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Graph-Based Controller Synthesis for Safety-Constrained, Resilient Systems

Matija Bucić, Melkior Ornik, and Ufuk Topcu

Abstract— Resilience to damage, component degradation,
and adversarial action is a critical consideration in design
of autonomous systems. In addition to designing strategies
that seek to prevent such negative events, it is vital that an
autonomous system remains able to achieve its control objective
even if the system partially loses control authority. While loss
of authority limits the system’s control capabilities, it may be
possible to use the remaining authority in such a way that the
system’s control objectives remain achievable. In this paper,
we consider the problem of optimal design for an autonomous
system with discrete-time linear dynamics where the available
control actions depend on adversarial input produced as a result
of loss of authority. The central question is how to partition
the set of control inputs that the system can apply in such a
way that the system state remains within a safe set regardless
of an adversarial input limiting the available control inputs
to a single partition elements. We interpret such a problem
first as a variant of a safety game, and then as a problem
of existence of an appropriate edge labeling on a graph. We
obtain conditions for existence and a computationally efficient
algorithm for determining a system design and a control policy
that preserve system safety. We illustrate our results on two
examples: a damaged autonomous vehicle and a method of
communication over a channel that ensures a minimal running

digital sum.

I. INTRODUCTION

Controller’s loss of authority over parts of an autonomous

system may happen in many scenarios:

(a) System damage and component degradation. An au-

tonomous system operating for substantial periods of

time in remote, unknown, or hostile environment will

inevitably sustain damage or experience partial system

failures over time due to malfunctions. Examples in-

clude unmanned aerial vehicles (UAVs) operating over

contested territory [1], search-and-rescue robots [2], and

rovers performing missions on extraterrestrial surfaces

[3].

(b) Hostile takeover. In a number of adversarial settings,

the adversary will attempt to take over elements of

the system and disturb its regular functions. A typical

setting is that of attacks on computer networks [4] and

power systems [5], [6], where, because of the vastness

of the network and heterogeneity and physical distance

between system elements, an adversarial agent may be

able to penetrate a part of the system. Hostile takeover

scenarios also include recent successful attacks resulting

in loss of control over UAVs; see, e.g., [7], [8].
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(c) User-responsive systems. Settings where an automated

controller is required to respond to (a priori unknown)

user inputs in a particular way necessarily yield a part of

the control authority to the user. Such scenarios include

resource distribution in parallel computing [9], seman-

tic web service composition [10], and communication

protocols [11].

In all of the above settings, it is critical to ensure that

the autonomous system can perform its tasks regardless

of external inputs that may affect the system. A standard

method of ensuring continued functioning of the system is

through imposing redundancy or near-redundancy in design.

For instance, critical components in commercial airplanes

are duplicated [12], and military UAVs use a combination

of different sensing systems for navigation [8]. In the lat-

ter example, while these different sensing systems do not

work in the same way and, in regular flight regime, serve

to complement each other, each system is able to ensure

that the UAV can achieve basic control objectives even if

complementary systems are not functioning.

Motivated by the above scenarios, our work seeks to

investigate how to guarantee continued safe operation of an

abstract control system in which some components are no

longer under the controller’s authority. We focus on systems

with linear driftless discrete-time dynamics, and interpret

the partial loss of control authority as limitations on the

controller’s choice of actions, based on adversarial inputs.

The control objective that we investigate is safety: the system

state is required to remain within a particular set throughout

the system run. We are interested in (i) developing a safe

control policy, if one exists, and (ii) determining a resilient

system design — i.e., a partition of the set of all control

inputs that the system can apply — which ensures that the

system will be able to remain safe even if the adversary limits

the available actions to a single element of the partition at

any given time.

The work in this paper is closely related to previous

research on control of safety-critical systems [13], [14] and

safety games [15]–[17]. In particular, as we will show, given

a system design, i.e., possible control inputs given an adver-

sarial input, a safe control policy can be interpreted as a win-

ning strategy for a turn-based safety game. This interpretation

leads to a computationally efficient algorithm for designing

a safe control policy. However, such an algorithm does not

directly provide for a computationally feasible procedure of

determining whether there exists a resilient system design,

as each design corresponds to a different safety game, and

searching through all possible games is computationally

prohibitive. We address this challenge through a method
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based on a graph-theoretical interpretation of system design.

The outline of the remainder of this paper is as follows. In

Section II we provide a motivation for theoretical framework

used in the paper, and formally describe the problems of safe

control design and resilient system design under adversarial

action. We then interpret such problems within the context

of safety games in Section III, resulting in a simple solution

to the problem of safe control design. We interpret the

problem of resilient system design in a graph-theoretical

setting in Section IV, and — using the probabilistic method,

as described in [18] — provide a sufficient condition and a

necessary condition for its solvability in Section V. Based on

the previous section, we provide a computationally efficient

algorithm for resilient system design and construction of

a safe control policy in Section VI. Section VII illustrates

our techniques on two examples: an autonomous vehicle

experiencing partial loss of control authority, and design of

codes for communication over a channel with a bounded

running digital sum.

Notation. The symbol N denotes all strictly positive

integers, N0 denotes all nonnegative integers, and Z denotes

all integers. For m ∈ N, [m] denotes the set {1, . . . ,m}. For

a set X , |X | denotes its cardinality, and 2X the set of all

its subsets. For an event B within a particular probability

distribution, Pr(B) denotes the probability of B occurring.

For a graph G = (V,E) and vertex v ∈ V , degG(v) denotes

the (outgoing, if the graph is directed) degree of v, and

mindeg(G) denotes the minimal (outgoing) degree of any

vertex in V . If G,H are graphs, G ⊆ H signifies that G is

an induced subgraph of H . Vector ei denotes the standard

basis vector consisting solely of zeros, except for a 1 in the i-
th position. Symbol ‖v‖∞ denotes the max-norm of a vector

v ∈ R
n, and ‖v‖1 denotes the 1-norm of a vector v.

II. PROBLEM STATEMENT

Consider a system operating with discrete-time dynamics

x(t + 1) = x(t) + u(t) (1)

for all times t ∈ N0, where x(0) ∈ Z
n and u ∈ U ⊆ Z

n,

with a finite U . While model (1) is simple, our use of it is

motivated by its wide presence in robotic exploration (see,

e.g., [19]–[21], and the references therein) as well as its use

in communication over a channel [22]. As we will discuss

in subsequent sections, (1) yields a straightforward graph-

theoretical interpretation of system motion which may lead

to generalizations for more complex models.

To provide motivation for the problems that we will pose,

let us assume that dynamics (1) represent an autonomous

system controlled by actuators A1, A2, . . . , Ap. The con-

trol effort u(t) is then given as u(a1(t), . . . , ap(t)), where

ai(t) ∈ Ai is the setting of actuator Ai at time t, and

U = {u(a1, . . . , ap) | ai ∈ Ai, i = 1, . . . , p}.

We are interested in the scenario where the controller

experiences loss of authority over some of the actuators,

say A1, . . . , Ar. Thus, the choice of a1(t), . . . , ar(t) is

not made by the controller, and any control actuation

u(t) needs to chosen in the set U(a1(t), . . . , ar(t)) =

{u(a1(t), . . . , ar(t), ar+1, . . . , ap) | ai ∈ Ai, i ≥ r+1}. We

assume that we do not possess any prior knowledge about the

inputs a1(t), . . . , ar(t); these may be subjects to adversarial

choices.

The control objective that we consider is safety. That is,

we want to ensure that x(t) ∈ S for all t ≥ 0, where S ⊆ Z
n

is a predetermined set with x(0) ∈ S. We are interested in

two questions:

(i) For given sets U(a1, . . . , ar), determine, if it exists, a

control policy that guarantees system safety regardless

of choices a1(t), . . . , ar(t).
(ii) Design sets U(a1, . . . , ar) so that the above control

policy exists.

The latter question corresponds to designing the abilities

and role of each actuator in such a way that the system is

resilient to loss of authority over some of the actuators.

If the system can exhibit perfect redundancy, i.e.,

U(a1, . . . , ar) = U for every a1 ∈ A1, . . . , ar ∈ Ar,

questions (i) and (ii) are simple. However, redundancy is

often undesirable due to cost, weight, or resource consump-

tion [23]. Thus, we assume that it is impossible to execute

exactly the same control with two different actuations. Under

this assumption, {U(a1, . . . , ar) | a1 ∈ A1, . . . , ar ∈ Ar} is

a partition of U . For the sake of simpler notation, we denote

A1 ×A2 × · · · × Ar = [m] for some m ∈ N.

Questions (i) and (ii) are now formulated as follows.

Restricted partition control problem (RPCP): Let S ⊆ Z
n

and x(0) ∈ S. Let U ⊆ Z
n be finite, and U : [m] → 2U

such that {U(1), . . . , U(m)} is a partition of U . Does there

exist a function û : ∪∞
i=1[m]i → U such that

(i) û(d1, . . . , dk) ∈ U(dk) for all d1, . . . , dk ∈ [m], and

(ii) for every d : N0 → [m], if x(t) is the solution of (1)

with u(t) = û(d(0), . . . , d(t)), then x(t) ∈ S for all

t ∈ N0?

Free partition control problem (FPCP): Let S ⊆ Z
n and

x(0) ∈ S. Let U ⊆ Z
n be finite. Does there exist a partition

{U(1), . . . , U(m)} for which the RPCP admits a solution?

We note that in practice the available choices of partitions

in the FPCP may be subject to constraints, e.g., physical

limitations in design of actuators. We use the unconstrained

version to provide an elegant illustration of a general ap-

proach to solving the above problems. Before moving to-

wards solutions of the RPCP and the FPCP, let us introduce

a running example.

Example 1 (Damaged vehicle): Consider an autonomous

vehicle moving on Z
2 according to dynamics (1). At ev-

ery instance in time, the vehicle can perform one of five

actions: go one position to the north, south, east or west,

or remain in the same position. In other words, U =
{e1,−e1, e2,−e2, (0, 0)}. The vehicle’s initial position is

given by x(0) = (0, 0), and the safe set S is given by

S = {x ∈ Z
2 | ‖x‖∞ ≤ 1}. The setup is graphically

illustrated in Fig. 1.

Let us first consider the RPCP with m = 2 and U(1) =
{e1, e2}, U(2) = {−e1,−e2, (0, 0)}. In such a case, the

RPCP does not admit a solution. For instance, if the ad-

versary continually chooses d = 1, the vehicle will have to



keep moving north or east. Hence, after no more than 3 steps,

it will be forced to leave S. This situation is shown on the

left side of Fig. 1.

Fig. 1: The picture on the left illustrates a counterexample

to solvability of the RPCP for U(1) = {e1, e2}, U(2) =
{−e1,−e2, (0, 0)} in Example 1. The safe set S is denoted

in light green. The vehicle’s initial position x(0) = (0, 0)
is denoted by a black circle. Possible vehicle movements

from each x ∈ Z
n are denoted by an arrow. Red arrows

denote available movements when the adversary chooses

d = 1, and blue arrows denote available movements when

d = 2. Possible movements in the case when the adversary

chooses d(0) = d(1) = d(2) = 1 are drawn thickly. The

picture on the right illustrates of solvability of the FPCP in

Example 1. Same notation as in the left is used. The partition

{U(1), U(2)} is chosen in such a way that, regardless of the

choice of d(t), the vehicle can always remain in the dark

green subset of the safe set.

On the other hand, the FPCP admits a solution for m = 2.

Let U(1) = {e1,−e1} and U(2) = {e2,−e2, (0, 0)}. Then,

when the adversary chooses d = 1 for the first time, the

vehicle can choose to move east, then west the next time,

then east again, etc. If the adversary chooses d = 2, the

vehicle can remain in place. Hence, the vehicle will always

remain within S. Such a strategy is depicted on the right side

of Fig. 1. �

We now continue towards providing a solution for the

RPCP and the FPCP.

III. GAME FORMULATION

The RPCP can be easily formulated as the question of

existence of a winning strategy in the following two-player

game.

Game 1: Let S ⊆ Z
n and x(0) ∈ S. Let U ⊆ Z

n be finite,

and {U(1), . . . , U(m)} be a partition of U . Let G = (V,E)
be a graph with V = Z

n and E = {(x, y) | y−x ∈ U}, and

l : E → [m] a labeling given by

l(x, y) = d if y − x ∈ U(d). (2)

The game proceeds as follows. Before time t = 0, a token

is placed at x(0). At every time step t, Player 1 first chooses

an element d ∈ [m]. Then, Player 2 chooses an element

x(t+1) ∈ V such that (x(t), x(t+1)) ∈ E and l(x(t), x(t+
1)) = d, if such an element exists, and moves the token to

x(t+1). The game now proceeds to the next time step. Player

2 wins the game if it can always move the token, and the

token remains within S for all t ∈ N0. Otherwise, Player 1

wins.

Proposition 1: The RPCP admits a solution if and only if

there exists a winning strategy for Player 2 in Game 1.

Proof: By taking u(t) = x(t + 1) − x(t), it is clear that

the movement of the token in Game 1 corresponds to (1).

The requirement that (x(t), x(t+ 1)) ∈ E and l(x(t), x(t+
1)) = d corresponds to the requirement that u(t) ∈ U(d(t)).
Thus, Player 2 has a winning strategy in Game 1 if and

only if there exists u(t) ∈ U(d(t)), possibly dependent on

all previous inputs d(0), . . . , d(t), such that x(t) ∈ S. The

latter statement is exactly the statement of the RPCP.

Game 1 is a turn-based safety/reachability game with

complete information as described [16]. Thus, for finite S,

the RPCP can be solved in linear time with respect to the

size of S [16]. In the remainder of this paper, we focus on

the FPCP. In a game-theoretical setting, the FPCP can be

posed as follows.

Game 2: Let S, x(0), U , and G = (V,E) be as in

Game 1. Let m ∈ N. At time t = −1, Player 2 chooses

U(d) ⊆ U for all d ∈ [m] in such a way that {U(d) | d ∈
[m]} is a partition of U . Then, each edge (x, y) ∈ E is

labeled as in (2). After this step, the game proceeds the same

as Game 1.

Analogously to Proposition 1, it can be easily shown that

the FPCP admits a solution if and only if Player 2 has a

winning strategy in Game 2.

The problem of the existence of a winning strategy in

Game 2 can nominally be solved by reducing it to the

problem of existence of a winning strategy in Game 1.

Namely, every choice of a partition {U(d) | d ∈ [m]} at

time t = −1 generates a different instance of Game 1, so

Player 2 has a winning strategy in Game 2 if and only if there

exists a partition {U(d) | d ∈ [m]} for which Player 2 has

a winning strategy in Game 1. However, an algorithm that

determines a winning strategy for Game 2 by considering all

partitions {U(d) | d ∈ [m]} is infeasible for large U , as the

number of those partitions is not less than m|U|−m [24].

In the following section, we propose a graph-theoretical

approach to the problem of determining the existence of win-

ning strategies for Player 2 in the above games, resulting in

easily computable conditions for the existence of a partition

and a controller in the FPCP.

IV. GRAPH LABELING PROBLEM

The previous section interprets system motion as a game

on a labeled graph. By building upon this approach, we can

convert the problem of finding a partition of the set of control

inputs that admits a safe control policy — the FPCP — to

an equivalent problem of labeling of graph edges.

Theorem 1: Let S, x(0), U , and G be as in Game 1. The

FPCP admits a solution if and only if there exist an induced

subgraph GŜ = (Ŝ, EŜ) ⊆ G with Ŝ ⊆ S and a labeling

l : EŜ → [m] such that the following properties hold:

(C1) x(0) ∈ Ŝ,



(C2) for all x ∈ Ŝ,

l
(

{(x, x′) ∈ EŜ | x′ ∈ Ŝ}
)

= [m],

and

(C3) if (x, y), (x′, y′) ∈ EŜ satisfy y − x = y′ − x′, then

l(x, y) = l(x′, y′).
Proof: As previously noted, the FPCP admits a solution

if and only if there exists a winning strategy for Player 2

in Game 2. Assume first that such a winning strategy exists,

with the corresponding partition {U(d) | d ∈ [m]} and a

labeling l : E → [m] that satisfies (2). Let us now define

GŜ = (Ŝ, EŜ) as the induced subgraph of G with its vertex

set Ŝ consisting of all the values that the system state x(t)
can possibly assume under the chosen winning strategy, for

all potential input sequences d : N0 → [m]. We claim that

GŜ , with the labeling l restricted to EŜ , satisfies (C1)–(C3).

First, since Ŝ is constructed from the winning strategy of

Player 2, x(0) ∈ Ŝ ⊆ S. Thus, (C1) holds. Property (C2)

holds because, by definition of Ŝ, for each x ∈ Ŝ there

exists a t ≥ 0 and a sequence d(0), . . . , d(t − 1) such that

x(t) = x, and for each d′ ∈ [m], setting d(t) = d′ requires

that l(x(t), x(t+ 1)) = d′. Property (C3) holds by (2).

In the other direction, assume that there exist an induced

subgraph GŜ , Ŝ ⊆ S, and a labeling function l : EŜ → [m]
that satisfies (C1)–(C3). We will prove that the FPCP admits

a solution.

Define

Ũ(d) =
{

y − x | (x, y) ∈ EŜ , l(x, y) = d
}

(3)

for all d ∈ {1, . . . ,m}, and

U(d) = Ũ(d) for all d ≤ m− 1,

U(m) = Ũ(m)
⋃

(

U\

m−1
⋃

d=1

Û(d)

)

.
(4)

Clearly, {U(1), . . . , U(m)} is a partition of U . We define

l̃ : E → [m] by (2), with U(d) defined as in (3)–(4). For any

(x, y) ∈ EŜ , l̃(x, y) = d if and only if y−x ∈ U(d) by (2),

which by (3)–(4) implies l(x, y) = d. Thus, l̃ and l are the

same on EŜ , so with a standard abuse of notation, we will

refer to l̃ as l in the remainder of the proof.

Let us now define û : Ŝ × [m] → U as any function with

a following property:

û(x, d) ∈ {y − x | y ∈ Ŝ, (x, y) ∈ EŜ , l(x, y) = d}. (5)

We note that the existence of a function û that satisfies (5)

follows from (C2), although uniqueness is not guaranteed.

We claim that any system run given by x(t+1) = x(t)+
û(x(t), d(t)) results in the system state remaining within Ŝ ⊆
S, and that û(x(t), d(t)) ∈ U(d(t)) for all t ∈ N0. For the

claim that x(t) ∈ Ŝ for all t, we proceed by induction. By

(C1), x(0) ∈ Ŝ. Assume now that x(t) ∈ Ŝ. Then, x(t+1) =
x(t) + û(x(t), d(t)) ∈ Ŝ by (5).

For the claim that û(x(t), d(t)) ∈ U(d(t)) for all t, we

note that l(x(t), x(t) + û(x(t), d(t))) = d(t) by (5), so

û(x(t), d(t)) ∈ U(d(t)) by (3)–(4).

Thus, û is a solution to the RPCP for the partition

{U(1), . . . , U(m)}. Hence, the FPCP admits a solution.

Remark 1: In the latter direction in the proof of The-

orem 1, technically we constructed a memoryless policy

û : Ŝ × [m] → U instead of a memory-conscious policy

û : ∪∞
i=1[m]i → U as required in the RPCP. Thus, Theorem

1 also shows that Game 1 and Game 2 admit a winning

strategy for Player 2 if and only if they admit a memoryless

winning strategy, which was also discussed in [16].

With Theorem 1 in mind, the FPCP can be transformed

into the following problem.

Invariant subgraph labeling problem (ISLP): Let S, x(0),
U , m, and G be as in Game 1. Let m ∈ N. Determine

whether there exist an induced subgraph GŜ = (Ŝ, EŜ) ⊆ G

with Ŝ ⊆ S and a labeling l : EŜ → [m] which satisfy (C1)–

(C3).

Let us briefly note that if one was to omit requiring

(C3) from the ISLP, such a problem reduces to finding

an induced subgraph GŜ ⊆ G with x(0) ∈ Ŝ ⊆ S and

mindeg(GŜ) ≥ m. This problem is a variant of the minimum

subgraph of minimum degree problem; see, e.g., [25] and the

references therein. We now proceed to determine sufficient

and necessary conditions for the ISLP to admit a solution.

V. CONDITIONS FOR A GOOD LABELING

As discussed above, property (C2) in Theorem 1 trivially

imposes a simple necessary condition for the ISLP to admit

a solution.

Proposition 2: If there exist an induced subgraph GŜ and

a labeling l satisfying the conditions of ISLP, then

mindeg(GŜ) ≥ m.

The condition given in Proposition 2 is not sufficient for

existence of a labeling satisfying the conditions of the ISLP.

The following example gives an induced subgraph GŜ ⊆ G
with mindeg(GŜ) ≥ m such that no labeling l : EŜ → [m]
satisfies (C2)–(C3).

Example 2: Consider n = 2, m = 3, x(0) = 0, S =
{x ∈ Z

2 | ‖x‖1 ≤ 1}, and U = {u ∈ Z
2 | ‖u‖∞ = 1}.

Let Ŝ = S. Clearly, x(0) ∈ Ŝ, and, as illustrated in

Fig. 2, mindeg(GŜ) ≥ m. Nonetheless, S does not admit a

labeling satisfying both (C2) and (C3). Assume otherwise.

Let l : EŜ → [m] be such a labeling. By (C3), l is

translation-invariant. Thus, we denote by l̂(1) the label of

all edges that point north (i.e., (x, y) ∈ EŜ such that

y − x = (0, 1)), l̂(2) the label of NE edges ((x, y) ∈ EŜ

such that y− x = (1, 1)), l̂(3) for E edges, etc. By applying

(C2) to

(i) vertices (0,−1), (−1, 0), (0, 1), and (1, 0), respectively,

we can conclude that, for each k ∈ {0, 1, 2, 3}, l̂(2k),
l̂(2k + 1), and l̂(2k + 2) need to be all different (for

ease of notation, we identify l̂(0) with l̂(8)),
(ii) vertex (0, 0), we note that l̂(1), l̂(3), l̂(5), and l̂(7) need

to have three different values.

Now, from (ii), assume without loss of generality that

l̂(1) = 1, l̂(3) = 2, and l̂(5) = 3. Then, by (i) for

k = 0 and k = 1, {l̂(8), l̂(2)} = {2, 3} and {l̂(2), l̂(4)} =



x(0)

Fig. 2: An illustration of Example 2. The vertices of Ŝ = S
and corresponding directed edges of EŜ are denoted in black.

{1, 3}. Hence, l̂(2) = 3, l̂(8) = 2, and l̂(4) = 1. Since

{l̂(4), l̂(6)} = {1, 2} by (i) for k = 2, we have l̂(6) = 2.

Thus, l̂(8) = l̂(6), which is in contradiction with (i) for

k = 3. �

Even though Proposition 2 only gives a necessary con-

dition for the ISLP to admit a solution, there does exist

a related sufficient condition. Namely, if there exists an

induced subgraph GŜ with large enough mindeg(GŜ), then

there exists a labeling of EŜ which solves the FPCP. We

prove such a result using the probabilistic method (see, e.g.,

[18], [26], [27] for more details).

Theorem 2: Let S, x(0), U , and G = (V,E) be as in

Game 1. If there exists a finite induced subgraph GŜ =

(Ŝ, EŜ) ⊆ G with x(0) ∈ Ŝ ⊆ S and

mindeg(GŜ) ≥ m ln
(

m|Ŝ|
)

, (6)

then there exists a labeling l : EŜ → [m] such that GŜ and

l satisfy properties (C1)–(C3).

Proof: Let us label each element u ∈ U by l̂(u) ∈ [m],
where each label is chosen independently and uniformly. We

define l : EŜ → [m] by l(x, y) = l̂(y − x). By definition

of l, (C3) is satisfied. Property (C1) is also satisfied by the

theorem assumptions.

Let B be the event that the label l does not satisfy (C2),

i.e., that there exists a vertex x ∈ Ŝ such that

l
(

{(x, x′) ∈ EŜ | x′ ∈ Ŝ}
)

6= [m]. (7)

Define Bx as the event that l satisfies (7) for the particular

x ∈ Ŝ. In particular, define Bi
x as the event that i /∈

l({(x, x′) ∈ EŜ | x′ ∈ Ŝ}).
If we can show that Pr(B) < 1, this will mean that there

exists at least one labeling l such that B does not occur, i.e.,

that (C1)–(C3) are all satisfied.

By the definitions of Bx and Bi
x and the union bound [28],

we obtain

Pr(B) ≥
∑

x∈Ŝ

Pr(Bx) ≥
∑

x∈Ŝ
i∈[m]

Pr(Bi
x).

Hence, if we show that

Pr(Bi
x) < 1/(m|Ŝ|) (8)

holds for all x ∈ Ŝ and i ∈ [m], we are done.

Consider the event Bi
x for fixed x ∈ Ŝ and i ∈ [m]. For

each edge (x, x′) ∈ EŜ , x′−x ∈ U is different. Thus, labels

l(x, x′) have been chosen uniformly and independently.

Hence,

Pr(Bi
x) = Pr

(

l(x, x′) 6= i for all (x, x′) ∈ EŜ

)

=
∏

(x,x′)∈E
Ŝ

Pr (l(x, x′) 6= i) =
∏

(x,x′)∈E
Ŝ

(1− 1/m).

Thus, Pr(Bi
x) = (1−1/m)

deg
G

Ŝ

(x)
≤ (1−1/m)mindeg(G

Ŝ
).

By simply noting that (1−1/m)m < e−1 (see, e.g., [29]), we

obtain Pr(Bi
x) ≤ (1 − 1/m)mindeg(G

Ŝ
) < e−mindeg(G

Ŝ
)/m.

We now obtain (8) from (6).

Theorem 2 gives a condition for solving the ISLP, i.e.,

the FPCP, based on finding a suitable subset Ŝ of the safe

set. One way of producing such a subset is by finding a

sufficiently dense subgraph of S, with a suitable definition

of density. In the interest of brevity, we omit further details.

We provide two illustrative examples of determining Ŝ in

Section VII.

Returning to the running example, construction on the

right side of Fig. 1, where mindeg(GŜ) = m < m ln(m|Ŝ|),
shows that the condition expressed in Theorem 2 is not

necessary for the solvability of the FPCP. We will return to

this example in Section VII, where we provide some intuition

for the “reason” that it yields a solution to the FPCP, even

though it does not satisfy the sufficient condition expressed

in Theorem 2.

VI. EFFICIENT LABELING ALGORITHM

The proof of Theorem 2 does not provide a mechanism

for constructing a good labeling. Instead, it merely states

that a uniformly chosen labeling will solve the FPCP with

probability 1 − Pr(B) ≥ 1 − m|Ŝ|(1 − 1/m)mindeg(G
Ŝ
).

Thus, an algorithm that randomly chooses labelings until it

reaches one that solves the FPCP is going to have expected

computational complexity no greater than

O

(

|EŜ |

1−m|Ŝ|(1− 1/m)mindeg(G
Ŝ
)

)

,

assuming that a random draw is performed in O(1) time,

and including the time to verify whether a labeling satisfies

(C2). Thus, if m|Ŝ|(1− 1/m)mindeg(G
Ŝ
) ≈ 1, a randomized

algorithm might take a substantial amount of time to finish.

We now present an alternative deterministic algorithm that

produces a correct labeling in O(|EŜ |+|U|m|Ŝ|) operations.

Algorithm 1: Let U = {u1, . . . , u|U|}. Define a labeling l̂
on U inductively as follows. Let

li ∈ argmin
l′∈[m]

∑

x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . ,

. . . , l̂(ui−1) = li−1, l̂(ui) = l′)

(9)

and define l̂(ui) = li for i = 1, 2, . . . , |U|, where labeling

l : EŜ → [m] is given by l(x, y) = l̂(y − x) for all

(x, y) ∈ EŜ .



Theorem 3: Assume that (6) holds for a finite induced

subgraph GŜ with x(0) ∈ Ŝ ⊆ S. Let l̂ and l be defined as

in Algorithm 1. Then, GŜ and l satisfy properties (C1)–(C3).

Proof: By (9), for each i ∈ [|U|],

∑

x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li) ≤

∑

k∈[m]

1

m

∑

x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = k) =

∑

x∈Ŝ
j∈[m]

∑

k∈[m]

1

m
Pr(Bj

x | l̂(u1) = l1, . . . , l̂(ui) = k) ≤

∑

x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui−1) = li−1).

Hence, inductively,

∑

x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|)

≤
∑

x∈Ŝ
j∈[m]

Pr(Bj
x) < 1,

(10)

where the last inequality holds by the proof of Theorem 2.

On the other hand, l is entirely defined by l̂(u1), . . . , l̂(u|U|).

Hence, Pr(Bj
x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|) equals either

0 or 1 for each x ∈ Ŝ, j ∈ [m]. By (10), we thus have

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|) = 0 for all x ∈ Ŝ,

j ∈ [m], i.e., GŜ and l satisfy the conditions of the ISLP.

Proposition 3: Algorithm 1 can be performed in O(|EŜ |+

|U|m|Ŝ|) operations.

Proof: Clearly, the computational complexity of Algorithm

1 depends on the complexity of solving the optimization

problem in (9) for each i ∈ [|U|]. For each i ∈ [|U|],
x ∈ Ŝ, and j ∈ [m], if j = lk for some k ∈ {1, . . . , i} and

x + uk ∈ Ŝ, then Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li) = 0.

Otherwise,

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li) =

(1− 1/m)|{i<k≤|U| | x+uk∈Ŝ}|.

Thus, if we precompute whether x+uk ∈ Ŝ for each x ∈ Ŝ
and k ∈ [|U|], and all values |{i < k ≤ |U| | x + uk ∈ Ŝ}|,
which can be performed in O(EŜ) operations, computing (9)

can be performed in m|Ŝ| time for each i ∈ {1, . . . , |U|},

by merely updating all Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li)

at the end of step i. Hence, Algorithm 1 indeed operates in

O(EŜ + |U|m|Ŝ|) time.

Provided with a labeling l : ES̃ → [m], given in Algorithm

1, the system design and control policy which solve the FPCP

are given by (3)–(4) and (5). We now proceed to illustrate

the obtained results on two practical scenarios.

VII. EXAMPLES

A. Damaged Vehicle

Having given conditions for solvability of the RPCP and

the FPCP, we return to our running example. Let us consider

a vehicle operating on V = Z
n, with the ability to either

move along the coordinate axes or stay in place, i.e., U =
{0,±e1, . . . ,±en}. Naturally, only n ≤ 3 makes direct

physical sense. A similar example has been considered in

the context of safety games in [17]. However, in that paper

the agent and the adversary alternate in taking control of

the vehicle, and the focus of the paper was on efficient

computation of safe control policies for a given system

design, and not on determining a good system design.

The safety objective that we consider is that the vehicle

remains close to its initial position x(0) = 0, i.e., S =
{x | ‖x‖∞ ≤ k} for some k ∈ N0. As we showed in

Example 1, there exists a safe system design for n = 2,

m = 2, and k = 1. In this section, we are interested in

discussing the maximal loss of control that still enables a

safe system design, i.e., for a given n and k, the maximal

m such that the FPCP admits a solution.

It is clear that if k = 0, the agent cannot afford any loss

of authority, i.e., the only acceptable m equals 1. If k ≥ 1,

we claim that the maximal m equals n+ 1.

Let us first show that the FPCP has a solution for m =
n + 1. A partition {U1, . . . , Un+1} that admits a solution

to the RPCP is given by Ui = {ei,−ei} for i ≤ n, and

Un+1 = {0}. Indeed, analogously to the construction on

the right side of Fig. 1, a control policy which alternately

chooses ed and −ed every time the adversary chooses input

d ∈ [n], and 0 if the adversary chooses d = n+1, results in

the agent’s state always remaining in Ŝ = {x | ‖x‖∞ ≤ 1}.

On the other hand, if m ≥ n+ 2, since there is a total of

2n non-zero elements in U , for any partition {U1, . . . , Um},

some partition element Uj will equal {ei} or {−ei} for

some i. However, by then repeatedly choosing d(t) = j, the

adversary can be assured that ‖x(t)‖∞ = t, i.e., ‖x‖∞ > k
after finitely many steps. Thus, the maximal value of m for

which the FPCP admits a solution is indeed n+ 1.

If m = n + 1 and Ŝ = S = {x | ‖x‖∞ ≤ 1},

sufficient condition (6) from Theorem 2 does not hold, as

mindeg(GŜ) = m < m ln(m|Ŝ|). Nonetheless, the solution

to the FPCP exists. Let us briefly discuss this gap between

sufficiency and necessity of condition (6). The proof of

Theorem 2 relies on some degree of genericity of a correct

labeling, i.e., a positive probability that a randomly chosen

labeling will be correct. On the other hand, the solution to the

FPCP when m = n + 1 is highly structured. Namely, each

element of {U1, . . . , Um} needs to equal {0} or {ei,−ei}
for some i. Otherwise, there will exist Uj that equals {ei} or

{−ei} for some i, and by repeating d(t) = j, the adversary

will be able to force the system state to move arbitrarily far

away from x(0). Hence, the partition that yields a solution

to the RPCP is in fact unique up to a permutation: U(i) =
{ei,−ei} for all i ≤ n, and U(n + 1) = {0}. Thus, as

n increases, the probability of a uniformly chosen partition



yielding a solution to the RPCP tends to 0.

B. Communication over a Channel

We now move from the setting of damaged autonomous

systems to that of user-responsive systems. Consider the

framework — originally introduced in [11] — where, at

every time t, a message chosen from some finite message

set M, |M| = m, is sent over a communication channel.

Each message is encoded as a bit-string (i.e., codeword) of

some fixed length n. This codeword does not need to be the

same every time the same message is sent; there could be

multiple ways to communicate the same message. However,

two different messages cannot be encoded in the same way.

The running digital sum (RDS) x(t) is defined as the

vector consisting of differences in the number of 1’s and

0’s that were sent in each coordinate of the bit-string until

time t. Thus, x(t) satisfies (1) for x(0) = 0, where u(t) is

an encoding of the message passed at time t, with zeros in

the bit-string replaced by −1’s, and U = {−1, 1}n [22]. An

illustration of such a system for n = 2 is given in Fig. 3.

Fig. 3: An illustration of the dynamical system that describes

the RDS. The vertices of G and the corresponding directed

edges of E are denoted in black.

Encoding policies for which the RDS in a channel remains

small regardless of the passed messages naturally reduce

the effects of various categories of noise [22], [30]. Since

encodings of different messages are pairwise disjoint, the

problem of constructing encoding policies with bounded

RDS can be naturally interpreted as the FPCP, with the safe

set S = {x | ‖x‖∞ ≤ k}. In this section, we are primarily

interested in finding the smallest codeword length n such that

there exists an encoding policy for which the RDS remains

within S.

For k = 0, there clearly does not exist n which yields a

solution for the RPCP. For k = 1, the only m for which

there exists an n which yields a solution for the RPCP is

m = 1, and in that case n = 1 suffices. For k ≥ 2, a bound

on n can be obtained from Theorem 2 as follows.

Proposition 4: Let m,n ∈ N, U = {−1, 1}n, and x(0) =
0. Then, if n ≥ 3max(log2 m, 11), the FPCP admits a

solution for S = {x ∈ Z
n | ‖x‖∞ ≤ 2}.

Proof: Let us define Ŝ = V1 ∪ V2, where V1 =
{−1, 1}n, and V2 = {(x1, . . . , xn) ∈ {−2, 0, 2}n | xi =
0 for at least n/2 i’s}. We note that x(0) ∈ Ŝ ⊆ S.

Let us examine the outgoing degree degG
Ŝ

(v) of every

vertex v ∈ Ŝ in the induced subgraph GŜ ⊆ G. If v =
(v1, v2, . . . , vn) ∈ V1, then

degG
Ŝ

(v) =
∑

i≥n/2

(

n

i

)

≥ 2n−1, (11)

as the set of neighbors of v is given by all vertices v =
(v1, . . . , vn) ∈ Z

n that satisfy (i) vi ∈ {0, 2vi} for all i ∈
[n], and (ii) vi = 0 for at least n/2 i’s. If v ∈ V2, then

degG
Ŝ

(v) ≥ 2n/2, (12)

as the set of neighbors of v is given by all v ∈ Z
n that

satisfy vi ∈ {−1, 1} if vi = 0, and vi = vi/2 otherwise.

Thus, from (11) and (12), we obtain mindeg(GŜ) ≥ 2n/2.

We note that |Ŝ| = |V1|+ |V2| ≤ 2n + 3n ≤ 3n+1. Thus,

m ln(m|Ŝ|) ≤ m lnm + m(n + 1) ln 3 ≤ n2n/3 ln(2)/3 +
(n+1)2n/3 ln(3). It can be shown that n2n/3 ln(2)/3+(n+
1)2n/3 ln(3) ≤ 2n/2 for all n ≥ 33. Thus, the conditions of

Theorem 2 are satisfied.

An illustration of the construction of S̃ used in the proof of

Proposition 4 is given in Fig. 4, for m = n = 2. We note

that Fig. 4 shows that it is possible to construct a labeling

(i.e., partition {U1, U2}) even for n = 2, indicating that the

bound in Proposition 4 is very liberal.

Fig. 4: An illustration of a safe labeling for the RDS with

m = 2, n = 2. Set Ŝ is denoted in green. A control policy on

Ŝ that ensures safety is described by thicker arrows. We note

that each element in Ŝ has an outgoing thick arrow in each

color pointing into Ŝ. Hence, the system state controlled by

such a law will always remain within Ŝ, for any x(0) ∈ Ŝ.

As it is necessary to use codewords (i.e., bit-strings) of

length at least ⌈log2 m⌉ to distinguish between m different

messages, Proposition 4 states that, if we use three times as

many bits as necessary, we can ensure that the RDS stays

within the smallest possible bounds. We remark that from the

proof of Proposition 4 it is clear that n ≥ 3max(log2 m, 11)
can be replaced by n ≥ (2 + ε)max(log2 m,nε) for any

ε ≥ 0, where nε → ∞ as ε → 0.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a preliminary discussion on control,

design, and motion planning abilities of an autonomous sys-

tem where the controller experienced a partial loss of control



authority. The paper is primarily interested in developing

sufficient and necessary conditions for existence of a safe

control policy in such a partly controlled system. In order to

obtain these conditions, we interpreted the system motion as

a variant of an adversarial safety game on a graph, where one

of the player’s moves is to label the edges of the game graph.

We showed that the safety objective in the original control

system is attainable if and only if such a game has a winning

strategy, and showed that the game has a winning strategy

if and only if there exists a labeling of the game graph

that satisfies particular properties. We found a sufficient

condition and a necessary condition for the existence of such

a labeling in terms of minimal degrees of a subgraph of the

original graph, and discussed how those conditions apply to

the motion of an autonomous vehicle operating on an n-

dimensional surface and to communication using a set of

codewords of length n with a bounded running digital sum.

The primary avenue of future work is in broadening the

scope of the considered framework. In addition to discussing

system dynamics more general than (1) — which may be

achieved by considering two-stage motions on a graph, one

stage being involuntary (”drift”), and the other resulting from

the performed actions — it is meaningful to consider a

broader class of control specifications, rather than solely

safety. In general, tasks for autonomous systems are often

expressed by a temporal logic specification (e.g., “visit area

A infinitely many times, never go into area B, and eventu-

ally reach area C”). Previous work on designing provably

correct control policies — i.e., policies that are guaranteed

to result in the system behavior satisfying a temporal logic

specification — primarily deals with systems whose control

abilities are not compromised; see [31] for a thorough study.

While there is a substantial body of work (see, e.g., [32] and

the references therein) on systems whose control originally

introduced in [11], may depend on the environment, pro-

cedures for determining provably correct control policies for

such systems are computationally complex. Providing simple

graph-based criteria for existence of a system design that

admits a correct control policy would present a significant

next step towards ensuring system resilience under partial

loss of control authority.
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