

localities r and large g, the global decoding complexity becomes comparable to that of Tamo-Barg codes [12] and

Reed-Solomon codes [35] with local replication (see Section VI). Interestingly, the latter are recovered when r = 1.

Moreover, local field sizes and complexity of local repair are actually the same as those of Cartesian products

of r-dimensional MDS codes (see Example 1 in Subsection V-B), which are recovered when h = 0. Note that

local repair is assumed to be more frequent, whereas global repair is reserved to catastrophic erasures. With this

construction:

1) We obtain the first general MR-LRCs for arbitrary unequal localities and local distances with global field sizes

that are not exponential in gr, in contrast with [17], [20].

2) We obtain further field size reductions on MR-LRCs compared to [31] (which assumes equal localities and

local distances) whenever r ≤ h (see Subsection VI-B). Both small r and h are desirable in DSSs applications.

Which regime, r ≤ h or h < r, is more desirable depends on the particular application. Observe however that

large r defeats the purpose of LRCs, and h is the extra number of correctable erasures compared to the Cartesian

product of the local codes (the case h = 0), hence is expected to grow somehow as gr grows. See Example 2 in

Subsection VI-B.

3) In contrast with most LRCs (e.g., [3], [6], [7], [9]–[12], [18], [19], [24], [25], [28], [29], [31]–[33]), our

construction is a) Universal: The same architecture and outer code admits any family of g local linear codes

(MDS or not) of dimensions up to r; and b) Dynamic: Arbitrary changes of local linear codes are possible, always

preserving the MR condition and optimal global distance, without global recoding or changes in architecure or outer

code; one simply needs to perform efficient local recodings, usually over the much smaller local fields. See Section

V for details. Although MR-LRCs with δ > 2 (e.g., [24], [25], [31]) admit puncturing, hence changes in local

distances (this seems not to be possible without the MR condition), changing localities without global recoding

seems difficult. In addition, our construction allows file components and local groups to be added, removed or

updated without global recoding. Universality and dynamism are of interest in DSSs, where one may want to adapt

to new configurations over time without recoding all of the stored data. Universality and dynamism are shared by

the particular cases r = 1 (Reed-Solomon codes with local replication) and h = 0 (Cartesian products).

4) The universality in Item 3 implies that our construction admits any combination and any number of layers of

(equal or unequal) multi-layer or hierarchical localities. This means that the local codes may be in turn MR-LRCs,

and in such a case, each node is protected by a small local code (lower level), and simultaneously by a larger local

MR-LRC (medium level) and by the global MR-LRC (higher level), in the two-level case, and similarly for more
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levels. Lower-level codes may repair fewer erasures, but require contacting a smaller number of nodes and typically

use a smaller field size. Hierarchical locality was introduced in [36]. The concept of MR-LRCs with hierarchical

localities has been itnroduced parallel to the present work in [37]. The comparison between the field sizes between

the constructions in [37] and this work is analogous to the case of simple MR-LRCs as in Item 2. Observe that the

work [37] considers only two-level hierarchies and equal localities and local distances for each level.

5) We show that universal MR-LRCs as in Item 3 with localities ri up to a specified number r are equivalent

to global codes with the given architecture plus MSRD outer codes with sum-rank length partition N =
∑g

i=1 ri.

In particular, r = maxi ri is the smallest field extension that allows this type of universality. Hence MR-LRCs

over smaller fields always need to coordinate their global and local codes in some way, reducing universality and

dynamism.

6) Following the idea in the previous item, we introduce subextension subcodes and sum-rank alternant codes.

As in the Hamming-metric case (r = 1), sum-rank alternant codes enable exponential field size reductions with the

same global erasure-correction capability, at the expense of lower information rates.

The remainder of this paper is organized as follows. In Section II, we give some preliminaries on sum-rank codes,

including some new results. In Section III, we describe our main MR-LRC construction. In Section IV, we study

MR-LRCs where local codes can be arbitrary linear codes over some (local) subfields, including the proof that the

given construction is MR. We show in Section V how to perform local linear recodings, partition localities, obtain

multi-layer or hierarchical MR-LRCs, and update localities, file components and number of local groups. In Section

VI, we compare the achieved global and local fields and decoding complexities of the proposed construction with

LRCs from the literature that cover general parameters. In Section VII, we introduce subextension subcodes and

sum-rank alternant codes to obtain similar LRCs, which allows us to obtain exponential field size reductions at the

expense of reducing information rates. Section VIII concludes the paper.

Notation

For a field F, we denote by Fm×n the set of m× n matrices with entries in F, and we denote Fn = F1×n. For

a prime power q, we denote by Fq the finite field with q elements.

For a positive integer, we denote [n] = {1, 2, . . . , n}. Given R ⊆ [n], we denote by cR ∈ F|R|, A|R ∈ Fm×|R|

and CR ⊆ F|R| the restrictions of a vector c ∈ Fn, a matrix A ∈ Fm×n and a code C ⊆ Fn, respectively, to the

coordinates indexed by R.

In general, the term complexity O(N) means complexity of O(N) operations over the corresponding field.

II. PRELIMINARIES ON SUM-RANK CODES

The sum-rank metric was introduced in [38] for error-correction in multishot network coding. It was implicitly

considered earlier in the space-time coding literature (see [39, Sec. III]). In Subsection II-A, we collect basic

properties of sum-rank codes, including several new results. In Subsection II-B, we review the construction of

linearized Reed-Solomon codes [34], which is the only known general family of maximum sum-rank distance

(MSRD) block codes with subexponential field sizes in the code length.
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A. Sum-rank Codes

Let q denote a prime power and fix a positive integer m. Fix an ordered basis A = {α1, α2, . . . , αm} of Fqm over

Fq. For any non-negative integer s, we denote by MA : Fs
qm −→ Fm×s

q the corresponding matrix representation

map, given by

MA

(
m∑

i=1

αici

)
=




c11 c12 . . . c1s

c21 c22 . . . c2s
...

...
. . .

...

cm1 cm2 . . . cms




, (1)

where ci = (ci,1, ci,2, . . . , ci,s) ∈ Fs
q , for i = 1, 2, . . . ,m.

Fix positive integers g and N = r1 + r2 + · · · + rg . The integer g will be called the initial number of local

groups, and r1, r2, . . . , rg , initial localities (not necessarily equal).

Definition 1 (Sum-rank metric [38]). Let c = (c(1), c(2), . . . , c(g)) ∈ FN
qm , where c

(i) ∈ Fri
qm , for i = 1, 2, . . . , g.

We define the sum-rank weight of c as

wtSR(c) =

g∑

i=1

Rk(MA(c
(i))).

Finally, we define the sum-rank metric dSR : (FN
qm)2 −→ N as dSR(c,d) = wtSR(c − d), for all c,d ∈ FN

qm .

We will also say that N = r1 + r2 + · · ·+ rg is a sum-rank length partition. A sum-rank length partition is thus

the same as a number of initial local groups and initial localities.

As usual, for a code C ⊆ FN
qm (linear or non-linear), we define its minimum sum-rank distance as

dSR(C) = min{dSR(c,d) | c,d ∈ C, c 6= d}. (2)

Observe that the Hamming metric [40] and the rank metric [21], [22], [41] are recovered from the sum-rank

metric by setting r1 = r2 = . . . = rg = 1 and g = 1, respectively.

The crucial fact about the minimum sum-rank distance for (universal) global erasure correction in LRCs is that it

gives the worst-case erasure-correction capability after any possible local linear recoding on disjoint local groups.

This is given by the following result, which we will use throughout the paper and is of interest in its own right.

Theorem 1. Given a code C ⊆ FN
qm (linear or non-linear), it holds that

dSR(C) = min{dH(CA) | A = Diag(A1, A2, . . . , Ag),

Ai ∈ Fri×ri
q invertible, 1 ≤ i ≤ g}.

(3)

Here, dH(CA) denotes the minimum Hamming distance of the code CA ⊆ FN
qm , where the Hamming distance

between two codewords c,d ∈ FN
qm is defined as dH(c,d) = wtH(c− d), where

wtH(e) = |{i ∈ [N ] | ei 6= 0}|,

for any vector e = (e1, e2, . . . , eN ) ∈ FN
qm , where ei ∈ Fqm , for i = 1, 2, . . . , N .
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Proof. We first prove the inequality ≤. Since multiplying by such block-diagonal matrices A constitutes a linear

sum-rank isometry, and sum-rank distances are upper bounded by Hamming distances, we deduce that

dSR(C) = dSR(CA) ≤ dH(CA),

for all such matrices, and the inequality follows.

We now prove the inequality ≥. Let c,d ∈ C be such that c 6= d and dSR(C) = dSR(c,d). Let c =

(c(1), c(2), . . . , c(g)) and d = (d(1),d(2), . . . ,d(g)), where c
(i),d(i) ∈ Fri

qm , for i = 1, 2, . . . , g. By column

reduction, there exists an invertible matrix Ai ∈ Fri×ri
q such that

MA((c
(i) − d

(i))Ai) = MA(c
(i) − d

(i))Ai

= (Bi, 0ri−wi) ∈ Fm×ri
q ,

for certain full-rank matrix Bi ∈ Fm×wi
q , where wi = Rk(MA(c

(i) − d
(i))), for i = 1, 2, . . . , g. In particular, we

deduce that wtH((c(i) − d
(i))Ai) = wi, for i = 1, 2, . . . , g.

Define A = Diag(A1, A2, . . . , Ag) ∈ FN×N
q . It follows that wtSR((c − d)A) =

∑g
i=1 wi = wH((c − d)A).

Hence

dSR(C) = dSR(CA) = dSR(cA,dA) = wSR((c− d)A)

= wH((c− d)A) = dH(cA,dA)

≥ dH(CA),

and the inequality is proven.

The following will be the main tool for global erasure-correction of locally repairable codes based on sum-rank

codes. It follows from Theorem 1. It may also be deduced from [42, Th. 1].

Corollary 1 (Erasure correction). Let C ⊆ FN
qm be a code (linear or non-linear), and let 0 ≤ ρ < N . The

following are equivalent:

1) ρ < dSR(C).

2) For all integers ni ≥ 1 and all matrices Ai ∈ Fri×ni
q , for i = 1, 2, . . . , g, such that

N −

g∑

i=1

Rk(Ai) ≤ ρ,

there exists a decoder

D : C Diag(A1, A2, . . . , Ag) −→ C

(depending on the matrices A1, A2, . . . , Ag), such that D(cDiag(A1, A2, . . . , Ag)) = c, for all c ∈ C.

From Theorem 1 and the Hamming-metric Singleton bound [43], we also obtain the following result. It may also

be deduced from [42, Th. 5].

Corollary 2 (First Singleton bound). Let C ⊆ FN
qm be a (linear or non-linear) code. It holds that

|C| ≤ qm(N−dSR(C)+1). (4)
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Furthermore, equality holds if, and only if, CA ⊆ FN
qm is MDS, for all A = Diag(A1, A2, . . . , Ag) ∈ FN×N

q , such

that Ai ∈ Fri×ri
q is invertible, for i = 1, 2, . . . , g.

A code satisfying equality in (4) is called maximum sum-rank distance (MSRD).

We now show that, when the sublengths are equal, m = N/g is the smallest possible extension degree of Fqm

over Fq for the existence of MSRD codes.

Corollary 3 (Second Singleton bound). Assuming that r1 = r2 = . . . = rg = N/g, then any (linear or non-linear)

code C ⊆ FN
qm satisfies the bound

|C| ≤
(
qN/g

)gm−dSR(C)+1

. (5)

In particular, there exists an MSRD code C $ FN
qm with dSR(C) > 1 over Fq only if m ≥ N/g.

Proof. Let C ⊆ FN
qm = (FN/g

qm )g be an arbitrary code. Define CT as the code obtained by transposing the matrix

representation (1) of each block of N/g coordinates, for each codeword in C. We may consider that the code CT

lies in (Fm
qN/g )

g = Fgm

qN/g . Therefore, it follows from (4) that

|C| = |CT | ≤
(
qN/g

)gm−dSR(CT )+1

.

Since d = dSR(C
T ) = dSR(C), the bound (5) follows.

Finally, if m < N/g and d > 1, then we have that
(
qN/g

)gm−d+1

= qmN−(d−1)N/g

< qmN−(d−1)m = qm(N−d+1),

and the code C cannot attain (4), hence cannot be MSRD.

As we will see in the next subsection, linearized Reed-Solomon codes [34] achieve this minimum extension

degree.

As shown later in Theorem 5, a maximum rank distance (MRD) code in FN
qm , such as a Gabidulin code [21],

[22], is also MSRD for any sum-rank length partition N = r1 + r2 + · · · + rg . However, by taking g = 1 in the

previous corollary, MRD codes can only exist if m ≥ N . For this reason, the use of linearized Reed-Solomon codes

will imply a reduction in field sizes on Gabidulin-based LRCs [8], [17], [20], [30]. See also Subsection VI-A.

B. Linearized Reed-Solomon Codes

In this subsection, we review the construction of linearized Reed-Solomon codes from [34] (see also [42, Sec.

IV]).

Assume that 1 ≤ g ≤ q− 1 and 1 ≤ ri ≤ m, for i = 1, 2, . . . , g. Therefore N ≤ (q− 1)m. Let σ : Fqm −→ Fqm

be given by σ(a) = aq , for all a ∈ Fqm . We need to define linear operators as in [34, Def. 20].

Definition 2 (Linear operators [34]). Fix a ∈ Fqm , and define its ith norm as Ni(a) = σi−1(a) · · ·σ(a)a for

i ∈ N. Now define the Fq-linear operator Di
a : Fqm −→ Fqm by

Di
a(b) = σi(b)Ni(a), (6)
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for all b ∈ Fqm , and all i ∈ N. Define also Da = D1
a and observe that Di+1

a = Da ◦ D
i
a, for i ∈ N.

We say that a, b ∈ Fqm are conjugate if there exists c ∈ F∗
qm such that b = σ(c)c−1a. See [44] and [45, Eq. (2.5)].

Take now a primitive element γ of Fqm , and note that

γj 6= σ(c)c−1γi,

for all c ∈ F∗
qm and all 0 ≤ i < j ≤ q − 2. Hence γ0, γ1, γ2, . . . , γq−2 constitute the representatives of all

non-trivial disjoint conjugacy classes. Finally, take a basis B = {β1, β2, . . . , βm} of Fqm over Fq , and define the

matrices

Di =




β1 β2 . . . βri

Dγi−1 (β1) Dγi−1 (β2) . . . Dγi−1 (βri)

D2
γi−1 (β1) D2

γi−1 (β2) . . . D2
γi−1 (βri)

...
...

. . .
...

Dk−1
γi−1 (β1) Dk−1

γi−1 (β2) . . . Dk−1
γi−1 (βri)




,

for i = 1, 2, . . . , g. The following definition is a particular case of [34, Def. 31].

Definition 3 (Linearized Reed-Solomon codes [34]). We define the linearized Reed-Solomon code of dimension

k, primitive element γ and basis B, as the linear code Cσ
L,k(B, γ) ⊆ FN

qm with generator matrix given by

D = (D1|D2| . . . |Dg) ∈ Fk×N
qm . (7)

The following result is [34, Th. 4].

Proposition 1 ([34]). The linearized Reed-Solomon code Cσ
L,k(B, γ) ⊆ FN

qm in Definition 3 is a k-dimensional

linear MSRD code for the sum-rank length partition N = r1+r2+ · · ·+rg . That is, dSR(C
σ
L,k(B, γ)) = N−k+1.

Observe that m ≥ r = maxi ri. Therefore linearized Reed-Solomon codes achieve the minimum extension degree

over Fq for equal localities by Corollary 3. See also Proposition 2.

As observed in [34, Sec. 3] and [42, Subsec. IV-A], linearized Reed-Solomon codes recover Gabidulin codes

[21], [22] when g = 1, and they recover Reed-Solomon codes [35] when m = r1 = r2 = . . . = rg = 1. These are

the cases when the sum-rank metric particularizes to the rank metric and Hamming metric, respectively. The second

choice of parameters explains why setting m = r1 = r2 = . . . = rg = 1 in this paper recovers Reed-Solomon

codes with local replication (one-dimensional local codes).

III. MAIN CONSTRUCTION OF MR-LRCS

In this section, we briefly recall the definitions of locally repairable codes [3], [6], [17]–[20] and maximal

recoverability [24], [25], and give our main construction. Proofs and further properties of our construction are left

to the following sections.

Let F be a finite field. In this work, we will consider disjoint local groups, which is usual in the maximal

recoverability or PMDS literature [24], [25].
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Definition 4 (Locally repairable codes). Fix integers g, ri, δi ≥ 1, for i = 1, 2, . . . , g. We say that a code

C ⊆ Fn is an (n, k) locally repairable code (LRC) with (Γi, ri, δi)
g
i=1-localities, or (ri, δi)

g
i=1-localities for short,

if k = log|F| |C|, [n] = Γ1 ∪ Γ2 ∪ . . . ∪ Γg , Γi ∩ Γj = ∅ if i 6= j (that is, the sets Γ1,Γ2, . . . ,Γg form a partition

of [n]), and

1) |Γi| ≤ ri + δi − 1,

2) dH(CΓi) ≥ δi,

for i = 1, 2, . . . , g. The set Γi is called the ith local group. In many occasions, we only use the term locality for

the number ri, whereas δi is called the local distance.

Figs. 1 and 2 below depict systematic LRCs.
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Fig. 1. Illustration of a systematic LRC with equal localities (r = 3) and local distances (δ = 3), which allows to represent symbols in a

rectangular array. Each box represents a node storing a symbol in F. The ith column forms the symbols stored in the ith local group Γi. The x’s

denote information symbols and the c’s denote parities. Each local group has 2 local parities, hence any δ−1 = 2 erasures inside a column can

be corrected from the remaining r = 3 symbols in that column. The dimension is k = 18. The number of global parities is h = gr − k = 3.

These parities allow us to correct erasure patterns where more than two erasures occur in a single column (see Fig. 3).
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Fig. 2. Illustration of a systematic LRC with unequal localities and local distances, with the same notation as in Fig. 1. For instance, the first

local group has locality r1 = 3 and local distance δ1 = 3, whereas for the third local group, r3 = 4 and δ3 = 2. Note that global parities may

be arbitrarily distributed among the local groups.

Every code is an LRC for any partition of [n] if δi = 1 for i = 1, 2, . . . , g, which includes locality but not repair.
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Every code with distance d is also an LRC for Γ1 = [n], r1 = n− d+1 and δ1 = d, which includes repair but not

locality.

An (n, k) MDS code can only have these types of locality, and localities where a local group with distance

δi > 1 must satisfy ri ≥ k. To see this, just observe that any other type of localities imply that there exists some

set of k symbols with some redundancy, thus cannot be an information set. For this reason, MDS codes are not

good candidates as LRCs.

Finally, observe that r1 = r2 = . . . = rg = 1 means δi-replication of the ith symbol.

We now extend the concept of maximal recoverability from [24, Def. 2.1] and [25, Def. 6] to unequal localities

and local distances.

Definition 5 (Maximal recoverability). We say that an LRC C ⊆ Fn with (Γi, ri, δi)
g
i=1-localities is maximally

recoverable (MR) if, for any ∆i ⊆ Γi with |Γi \∆i| = δi − 1, for i = 1, 2, . . . , g, the restricted code C∆ ⊆ F|∆| is

MDS, where ∆ =
⋃g

i=1 ∆i.

An example of an erasure pattern correctable by an MR-LRC is depicted in Fig. 3 below.
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Fig. 3. Illustration of an erasure pattern correctable by an MR-LRC with parameters as in Fig. 2. The erasure patterns are those consisting

of δi − 1 erasures in the ith local group (depicted by ♠), plus any h = N − k = 4 extra erasures placed anywhere (depicted by ♣), where

N = r1 + r2 + · · ·+ rg . This is because, after removing the δi − 1 erasures from the ith local group, the restricted code is an (N, k) MDS

code, and hence must be able to correct any h erasures in the remaining N nodes.

We next introduce our construction of MR-LRCs based on linearized Reed-Solomon codes (Definition 3).

Construction 1. Fix the initial number of local groups g and initial localities r1, r2, . . . , rg . Now choose any base

field size q and any extension degree m satisfying q > g and m ≥ maxi ri, and define the global field F = Fqm .

Next choose:

1) Outer code: Any (N, k) code Cout ⊆ FN
qm that is MSRD over Fq for the sum-rank length N =

∑g
i=1 ri, such

as a linearized Reed-Solomon code (Definition 3).

2) Local codes: Any (ri+δi−1, ri) MDS code C
(i)
loc ⊆ Fri+δi−1

qi , linear over local fields Fqi , where q is a power

of qi, for i = 1, 2, . . . , g.

The global code is then given as follows.
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3) Global code: Let Cglob ⊆ Fn
qm , with n =

∑g
i=1(ri + δi − 1) = N +

∑g
i=1(δi − 1), be given by

Cglob = Cout Diag(A1, A2, . . . , Ag),

where Ai ∈ Fri×(ri+δi−1)
qi is any generator matrix of C

(i)
loc, for i = 1, 2, . . . , g.

The encoding procedure for Cglob using first the outer code and then the local codes is depicted in Fig. 4.

x ∈ Fk
qm

Outer code Cout ⊆ FN
qm

cout = (c(1), c(2), . . . , c(g)) ∈ FN
qm

C
(1)
loc ⊆ Fr1+δ1−1

qi
. . . C

(g)
loc ⊆ Frg+δg−1

qi

cglob = ( c
(1)A1︸ ︷︷ ︸

Local group 1

, c
(2)A2︸ ︷︷ ︸

Local group 2

, . . . , c
(g)Ag︸ ︷︷ ︸

Local group g

) ∈ Fn
qm

Fig. 4. Illustration of the encoding procedure for Cglob in Construction 1. Let x ∈ Fk
qm be k symbols over Fqm of the file. We first encode them

with the outer code Cout to form cout ∈ FN
qm . We then partition the outer codeword as cout = (c(1), c(2), . . . , c(g)), where c

(i) ∈ Fri
qm .

Finally, we encode each c
(i) using a generator matrix Ai ∈ Fri×(ri+δi−1)

qi of the ith local code, and store c
(i)Ai ∈ Fri+δi−1

qm in the ith

local group of nodes.

Remark 1. Typically, the local field sizes must satisfy qi ≥ ri + δi − 1 so that we may choose MDS local codes

(for instance, Reed-Solomon codes [35]). However, if δi = 2, we may always choose qi = 2 if 2 | q, and local

repair in the ith local group can be performed by XORing.

Observe that the difference with [8], [17], [20], [30] is that Gabidulin codes do not exist for the parameters

described in Construction 1 (they require m ≥ N =
∑g

i=1 ri), whereas we may use linearized Reed-Solomon

codes (Definition 3) for such parameters, which are still MSRD. See Section VI for detailed comparisons of global

field sizes.

The following main result follows from Corollary 7, which will be proven in Subsection IV-A. The minimum

distance of the global code in Construction 1 will be estimated in Theorem 4, Subsection IV-B.

Theorem 2. Let Cglob ⊆ Fn
qm be the global code from Construction 1, and let Γi ⊆ [n] be the subset of coordinates

ranging from
∑i−1

j=1(rj + δj − 1) + 1 to
∑i

j=1(rj + δj − 1), for i = 1, 2, . . . , g. Then the code Cglob ⊆ Fn
qm has

(Γi, ri, δi)
g
i=1-localities and is maximally recoverable.
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We conclude by noting that we may easily find a systematic form of the global code in Construction 1. Here

systematic only means that certain k symbols of each codeword form the uncoded file, but they are not necessarily

the first k symbols. Actually, we may distribute the k uncoded symbols as wanted among the local groups, up to

the locality of each group (as shown, for instance, in Fig. 2). This more general systematic form is of interest if

certain local groups are required to store a certain part of the original file.

Since Cout ⊆ FN
qm is MSRD, then it is MDS, thus any set of k coordinates is an information set. Since N =

∑g
i=1 ri, we may partition k =

∑g
i=1 ki, such that 0 ≤ ki ≤ ri, for i = 1, 2, . . . , g. We may then find a systematic

generator matrix of Cout of the form

G = (Ĩk1
, G1|Ĩk2

, G2| . . . |Ĩkg , Gg) ∈ Fk×N
qm , (8)

where Gi ∈ Fk×(ri−ki)
qm , and Ĩki ∈ Fk×ki

qm is identically zero except for the rows in the ith block of ki rows, where

it is the ki × ki identity matrix, for i = 1, 2, . . . , g.

If A = Diag(A1, A2, . . . , Ag) ∈ FN×n
q is such that Ai = (Iri , Bi) ∈ Fri×ni

q is systematic, for i = 1, 2, . . . , g,

then

GA = (Ĩk1
, G̃1|Ĩk2

, G̃2| . . . |Ĩkg , G̃g) ∈ Fk×n
qm (9)

is a systematic generator matrix of Cglob ⊆ Fn
qm , where G̃i = (Gi, (Ĩki , Gi)Bi) ∈ Fk×(ni−ki)

qm , for i = 1, 2, . . . , g.

Finally, note that this systematic encoding procedure follows the same steps as in Fig. 4. We first add the global

parities and then the local parities.

IV. MR-LRCS WITH ANY LOCAL LINEAR CODES

In this section, we study LRCs where local groups are disjoint, but locally encoded with arbitrary linear codes

over some subfield Fq ⊆ F. We will give the connection between MSRD codes and MR-LRCs in Subsection IV-A,

and we will study global distances in Subsection IV-B. As a consequence, we show that Construction 1 gives

MR-LRCs (thus LRCs with optimal global distance) for any choice of local linear codes.

As shown later in Section V, a direct application of this study, among others, will be partitioning the local MDS

codes into Cartesian products of shorter local MDS codes, over smaller fields, to modify localities dynamically and

adapt the DSS to new hot and cold data, or to obtain hierarchical MR-LRCs.

A. General MR-LRCs and MSRD Codes

In this subsection, we show that LRCs with disjoint local linear codes always have the architecture of Construction

1 (Lemma 1), depicted in Fig. 4. We then show that MSRD outer codes achieve MR simultaneously for all families

of local linear codes (Corollary 7). We conclude by showing that the maximum locality r = maxi ri is the smallest

extension degree of F over Fq satisfying this property, which is achieved by Construction 1 (Proposition 2).

Fix a subfield Fq ⊆ F. The proof of the following lemma is straightforward by linear algebra, and is left to the

reader.

Lemma 1. Let Cglob ⊆ Fn be a (linear or non-linear) code, where n = n1 + n2 + · · ·+ ng , and let Γi be the set

of coordinates ranging from
∑i−1

j=1 nj + 1 to
∑i

j=1 nj , for i = 1, 2, . . . , g. The following are equivalent:
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1) (Cglob)Γi ⊆ Ci, where Ci ⊆ Fni is an ri-dimensional linear code with a generator matrix with coefficients in

Fq, for i = 1, 2, . . . , g.

2) There exist a full-rank matrix Hi ∈ F(ni−ri)×ni
q such that cΓiHi = 0, for all c ∈ Cglob and all i = 1, 2, . . . , g.

3) There exist full-rank matrices Ai ∈ Fri×ni
q with 1 ≤ ri ≤ ni, for i = 1, 2, . . . , g, such that

Cglob = Cout Diag(A1, A2, . . . , Ag), (10)

for some outer code Cout ⊆ FN , where N =
∑g

i=1 ri and |Cout| = |Cglob|. Moreover, Cglob is linear if, and

only if, Cout is linear.

The relation between these items is that Ai and Hi are generator and parity-check matrices of Ci, respectively, for

i = 1, 2, . . . , g.

Encoding with the code Cglob satisfying the conditions in Lemma 1 also follows the steps in Fig. 4. We only

need to replace ri + δi− 1 by ni and choose C
(i)
loc as the subfield subcode of Ci over Fqi , for i = 1, 2, . . . , g, which

need not be MDS.

By Item 2, codes with this structure are included among those described in [27, Def. 2.1]. By Item 1, they are

included among those in Definition 4, and by Item 3, they include Construction 1. LRCs with non-MDS local linear

codes have also been considered recently in [46], [47], where they are called Multi-Erasure LRCs. Their approach

is however focused on product codes, and the MR condition is not pursued.

We deduce the following two consequences.

Corollary 4. With notation as in Lemma 1, any erasure pattern Ei ⊆ Γi that can be corrected by the local code Ci,

can be corrected by the global code Cglob with the same complexity over the same field as with Ci, for i = 1, 2, . . . , g.

Corollary 5. With notation as in Lemma 1, it holds that

k = log|F| |Cglob| ≤ N =

g∑

i=1

ri. (11)

The previous corollary motivates the following definition.

Definition 6. With notation as in Lemma 1, we call h =
∑g

i=1 ri − k ≥ 0 the number of global parities of the

global code Cglob, which coincides with the number of conventional parities of the outer code Cout. The other
∑g

i=1(ni − ri) parities of Cglob are given by the parities of the local codes, and therefore are called local parities.

See also Figs. 1 and 2 for a graphical description.

The following definition is a natural extension of Definition 4 for arbitrary disjoint local linear codes.

Definition 7. Let Cglob ⊆ Fn be a (linear or non-linear) code, where n = n1+n2+ · · ·+ng and define Γi as the set

of coordinates ranging from
∑i−1

j=1 nj + 1 to
∑i

j=1 nj , for i = 1, 2, . . . , g. We say that Cglob is a (Γi, Ci)
g
i=1-LRC

if the equivalent conditions in Lemma 1 hold.

We now characterize the global erasure patterns that are information-theoretically correctable. This holds in

particular when the local codes are MDS.
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Theorem 3. Fix an (n, k) and (Γi, Ci)
g
i=1-LRC Cglob ⊆ Fn as in Definition 7. Let E ⊆ [n] be an erasure pattern,

and define Ei = E ∩ Γi and Ri = Γi \ Ei, for i = 1, 2, . . . , g. The following hold:

1) If
∑g

i=1 Rk(Ai|Ri) < k, then the erasure pattern cannot be corrected by Cglob for all codewords c ∈ Cglob,

independently of what outer code Cout is used.

2) If
∑g

i=1 Rk(Ai|Ri) ≥ k and Cout is an MSRD code over Fq for the sum-rank length partition N =
∑g

i=1 ri,

then the erasure pattern can be corrected by Cglob for all codewords c ∈ Cglob.

Proof. We prove each item separately:

1) Assume that there exists a decoder D : Cglob|R −→ Cglob, where R = [n] \ E , such that D(cR) = c, for all

c ∈ Cglob. Let A|R = Diag(A1|R1
, A2|R2

, . . . , Ag|Rg ). Then the decoder can be rewritten as

D : Cout(A|R) −→ Cout,

where D(c(A|R)) = c, for all c ∈ Cout. In particular, D : Cout(A|R) −→ Cout is a bijective map.

Fix i = 1, 2, . . . , g and let si = Rk(Ai|Ri). There exists Si ⊆ Ri such that |Si| = Rk(Ai|Si) = si. Hence the

restriction map π : Cout(A|R) −→ Cout(A|S) is also bijective, where S =
⋃g

i=1 Si. Therefore, we conclude that

|Cout(A|S)| = |Cout(A|R)| = |Cout| = |Cglob|.

However, Cout(A|S) ⊆ F|S| and |S| =
∑g

i=1 si =
∑g

i=1 Rk(Ai|Ri) < k, which is absurd since |Cglob| = |F|k.

2) Since
∑g

i=1 Rk(Ai|Ri) ≥ k and Cout is an MSRD code, the erasure pattern can be corrected by Corollary

1.

This motivates the following definition.

Definition 8 (General MR-LRCs). With notation as in Theorem 3, we say that Cglob is maximally recoverable

(MR) for (Γi, Ci)
g
i=1 if it can correct all erasure paterns E ⊆ [n] such that

∑g
i=1 Rk(Ai|Ri) ≥ k, where Ei = E ∩Γi

and Ri = Γi \ Ei, for i = 1, 2, . . . , g.

We now show that this definition extends Definition 5.

Corollary 6. Let the notation be as in Theorem 3, and assume that Ci is an (ri + δi − 1, ri) MDS code, for

i = 1, 2, . . . , g. The following are equivalent:

1) The code Cglob is an MR-LRC for its (Γi, ri, δi)
g
i=1-localities according to Definition 5.

2) The code Cglob is an MR-LRC for (Γi, Ci)
g
i=1 according to Definition 8.

Proof. It follows from the definitions and the fact that, if Ai ∈ Fri×(ri+δi−1)
q generates Ci, then

Rk(Ai|Ri) = min{ri, |Ri|},

since Ci is MDS, for i = 1, 2, . . . , g.

We also deduce the following result, which proves Theorem 2.

Corollary 7. With notation as in Theorem 3, the following are equivalent:
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1) Cout ⊆ FN is MSRD over Fq for the sum-rank length partition N =
∑g

i=1 ri.

2) For all full-rank matrices Ai ∈ Fri×ni
q , for i = 1, 2, . . . , g, the code Cglob = CoutDiag(A1, A2, . . . , Ag) is

an MR-LRC for (Γi, Ci)
g
i=1, being Ci ⊆ Fni the linear code generated by Ai.

In particular, Construction 1 gives MR-LRCs for arbitrary local linear codes with global fields F = Fqm , where

q > g and m ≥ maxi ri, being ri = dim(Ci), for i = 1, 2, . . . , g.

Proof. It follows by combining Corollary 1, Corollary 2 and Theorem 3.

We now show that m = r is the smallest extension degree of F over Fq that allows arbitrary local linear codes

with localities up to r, which is achieved by Construction 1.

Proposition 2. For the positive integers g and r and the field Fq , the following are equivalent:

1) F = Fqm with m ≥ r.

2) There exists a (gr, k) MSRD code Cout $ Fgr over Fq , with k < gr, for the sum-rank length partition

gr =
∑g

i=1 r.

3) For all 1 ≤ ri ≤ r, i = 1, 2, . . . , g, there exists an (N, k) MSRD code Cout $ FN over Fq, with k <
∑g

i=1 ri,

for the sum-rank length partition N =
∑g

i=1 ri.

Proof. Immediate from Corollary 3 and the fact that linearized Reed-Solomon codes are MSRD and exist for the

considered parameters (Definition 3 and Proposition 1).

Observe that:

1) For h = 0, i.e., k = N =
∑g

i=1 ri, the whole space Cout = FN is MSRD over any subfield (note that Corollary

3 does not apply since dSR(FN ) = 1), hence we may take F = Fq. In this case, Cglob = C1×C2×· · ·×Cg, and we

recover Cartesian products. Furthermore, we may take q as the minimum common power of q1, q2, . . . , qg, where

Fqi is the local field for Ci, for i = 1, 2, . . . , g, in accordance with the general construction.

2) For r = 1, we may take m = 1, thus F = Fq again. Since the sum-rank metric for r1 = r2 = . . . = rg = 1

coincides with the Hamming metric, Cout only needs to be MDS, and the corresponding linearized Reed-Solomon

codes are classical Reed-Solomon codes. Hence we recover MDS global codes with local replication (dim(Ci) = 1,

for i = 1, 2, . . . , g).

An example of parameters for an MR-LRC with an MSRD outer code and different local linear codes can be

found in Example 1 in Subsection V-B.

B. Global Distances and Thresholds for Erasure Correction

In Theorem 3 we showed that MSRD outer codes correct all erasure patterns that are information-theoretically

correctable for arbitrary disjoint local linear codes, and gave a description of such patterns. However, it is usual in

the LRC literature to give the minimum distance of the global code, although its optimality is in general weaker

than the MR condition. In this subsection, we give a formula for such global distances. It also shows the optimality

of the global distance of Construction 1 even without assuming that r1 ≤ r2 ≤ . . . ≤ rg and δ1 ≥ δ2 ≥ . . . ≥ δg,

in contrast with [19], [20], and hence in contrast with all previous studies.
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Fix a full-rank matrix Ai ∈ Fri×ni
q with 1 ≤ ri ≤ ni, and let Ci ⊆ Fni be the linear code generated by Ai, for

i = 1, 2, . . . , g. Define n = n1 + n2 + · · ·+ ng . For k = 1, 2, . . . ,
∑g

i=1 ri, define

e(A, k) = max{e ∈ [n] | min{Rk(A|R) |

|R| = n− e} ≥ k},
(12)

where A = Diag(A1, A2, . . . , Ag) ∈ FN×n
q .

Theorem 4. Fix an (n, k) and (Γi, Ci)
g
i=1-LRC Cglob ⊆ Fn as in Definition 7. The following hold:

1) dH(Cglob) ≤ e(A, k) + 1, for any outer code Cout ⊆ FN .

2) dH(Cglob) = e(A, k) + 1 if Cglob is an MR-LRC for the given (Γi, Ci)
g
i=1-localities.

3) dH(Cglob) = e(A, k) + 1 if the outer code Cout ⊆ FN is MSRD over Fq for the sum-rank length partition

N =
∑g

i=1 ri.

Proof. It follows from Theorem 3 after unfolding the definitions.

Observe that, if ri = ni = 1 (or simply ri = ni in general), for i = 1, 2, . . . , g, then

e(A, k) = n− k.

Therefore, the previous theorem recovers the classical Singleton bound and definition of MDS codes [43]. In this

case, optimal global distance is equivalent to MR due to the lack of linear redundancies in the matrices Ai (in other

words, ni − ri = 0), for i = 1, 2, . . . , g.

A bit more generally, we may give a simple formula for e(A, k) when the local codes are MDS and r1 ≤ r2 ≤

. . . ≤ rg and δ1 ≥ δ2 ≥ . . . ≥ δg , which coincides with [19, Th. 2] and [20, Th. 2] for disjoint local groups. It also

recovers [17, Th. 2] and [18, Th. 8] when δ1 = δ2 = . . . = δg = 2 for disjoint local groups. Finally, it recovers [6,

Th. 2.1] and [3, Eq. (2)] for equal localities and disjoint local groups.

Proposition 3. Assume that Ci is MDS, for i = 1, 2, . . . , g, r1 ≤ r2 ≤ . . . ≤ rg and δ1 ≥ δ2 ≥ . . . ≥ δg , and let

k = 1, 2, . . . ,
∑g

i=1 ri. Let ℓ = 0, 1, 2, . . . , g − 1 be the unique integer such that

ℓ∑

i=1

ri < k ≤

ℓ+1∑

i=1

ri. (13)

Then it holds that

e(A, k) = n− k −

ℓ∑

i=1

(δi − 1). (14)

Proof. We present a sketch of the proof. Since Ci is MDS, we have that

Rk(Ai|Ri) = min{ri, |Ri|} = min{ri, ri + δi − 1− |Ei|},

for any Ri ⊆ [ni], for i = 1, 2, . . . , g. Hence, for a given e ∈ [n], the worst-case number of erasures is

ρ = N −min{

g∑

i=1

min{ri, ri + δi − 1− ei} |

g∑

i=1

ei = e, 0 ≤ ei ≤ ri + δi − 1, 1 ≤ i ≤ g}.
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As argued in the proof of [8, Th. 24], the worst-case erasure pattern is achieved when erasures concentrate in

the smallest number of local groups. In our case, these are the last groups since r1 ≤ r2 ≤ . . . ≤ rg and

δ1 ≥ δ2 ≥ . . . ≥ δg . Let 0 < ∆ ≤ rℓ+1 be such that k =
∑ℓ

i=1 ri +∆. If e is

e =

g−ℓ−1∑

j=1

(rg−j+1 + δg−j+1 − 1) + (rℓ+1 + δℓ+1 − 1−∆)

= N − k +

g−ℓ∑

j=1

(δg−j+1 − 1) = n− k −
ℓ∑

i=1

(δi − 1),

then it holds that ρ = N − k. Hence more than e erasures will not be correctable. Thus e(A, k) = e and we are

done.

V. UNIVERSAL AND DYNAMIC PROPERTIES

In this section, we show how to perform local recodings (Subsection V-A), partition localities (Subsection V-B),

obtain multi-layer or hierarchical MR-LRCs (Subsection V-C), and change the initial localities, number of local

groups and file components (Subsection V-D), when using Construction 1.

A. Arbitrary and Efficient Local Linear Recodings

We now show that the architecture described in (10) (Lemma 1) enables any local linear recoding. In other

words, the local linear codes can be changed to any other local linear codes by only performing linear operations,

inside each local group, over the local fields. The outer code remains unchanged, thus in case it is MSRD, the MR

condition is preserved by Corollary 7, and there is no need for global recoding.

We start by introducing local recoding matrices.

Definition 9 (Local recoding matrices). Let C
(i)
loc ⊆ Fni

q and D
(i)
loc ⊆ Fn′

i
q be local Fq-linear codes with full-rank

generator matrices Ai ∈ Fri×ni
qi and Bi ∈ Fri×n′

i

q′i
, respectively, with q a power of qi and q′i, for i = 1, 2, . . . , g. We

define the corresponding local recoding matrices as the unique rank-ri matrices Ti ∈ Fni×n′

i
q such that Bi = AiTi,

for i = 1, 2, . . . , g.

The existence of such recoding matrices is straightforward by linear algebra: For i = 1, 2, . . . , g, there exists

Ci ∈ Fri×ni
qi such that AiC

T
i = Iri , since Rk(Ai) = ri. Hence

Ti = CT
i Bi ∈ Fni×n′

i
q . (15)

Now let Cout ⊆ FN be an outer MSRD code, with N =
∑g

i=1 ri. The corresponding global codes in (10) are

given by

Cglob = CoutDiag(A1, A2, . . . , Ag) ⊆ Fn,

Dglob = CoutDiag(B1, B2, . . . , Bg) ⊆ Fn′

,

respectively, where n =
∑g

i=1 ni and n′ =
∑g

i=1 n
′
i. Therefore, it holds that

Dglob = Cglob Diag(T1, T2, . . . , Tg). (16)
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Fig. 5. Illustration of Example 1. The uncoded file is denoted by x and consists, in this figure, of k = 36 symbols over F218 (or Fα
218

by

folding). It is encoded systematically using an MSRD outer code over F218 to produce h = gr− k = 6 global parities (depicted in dark grey).

All symbols are then arranged in g = 7 local groups (corresponding to columns), each of size r = 6. This first process is denoted by (1).

Finally, we compute two local parities (depicted in lighter grey) for each local group using an (8, 6) MDS code over F23 column-wise (hence

g = 7 times). This second process is denoted by (2). As explained in Example 1, we may recode locally the first group using two (4, 3) MDS

codes over F2, to generate the new local parities d
(0)
4 and d

(1)
4 , while the underlying outer code and the rest of local groups remain unchanged.

This recoding is denoted by (3).

This block-diagonal matrix multiplication can be understood as the local groups recoding their local stored data

over the local fields, without need of communication between groups, global recoding or change of the outer code.

The complexity of recoding the ith local group is as follows: First, decoding the initial code has, in general,

complexity O(r3i log(qi)
2) over F2. Second, encoding with the new code has, in general, complexity O(r2i log(q

′
i)

2)

over F2. Observe that global recoding in Fgr
qm has, in general, complexity O(r3g3m2 log(q)2) over F2, where m ≥ r

and g ≫ r.

An example of such local linear recodings can be found in Example 1 below.

Example 1. Let g = 7, r = 6, and 1 ≤ k ≤ 42. With Construction 1, the global field is F218 and local fields are

F23 . We first encode each block of k symbols (over F218) of the file with an MSRD code of length gr = 42 to

obtain an outer codeword. Choose now any seven (8, 6) MDS codes over F23 for the seven groups and recode the

outer codeword with their Cartesian product. We then obtain an MR-LRC with 7 groups, each with locality 6 over

F23 , allowing fast local repair. By the MR property, the code can correct any h = 42 − k more erasures than the

simple Cartesian product of the MDS codes.

Imagine that the data in the first group becomes hot data. We may partition that group into two subgroups, and

recode the corresponding block of the outer codeword with two (4, 3) MDS codes over F2. This allows very fast

local repair by only XORing, at the expense of lower local distance (only in that group). Now we have 6 local

groups with locality 6 over F23 , and 2 local groups with locality 3 over F2.

The transition only requires turning an (8, 6) MDS code over F23 into the Cartesian product of two (4, 3) MDS

codes over F2, which can be performed efficiently, compared to global recoding of all 7 groups of length 8 over

F218 . We may equally return to the original global code, which remains MR-LRC in both settings during the whole
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process. See Figure 5 for an illustration when k = 36 (thus h = 6).

Observe that Gabidulin-based LRCs would require the global field F23×42 = F2126 , and [31] might improve our

global field size only if h = 42− k = 1, 2, 3, 4, 5. The strengths of our approach become clearer as g grows, while

r remains constant, see Example 2.

B. Partitioning Local Groups and Initial Localities

As a consequence of the local recodings in the previous subsection, we show now how to partition localities.

The main observation is that codes that are MSRD for a given sum-rank length partition are also MSRD for finer

partitions.

Theorem 5. For i = 1, 2, . . . , g, partition ri =
∑gi

j=1 ri,j . Denote by dSR and drefSR , the sum-rank metrics in FN
qm

for the sum-rank length partitions N =
∑g

i=1 ri and N =
∑g

i=1

∑gi
j=1 ri,j , respectively. For a code C ⊆ FN

qm

(linear or non-linear), it holds that

dSR(C) ≤ drefSR (C). (17)

In particular, if C is MSRD with respect to dSR, then it is MSRD with respect to drefSR .

Proof. Immediate from Theorem 1 and Corollary 2.

Note that, when g = 1 and g1 = N , this theorem recovers the well-known fact that dR(C) ≤ dH(C), where dR

and dH denote rank and Hamming distances, respectively. See, for instance, [21].

Hence, using Corollary 7, we deduce the following result on partitioning local groups in MR-LRCs.

Corollary 8. Let Cout ⊆ FN
qm be MSRD for the sum-rank length partition N =

∑g
i=1 ri, with m ≥ maxi ri.

For i = 1, 2, . . . , g, partition ri =
∑gi

j=1 ri,j , and let Ai,j ∈ Fri,j×ni,j
qi,j be full-rank generator matrices of codes

C
(i,j)
loc ⊆ Fni,j

qi,j , with 1 ≤ ri,j ≤ ni,j and q a common power of qi,j , for j = 1, 2, . . . , gi and i = 1, 2, . . . , g. The

code

Cglob = Cout Diag(A1, A2, . . . , Ag) ⊆ Fn
qm ,

where Ai = Diag(Ai,1, Ai,2, . . . , Ai,gi ) ∈ Fri×ni
q , for i = 1, 2, . . . , g, is an MR-LRC for the local codes ((C

(i,j)
loc )gij=1)

g
i=1.

Observe that such partitionings can be performed efficiently by local linear recoding as in the previous subsection.

An example of such partitioning, for only the first initial locality r1 =
∑g1

j=1 r1,j , can be found in Example 1 (see

also Fig. 5).

C. Multi-layer or hierarchical MR-LRCs

In this subsection, we introduce and show how to obtain hierarchical MR-LRCs. Codes with hierarchical localities

were introduced in [36], and hierarchical MR-LRCs have been introduced independently in the parallel work [37].

Note however that [36], [37] consider equal localities and local distances and two-level hierarchies, whereas we

consider the general case (see Definition 10).
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We start by noting that partitioning localities as in Corollary 8 is simply using Cartesian products as local codes.

Cartesian products are precisely MR-LRCs for very high information rates (no global parities). Exactly as in the

previous corollary, instead of choosing Ai = Diag(Ai,1, Ai,2, . . . , Ai,gi), we may choose Ai to be the generator

matrix of any MR-LRC.

A precise general definition can be given as follows. To this end, we will need the notion of a rooted tree,

meaning a connected finite graph with no cycles where a particular vertex is given the name root. The leaves of a

rooted tree are those vertices of the tree with no children (see Fig. 6).

Definition 10 (Hierarchical MR-LRCs). We define linear hierarchical MR-LRCs recursively on the family of

rooted trees as follows. First, let G be a rooted tree formed by a single vertex and let C be a (k+ h, k) MDS code.

We say that C is a hierarchical MR-LRC with parameters (G, k, h).

Let G be a rooted tree with root v0. Let v1, v2, . . . , vg be the children of v0, and let Gi be the rooted subtree of

G with root vi formed by vi and all its descendants, for i = 1, 2, . . . , g. Let also l1, l2, . . . , lL be the leaves of G,

and let rj ≥ 1 be positive integers, for j = 1, 2, . . . , L. Let hv ≥ 1 be positive integers, for v ∈ V , where V is

the vertex set of G. Let Cglob ⊆ Fn be a linear code satisfying the conditions in Lemma 1. We say that Cglob is a

hierarchical MR-LRC with parameters (G, (rj)
L
j=1, (hv)v∈V) if:

1) Cglob is an MR-LRC for (Γi, Ci)
g
i=1, where Γi and Ci are as in Lemma 1, for i = 1, 2, . . . , g,

2) hv0 is the number of global parities of Cglob (see Definition 6), and

3) the local code Ci ⊆ Fni is itself a hierarchical MR-LRC with parameters (Gi, (rj)j∈Ji , (hv)v∈Vi), for i =

1, 2, . . . , g.

Here, Ji is the set of indices j such that lj is a leaf of Gi, and Vi is the vertex set of Gi, for i = 1, 2, . . . , g.

v0

v1 = l1 v2

v3

l4

l2 l3

Fig. 6. The rooted tree, with notation as in Definition 10, corresponding to the hierarchical MR-LRC depicted in Fig. 7 below. Here, g = 2

and L = 4.

Observe that we only need to specify the rooted tree giving the hierarchy of the local codes, the global redundancy

hv at each vertex v of the tree, plus the locality rj at each leaf lj . At a given vertex distinct from the root and

leaves, the corresponding code is both a local and a global code.
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v2

v2

v2

v3

v3

v0

v0

v1 = l1 l2 l3 l4

l1

l1 l2

l2

l2 l3

l3

l3 l4

l4

l4

v3 � v2

Fig. 7. Illustration of a hierarchical MR-LRC corresponding to the rooted tree in Fig. 6. White boxes correspond to information symbols and

grey boxes correspond to parities. The vertex associated with the code producing the parity is written inside the box. Boxes inside the dashed

box form codewords of the code corresponding to v3, whereas boxes inside the dotted box form codewords of the code corresponding to v2,

and similarly for the leaves.

Note that the codes at the leaves are MDS by definition. If we denote by δj = hlj + 1 the distance of the local

code at the leaf lj , for j = 1, 2, . . . , L, then the length and dimension of Cglob are given, respectively, by

n =

L∑

j=1

(rj + δj − 1) and k = n−
∑

v∈V

hv. (18)

Fig. 6 shows a rooted tree, and Fig. 7 depicts a hierarchical MR-LRC for such a tree, with a certain choice of

localities and parities at each vertex.

Imposing that at each vertex of the tree the corresponding code is MR means that all possible information-

theoretically correctable erasure patterns (for the given tree, localities and parities) can be corrected by the code at

that vertex.

The notion of hierarchical MR-LRC from [37, Def. 6] is recovered from Definition 10 by choosing rooted trees

where each leaf has depth two (the length of the path from the root to the leaf), and all localities and parities at

vertices with the same depth are equal. This hierarchy is usually called two-level hierarchy.

Observe that, if we drop the MR condition in Definition 10 (thus the MDS condition on trees with a single

vertex), then we obtain general hierarchical LRCs. For two-level hierarchies, we recover the notion of hierarchical

LRCs from [36, Def. 2].

Finally, adapting recursively Construction 1 as in Corollary 7, we may obtain explicit MR-LRCs for any choice

of tree, localities and parities. The leaves are chosen as short MDS codes (e.g., Reed-Solomon) and at each vertex

different from the leaves, we use a tailored linearized Reed-Solomon.

Theorem 6. Let G be any rooted tree with vertex set V and leaves l1, l2, . . . , lL ∈ V . Let rj , hv ≥ 1 be arbitrary

integers, for j = 1, 2, . . . , L and for v ∈ V . There exists a hierarchical MR-LRC C ⊆ Fn with parameters

(G, (rj)
L
j=1, (hv)v∈V). Its length and dimension are given as in (18).
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Let v1, v2, . . . , vg ∈ V be the children of the root of G and let the notation be as in Definition 10. Then the

global field of C is F = Fqm , where q > g and m = max{k1, k2, . . . , kg}, where ki is the dimension of the code

Ci at vertex vi, which can be recursively computed using (18) for the subtree Gi, for i = 1, 2, . . . , g.

Observe that Fig. 6 can be used to describe a systematic encoding procedure for such a construction, as done in

Fig. 4.

Consider the two-level hierarchy described above, where the root has children v1, v2, . . . , vg and each vi has

children li,1, li,2, . . . , li,t, for i = 1, 2, . . . , g, hence L = gt. We will assume equal localities and parities at each

level. Let r and δ be the locality and local distance at each leaf, let h2 be the global parities at the chilren

v1, v2, . . . , vg , and let h1 be the global parities at the root. By Theorem 6 and (18), the field sizes at the root, at

its children and at the leaves are roughly

gtr−h2 , tr and r + δ − 1, (19)

respectively. In general, “local” decoding at lower layers is more efficient than “global” decoding at upper layers,

whose erasure-correction algorithms are triggered less frequently.

D. Recursive Encoding, and Changes of Initial Localities, File Components and Number of Local Groups

In the previous subsection, we studied how to partition the initial localities without global recoding. In this

subsection, we show how to modify, without global recoding, the initial localities up to m (F = Fqm), the initial

file size k, and the initial number of local groups g up to q − 1. Note that the restriction k ≤
∑g

i=1 ri must

always hold by Corollary 5. Changes in these three parameters imply changing the number of global parities

h =
∑g

i=1 ri − k ≥ 0, whereas changes in the local codes, as in the previous subsections, imply changing the

number of local parities.

These processes are of interest when one desires to prepare iteratively a DSS that stores a final file up to a given

size. One starts with a small number of local groups and a small file, and adds new groups, localities and file

components over time. In such a scenario, it is desirable to encode the final file recursively, protecting intermediate

files from erasures, without global recoding at each stage. Since these processes are reversible (the three parameters

can be decreased), they can be used to remove and/or update file components over time without global recoding.

Let Ck ⊆ F(q−1)m
qm be a k-dimensional linearized Reed-Solomon code (Definition 3), for k = 0, 1, 2, . . . , N0 =

(q − 1)m, for the sum-rank length partition N0 =
∑q−1

i=1 m. Assume that (Ck)
(q−1)m
k=0 form a nested sequence of

codes with nested generator matrices (placing extra rows at the end)

Gk = (Gk,1|Gk,2| . . . |Gk,q−1) ∈ Fk×(q−1)m
qm , (20)

where Gk,i ∈ Fk×m
qm , for i = 1, 2, . . . , q−1. We may choose such nested linearized Reed-Solomon codes and nested

generator matrices by using those in (7) or (8), for instance. The largest matrix in (20), i.e., for k = (q− 1)m, can

be precomputed and stored for ease of future updates.
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Fix an initial number of local groups 1 ≤ g ≤ q − 1, initial localities 1 ≤ ri ≤ m, for i = 1, 2, . . . , g, and

an initial file size 1 ≤ k ≤
∑g

i=1 ri. The initial outer code is Cout ⊆ FN
qm , N =

∑g
i=1 ri, with generator matrix

Gin
k ∈ Fk×N

qm obtained by taking the first ri columns from Gk,i, for i = 1, 2, . . . , g.

Fix i = 1, 2, . . . , g. To go from ri to r′i, we do the following. Let cout ∈ Cout be the outer codeword encoding the

file f ∈ Fk
qm . First, decode the ith local group (this has complexity O(r3i ) over Fqi in general) to obtain c

(i)
out ⊆ Fri

qm .

Next:

1) If r′i < ri, then delete the last ri − r′i components of c
(i)
out ⊆ Fri

qm to obtain c̃
(i)
out ∈ Fr′i

qm .

2) If r′i > ri, then set c̃
(i)
out = (c

(i)
out, fD) ∈ Fr′i

qm , where D is the matrix formed by the columns in Gk,i indexed

by ri + 1, ri + 2, . . ., r′i. This has complexity O(k(r′i − ri)) over Fqm in general.

Finally, encode c̃
(i)
out using the generator matrix of the new r′i-dimensional ith local code A′

i ∈ Fr′i×n′

i

q′i
, which has

complexity O(r′2i ) over Fq′i
in general.

Changing the file size is done as usual with nested linear codes. Assume that 1 ≤ k < k′ ≤
∑g

i=1 ri, and

let f ∈ Fk
qm and f

′ = (f ,d) ∈ Fk′

qm be the initial and final files, respectively. Let Ai ∈ Fri×ni
qi be the generator

matrix of the ith local code. If the initial global codeword is cglob ∈ Fn
qm , then the new global codeword is

c
′
glob = cglob + dEA ∈ Fn

qm , where A = Diag(A1, A2, . . . , Ag) ∈ FN×n
q , and E ∈ F(k′−k)×N

qm is formed by the

last k′ − k rows in Gin
k′ . Note that going back from k′ to k is analogous.

We conclude by showing how to add or remove local groups. Let 1 ≤ g′ ≤ q − 1 be the new number of local

groups.

Assume first that g′ < g and k ≤
∑g′

i=1 ri. In this case, we only need to delete the entire groups indexed by

i = g′ + 1, g′ + 2, . . . , g, and we are done.

Assume now that g′ > g, choose new localities 1 ≤ ri ≤ m and new local generator matrices Ai ∈ Fri×ni
qi ,

for i = g + 1, g + 2, . . . , g′. Construct F ∈ Fk×N ′

qm , where N ′ =
∑g′

i=g+1 ri, by taking from Gk,i its first ri

columns, for i = g + 1, g + 2, . . . , g′. If the initial global codeword is cglob ∈ FN
qm , then the new global codeword

is (cglob, fFA′) ∈ FN+N ′

qm , where A′ = Diag(Ag+1, Ag+2, . . . , Ag′) ∈ FN ′×n′

q and n′ =
∑g′

i=g+1 n
′
i.

Finally, observe that the three processes described in this subsection (changes of initial localities, file components

and number of groups) can be done sequentially in any order, as long as the restriction k ≤
∑g

i=1 ri is satisfied in

all stages.

VI. COMPARISONS BETWEEN DIFFERENT OPTIMAL AND/OR MR-LRCS FOR GENERAL PARAMETERS

In this section, we compare global field sizes of Construction 1 and MR-LRCs from the literatue. We then

focus on comparing local field sizes and computational complexities of local and global erasure correction with

Construction 1 and codes from the literature that are defined for general parameters. To this end, we will focus

on Tamo-Barg codes [12], which are general optimal LRCs with linear field sizes (although not MR); the codes

in [31], which are the previous known MR-LRCs with smallest global fields; and Gabidulin-based LRCs [8], [17],

[20], [30], which have outer MSRD codes and thus enjoy the same universality, dynamism and local fields as

Construction 1.
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We will not study the minimum required per-node storage (i.e., storage complexity), since in all cases the number

of bits per symbol is at most linear in gr, which is not large enough to pose problems in large-scale DSSs.

A. Smallest Global Field for given Initial Localities among Linearized Reed-Solomon Codes

In this subsection, we find that, when using linearized Reed-Solomon codes (Definition 3) for equal initial

localities r = r1 = r2 = . . . = rg , the smallest field size is achieved by choosing the finest sum-rank length

partition, N = gr. In Corollary 3, we found that r = maxi ri is the smallest exponent on the global field size, but

finer partitions require a larger base, hence so far it is not completely clear that the finest sum-rank partition gives

the smallest global field.

1 6 11 16 21 26 31
21

2140

2279

2418

2557

x

F
(x
)

Fig. 8. The function F (x) = max{x+ 1, r + δ − 1}⌈gr/x⌉ with logarithmic y-axis (in base 2), for x = 1, 2, . . . , 31, where g = 31, r = 6

and δ = 3. The value F (1) = 2558 indicates the field size required by a Gabidulin code in this case, whereas F (31) = 230 indicates the field

size required by a linearized Reed-Solomon code for the sum-rank length partition N = gr =
∑g

i=1 r.

Assume that N = gr (r = r1 = r2 = . . . = rg). We argue as follows. By Theorem 5, an MSRD code for

a less fine sum-rank length partition than N = gr is also MSRD for the partition N = gr. Such partitions are

of the form N =
∑x

i=1 r
′
i, for certain x = 1, 2, . . . , g that acts as the new number of local groups. If the r′i are

roughly equal, the field size of a linearized Reed-Solomon code with such a sum-rank length partition is roughly

(x+1)⌈gr/x⌉. Observe that the extremal case x = 1 corresponds to choosing Gabidulin codes. The global field size

in Construction 1 would then be

F (x) = max{x+ 1, r + δ − 1}⌈gr/x⌉,

since the local MDS codes require field sizes approximately r + δ − 1. An illustration of this function is given in

Fig. 8 for g = 31, r = 6 and δ = 3.
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First observe that F (x) = (r+δ−1)⌈gr/x⌉ if x ≤ r+δ−2, hence the minimum is attained when r+δ−2 ≤ x ≤ g.

For these values, we have that F (x) = (x + 1)⌈gr/x⌉. Since f(x) = log(x + 1)/x is decreasing for x > 0, we

conclude that

(g + 1)r = F (g)

= min{max{x+ 1, r + δ − 1}⌈gr/x⌉ | 1 ≤ x ≤ g},

which is attained by the choice of parameters in Construction 1, and we are done.

Note that, if g ≥ 2, then any choice x ≥ 2 always decreases the global field size required by Gabidulin codes,

without any loss in performance.

B. Comparison with other MR-LRCs from the Literature

In this subsection, we compare Construction 1 with codes from the literature [24], [25], [28]–[33]. We will later

include the optimal LRCs from [12], although they are not MR-LRCs in general. Throughout this subsection, we

fix a dimension k, locality r, local distance δ, number of local groups g and number of global parities h = gr− k.

The global code length is always n = g(r + δ − 1).

We start by considering families of codes defined for restricted choices of parameters. The work [24] obtains

MR-LRCs with linear global field sizes (in the code length n) for h = 1 and any δ, and for h > 1 and δ = 2 based

on the irreducibility of certain polynomials, which are not known to cover all parameters. A general construction

of MR-LRCs for δ = 2 with global field sizes of order kh is obtained in [25]. MR-LRCs with smaller global field

sizes for h = 2 and g = 2 are obtained in [28] and [29], respectively.

The first family of MR-LRCs known to cover all parameters was given in [30] (equivalent to [8]). This construction

corresponds to our Construction 1 using Gabidulin codes as outer codes, hence it has global field sizes of order

(r + δ − 1)gr. The work [31] obtains MR-LRCs with global field sizes of order at least gh = ggr−k for general

parameters. Observe that, in the PMDS literature, local groups (which are disjoint) are arranged in (m× n)-array

form, as in Figs. 1 and 5. The translation from standard LRC notation to standard PMDS notation is m := g,

n := r+ δ− 1, s := h = gr− k, r := δ. The field sizes in [31] are of orders n(mn)(r+1)s−1 and max{m,nr+s}s,

which in our notation both are at least gh = ggr−k. This global field size was the smallest so far for general

parameters. Recently, the work [32] obtains MR-LRCs with global field sizes of order rg(r−δ+1) if r ≥ δ. However,

in practical scenarios we have that g ≥ r, thus rg(r−δ+1) ≫ gr (the size obtained in Construction 1). Also recently,

the work [33] obtains MR-LRCs with global field sizes of order nεh, for ε > 0 satisfying h = Ω(n1−ε) and

r ≪ ε log(n). However, for such a parameter regime, it holds again that nεh ≫ gε log(n) ≫ gr.

In conclusion, among families of MR-LRCs that cover general parameters, only those in [31] may have smaller

global fields than our Construction 1. We devote the rest of the subsection to compare, beyond global field sizes,

our Construction 1 with the codes in [31], Tamo-Barg codes [12] and MR-LRCs based on Gabidulin codes [8],

[17], [20], [30]. A summary is provided in Table I. Note that the global field size of the MR-LRCs from [31] is

larger than gh for most parameters, but we consider gh for simplicity.
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TABLE I

CONSTRUCTION 1 AND LRCS FROM THE LITERATURE FOR ANY DIMENSION k, LOCALITY r, NUMBER OF LOCAL GROUPS g AND LOCAL

DISTANCE δ

LRC family MR Global field (≈) Local fields (≈) Unequal (ri, δi)
g
i=1 Universal & Dynamic Hierarchical

Construction 1 Yes (g + 1)r r + δ − 1 Any up to r Yes Yes

Tamo-Barg [12] No (r + δ − 1)g (r + δ − 1)g Unknown No Unknown

Gabrys et al. [31] Yes gh, h = gr − k r + δ − 1 Unknown No Unknown

[8], [17], [20], [30] Yes (r + δ − 1)gr r + δ − 1 Any choice Yes Yes

The global field sizes required by Construction 1, Tamo-Barg codes [12], the codes by Gabrys et al. [31] and

Gabidulin-based LRCs [8], [17], [20], [30] are in general,

qC1 ≥ (g + 1)r,

qTB ≥ (r + δ − 1)g,

qGYBS ≥ ggr−k,

qGab ≥ (r + δ − 1)gr,

respectively, where always (r + δ − 1)gr > (g + 1)r as shown in the previous subsection. On the other hand, the

minimum field sizes for the ith local code C
(i)
loc are, in general,

qlocC1 ≥ r + δ − 1,

qlocTB ≥ (r + δ − 1)g,

qlocGY BS ≥ r + δ − 1,

qlocGab ≥ r + δ − 1,

respectively, where global field sizes must be powers of such local field sizes. See Example 1 in Subsection V-B.

Local repair (LR) by each local code requires the following number of operations over F2 per each block of

log(qloc) bits, for the corresponding local field size qloc:

LRC1 = O(r2 log(r)2),

LRTB = O(r2 log(g)2),

LRGYBS = O(r2 log(r)2),

LRGab = O(r2 log(r)2),

respectively. Here we assume that local decoding algorithms of quadratic complexity exist by Newton-type inter-

polation. To count the number of operations over F2, we are also assuming that a multiplication in a field F of

characteristic 2 costs about (log |F|)2 operations in F2.
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Finally, global decoding (GD) requires the following number of operations over F2 per each block of log(qglob)

bits, for the corresponding global field size qglob:

GDC1 = O(r4g2 log(g)2),

GDTB = O(r2 log(r)2g2 log(g)2),

GDGYBS = O(r2(gr − k)2g2 log(g)2),

GDGab = O(r4 log(r)2g4),

respectively. Here, we assume again that we may apply quadratic-complexity decoding algorithms via Newton-type

interpolation (see [42, Sec. V] and [42, App. B] for linearized Reed-Solomon codes) and that a multiplication in F

costs roughly (log |F|)2 operations in F2.

In conclusion, local repair is similar with Construction 1, [31] and Gabidulin-based LRCs, and is more efficient

than for Tamo-Barg codes [12], whereas these latter codes have more efficient global decoding. Gabidulin-based

LRCs never achieve more efficient global decoding than Construction 1. Finally, Construction 1 has more efficient

global decoding than [31] whenever r ≤ h = gr − k.

Assume now that g ≫ r or that r is constant, therefore g = Θ(n). Then Gabidulin-based LRCs’ global decoding

complexity is of order O(n4) over F2, and that of the codes in [31] is of order O(h2n2 log(n)2) over F2. Meanwhile,

Construction 1 and Tamo-Barg’s global decoding complexities are comparable and of order O(n2 log(n)2) over

F2, the same as quadratic decoding of Reed-Solomon codes with r = 1, length n, and local replication. See also

Example 2 below.

Example 2. Fix r = 9, δ = 2 and h = g (thus total length n = 10g). An MR-LRC with such parameters has a local

redundancy of 10% (because δ− 1 = (1/10)(r+ δ− 1)) and a global redundancy of 10% (because h = (1/10)n),

hence a total redundancy of 20% (note that k = gr− h = (8/10)n), while being able to correct a fraction n/10 of

extra global erasures compared to the Cartesian product of g (r + δ − 1, r) MDS codes. The global field sizes in

such a case would be roughly g9 = (n/10)9 (polynomial) for our construction, and gh = (n/10)n/10 (exponential)

for the construction in [31]. As argued above, global decoding when keeping r constant would have complexity

of O(n2 log(n)2) operations in F2 for our construction, Tamo-Barg codes [12] and Reed-Solomon codes [35] with

local replication. In this case, local repair in our construction is simple XORing, whose complexity does not grow,

in contrast to Tamo-Barg codes.

VII. FURTHER FIELD SIZE REDUCTIONS: SUBEXTENSION SUBCODES AND SUM-RANK ALTERNANT CODES

In this section, we introduce the concept of subextension subcode of a sum-rank code, which plays the same role

as subfield subcodes for the Hamming metric. When applied to linearized Reed-Solomon codes (Definition 3), we

obtain sum-rank alternant codes, which have not been considered yet, to the best of our knowledge.

We will give an estimation on their minimum sum-rank distance and dimension, analogous to the classical

estimations for alternant codes [48]. We conclude by analyzing their performance as universal LRCs. Since they

can be used as outer codes with the architecture in (10), all results in this paper hold, except that recoverability is

April 25, 2019 DRAFT



28

no longer maximal. As was the case for linearized Reed-Solomon codes, by setting m = r1 = r2 = . . . = rg = 1

in this section, we obtain classical alternant codes with arbitrary local replication.

Fix a prime power q0, a positive integer s and q = qs0. We also fix a sum-rank length partition N =
∑g

i=1 ri.

Definition 11 (Subextension subcodes). Given a code C ⊆ FN
qm , we define its subextension subcode of degree m

over Fq0 as the subfield subcode

Cq0,m = C|Fqm
0

= C ∩ FN
qm
0

⊆ FN
qm
0

. (21)

Denote now by wtqSR and wtq0SR the sum-rank weights in FN
qm and FN

qm
0

over Fq and Fq0 , respectively. Similarly

for distances dqSR and dq0SR, respectively.

The crucial fact about subextension subcodes is that they inherit their minimum sum-rank distance from the

original code. The case m = 1 recovers the well-known fact on the minimum Hamming distance of subfield

subcodes.

Theorem 7. For a (linear or non-linear) code C ⊆ FN
qm , it holds that

dq0SR(Cq0,m) ≥ dqSR(C). (22)

Proof. Let c,d ∈ Cq0,m, c 6= d, let Ai ∈ Fri×ri
q0 be invertible, for i = 1, 2, . . . , g, and define A = Diag(A1, A2, . . . , Ag) ∈

FN×N
q0 . Since Fq0 ⊆ Fq and c,d ∈ C, we deduce from Theorem 1 for q that

dH(cA,dA) ≥ dqSR(cA,dA) = dqSR(c,d) ≥ dqSR(C).

The result follows now from Theorem 1 for q0, after running over all such block-diagonal matrices A =Diag(A1, A2,

. . . , Ag) ∈ FN×N
q0 .

We may now introduce sum-rank alternant codes.

Definition 12 (Sum-rank alternant codes). For a primitive element γ of Fqm and a basis B of Fqm over Fq , we

define the sum-rank alternant code of degree m over Fq0 , with designed sum-rank distance δ∗, as the (Fqm
0

-linear)

code

Cσ,q0,m
Alt (B, γ, δ∗) = (Cσ

L,δ∗−1(B, γ)
⊥)q0,m ⊆ FN

qm
0

,

where Cσ
L,δ∗−1(B, γ) is the (δ∗ − 1)-dimensional linearized Reed-Solomon code in Definition 3.

We now give estimates on the minimum sum-rank distance and dimension of sum-rank alternant codes.

Corollary 9. The sum-rank alternant code CAlt = Cσ,q0,m
Alt (B, γ, δ∗) ⊆ FN

qm
0

in Definition 12 satisfies that:

1) dq0SR(CAlt) ≥ δ∗.

2) dim(CAlt) ≥ N − s(δ∗ − 1), where q = qs0.

Proof. First, the dual of a linearized Reed-Solomon code is again a linearized Reed-Solomon code (see [42, Th.

4]), hence is also MSRD. Thus Item 1 follows from Theorem 7.
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Next, since qm = (qm0 )s by hypothesis, Item 2 follows from Delsarte’s lower bound on dimensions of subfield

subcodes [48].

Observe that setting m = 1, we recover the Hamming metric, classical Reed-Solomon codes and classical alternant

codes. The previous estimations become then the classical ones [48].

From the study in Section IV, we deduce the following on sum-rank alternant-based LRCs.

Theorem 8. Let Cout = Cσ,q0,m
Alt (B, γ, δ∗) ⊆ FN

qm
0

be the sum-rank alternant code in Definition 12. Fix full-rank

matrices Ai ∈ Fri×ni
q0 , 1 ≤ ri ≤ ni, for i = 1, 2, . . . , g, and define A = Diag(A1, A2, . . . , Ag) ∈ FN×n

q0 and

n = n1 + n2 + · · ·+ ng. The global code Cglob = CoutA ⊆ Fn
qm
0

(see (10)) is a (Γi, Ci)
g
i=1-LRC as in Definition 7,

such that:

1) If R ⊆ [n] and Rk(A|R) ≥ N − δ∗ + 1, then the erasure pattern E = [n] \ R can be corrected by Cglob for

all codewords c ∈ Cglob.

2) It holds that

e(A,N − δ∗ + 1) ≤ dH(Cglob)− 1 ≤ e(A,N − s(δ∗ − 1)),

where e(A, k) is as in (12), for k ∈ N.

Proof. Item 1 follows from Corollary 1 and dq0SR(Cout) ≥ δ∗ (Corollary 9). The first inequality in Item 2 follows

from Item 1 and (12). The second inequality in Item 2 follows from dim(Cglob) ≥ N − s(δ∗ − 1) (Corollary 9),

Theorem 4 and the fact that e(A, k) ≤ e(A, k′) whenever k ≥ k′, which follows from (12).

In conclusion, we obtain an exponential reduction in field size, with exponent s, by reducing the entropy of the

stored file by at most (s − 1)(δ∗ − 1). However, this reduction of information rate is only a bound. It would be

of interest to find sharper lower bounds on the dimension of subextension subcodes, as done in [49] for classical

subfield subcodes. Adapting known decoding algorithms of alternant codes is also of interest, as well as finding

what type of cyclicity certain sum-rank alternant codes may have.

VIII. CONCLUSION

In this work, we have proposed an architecture for LRCs based on those in [8], [17], [20], [30], but substituting

Gabidulin codes [21], [22] by general MSRD codes, in particular, by linearized Reed-Solomon codes [34]. Con-

struction 1 achieves maximal recoverability and all the flexibility advantages of Gabidulin-based LRCs, but with

global field sizes roughly gr. Such field sizes improve the smallest known global fields of MR-LRCs when r ≤ h

[31] for equal localities, and all previous best known MR-LRCs for unequal localities [17], [20].

The flexibility features of Construction 1 include being compatible with arbitrary local linear codes (not necessarily

MDS) over much smaller local fields, partitioning the initial localities without global recoding, and changing the

initial localities, file components and number of local groups, without global recoding. It also enabled us to obtain

explicit multi-layer or hierarchical MR-LRCs for any type of hierarchy and any choice of (equal or unequal)

localities and local distances.
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To further reduce global field sizes, subextension subcodes and sum-rank alternant codes have been introduced.

As in the classical case, exponential field size reductions are possible at the cost of reducing the information rate.
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