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Simulated Annealing for Optimal Resource

Allocation in Wireless Networks with Imperfect

Communications
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Abstract—Simulated annealing (SA) method has had signifi-
cant recent success in designing distributed control algorithms
for wireless networks. These SA based techniques formed the
basis of new CSMA algorithms and gave rise to the development
of numerous variants to achieve the best system performance
accommodating different communication technologies and more
realistic system conditions. However, these algorithms do not
readily extend to networks with noisy environments, as unreliable
communication prevents them from gathering the necessary
system state information needed to execute the algorithm. In
recognition of this challenge, we propose a new SA algorithm that
is designed to work more robustly in networks with communica-
tions that experience frequent message drops. The main idea of
the proposed algorithm is a novel coupling technique that takes
into account the external randomness of message passing failure
events as a part of probabilistic uncertainty inherent in stochastic
acceptance criterion of SA. As a result, the algorithm can be
executed even with partial observation of system states, which
was not possible under the traditional SA approach. We show that
the newly proposed algorithm finds the optimal solution almost
surely under the standard annealing framework while offering
significant performance benefits in terms of its computational
speed in the presence of frequent message drops.

I. INTRODUCTION

In modern wireless network systems, many network func-

tionalities involve solving complex network-wide decision

problems. Example network problems include media access

control, routing optimization, resource allocation, and QoS

provisioning in wireless networks, etc. A common goal pur-

sued in these problems is to achieve the desired performance

objective by seeking the best configuration of a set of system

parameters. This requirement naturally leads to form a certain

combinatorial optimization problem to be solved in distributed

settings. However, these problems are often very difficult and

high-dimensional such that their complexity grows rapidly

with the size of the network.

In this paper, we consider an important class of optimization

problems that are primarily motivated by resource allocation

and link scheduling problems in wireless networks. A classical

example of such problems is the max-weight or weighted

sum rate maximization problems, which serves as a basis for

many resource management and network design problems.
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These problems are typically difficult to solve, and are in

general known to be NP-hard even in the simple binary

capacity model. In addition, emerging wireless communication

technologies employ increasingly complex adaptive modu-

lation and coding techniques, which further exacerbate the

complexity of these problems. We focus on a class of NP-hard

type resource allocation problems which are often intractable

to solvein an efficient way and even in a centralized manner.

The solution methodology we develop in this paper is based

on the classical Simulated Annealing (SA) method [12], which

is a randomized technique for approximating the optimum for

a given objective function. The algorithmic procedure of SA

is intuitive and simple. In each step, a trial state is randomly

generated and its performance objective is evaluated. If the

trial state improves the objective, the current state is replaced

by the new state. If the objective of the trial state is not

better than that of current one, the trial is accepted or rejected

based on a certain probabilistic criterion. The advantages of

SA are the relative ease of implementation and the ability

to provide good solutions with provable guarantees for any

arbitrary systems and objective functions. Since SA is such a

ubiquitous method, it has found wide-spread applications in

various engineering problems [18], [24], [9].

An integral step needed to realize SA in practical systems

is the correct evaluation of the performance objective on each

system state, or at least the performance differential between

the current and trial states. In a distributed network where

the performance objective is dependent on multiple system

variables across different nodes, the task of measuring the

objective differentials can be done by implementing a proper

message passing mechanism. For wireless resource allocation

problems, to which SA is applied, most works implicitly

assume that these message exchanges are perfect. However,

since wireless communication is inherently unreliable (e.g.,

due to fading and interference, etc.), the message transmissions

containing the information about evaluating the objective may

not always be successful, resulting in failure of acquisition of

the information at the intended time of operating the algo-

rithm. Our numerical evaluation reveals that a straightforward

solution using SA to circumvent this problem performs very

poorly in terms of its computational speed, and thus appears

to be far from being practical in a situation where the message

drop rate is high. The main purpose of this paper is to

develop an efficient way of implementing the SA algorithm
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for wireless networks even under a physical channel that

experiences frequent message drops.

The main contributions of this paper are as follows.

1) We investigate an important performance issue that arises

from the unreliable nature of wireless communications

in implementing the SA algorithm in general distributed

wireless networks.

2) We propose a new algorithmic approach that can deal

more efficiently with an impact from the imperfect com-

munications, and rigorously prove the optimality of the

proposed algorithm under the standard SA framework.

3) We demonstrate that the proposed algorithm offers sig-

nificant improvement in terms of its computational speed

in networks with high message drop rates.

We organize this paper as follows. First, we provide a brief

overview of related work in Section II, and some preliminaries

in Section III. In Section IV, we describe the detailed imple-

mentation structure of an algorithm that is based on the SA

approach, and describe the main problem we focus on in this

paper. In Section V, we present our new idea to deal with the

problem, along with a mathematical analysis for the optimality

and efficiency of our solution. Section VI provides numerical

evaluations that support our main arguments. In Section VII,

we discuss some practical considerations and conclude the

paper in Section VIII.

II. RELATED WORK

The scope of this paper is closely related to the problem

of designing wireless link scheduling algorithms. In particular,

the message issue we have introduced in the previous section is

of importance in the development of recently studied CSMA-

type distributed algorithms [17], [11], [22]. We provide a

brief overview of previous works, and emphasize again the

significance of our contributions in this context.

Recently, a suite of CSMA-type algorithms have gained a

lot of attension in the research community. These algorithms

are known to be throughput optimal and can be easily im-

plemented in a distributed manner requiring minimal message

overheads. The key enabler of this success is the utilization of

an SA-like algorithm to solve the max-weight problem. While

the goal of achieving throughput optimality is to generate a

sequence of schedules such that the long-term service rates

can support any feasible arrival rates, the task of solving max-

weight problem plays a critical role in this job and it can be

indeed leveraged to achieve optimality.

We should point out that the type of messaging used in

these algorithms depends on which capacity model is used

in their problem setting. In earlier works [22], [8], [11],

[17], the algorithms are typically developed under a simple

binary capacity model: each link can be either active or

inactive, where activation of two links at a close distance

leads to collision, i.e., both transmissions fail. In this model,

there is few restrictions on the way in which the necessary

information is collected. This is because the only information

needed to decide whether to activate a link’s transmission is

to know whether any of its neighboring links (the set of links

that interfere with it) is active. This can be easily done by

having each active neighboring link send a one-bit signal on a

predefined and commonly shared time slot in order to convey

its activity state, and the link simply detects the presence of

the combined signal.

However, this information acquisition scheme may not be

able to be used on other more realistic capacity models. One

such an example is the Signal-to-Noise Ratio (SINR) model,

in which links obtain capacity proportional to the ratio of

their signal strength to the interference experienced in their

receiver. The reason is that in this model there may not exist

a clear condition that distinguishes between collision and not

collision, but the degree of capacity degradation caused by the

activation of other links may be different for different links

depending on their transmission power mode, geographical

distance between them, and etc. In this case, more detailed

information about the capacity degredation from different

nodes may have to be collected individually. Indeed, this

increased message complexity can be a critical source of the

incomplete message acquisition problem as we will explain

later.

There are a few works that have extended the CSMA

algortihms to the SINR model case [23], [20]. However, these

works are restricted to the use of a threshold-type capacity

model, i.e., a link obtains a unit capacity if its SINR is above

a certain threshold, and zero otherwise. This condition is a

critical assumption that allows to use the above mentioned

information acquisition scheme and avoids the message com-

plexity problem. This capacity model, however, does not allow

the wireless nodes to use adaptive modulation and coding

techniques to increase data rates for higher SINR.

In [2] and [21], the authors have considered general capacity

models, not restricted to threshold-type ones. However, they

ignore the message complexity issue, and assumed that all

suitably defined local information needed to perform their

algorithms is readily available at the time of operating the

algorithm. In this paper, we do not assume such an oracle, but

explicitly consider the impact due to imperfect collection of

required information, and develop a solution to the problem.

It is also worthwhile to mention that the delay performance

of these algorithms in queueing systems is highly affected by

their computational speed. According to the standard queueing

theory [7], [1], the correlation on arrival and/or service pro-

cesses has an adverse impact on the queueing delay. As we

will show later, our new solution is very helpful in improving

the algorithm operation speed, which in turn generates more

rapidly evolving and less correlated link service processes

in comparison to a naive approach. From this view point,

the significance of the aforementioned contributions in the

scheduling problem can be translated into the fact that our

proposed algorithm, applied to max-weight type problems with

any general capacity model, guarantees throughput-optimality

while reducing delay performance degradation due to the im-

Some overheads such as headers and/or guard times may be necessary
depending on the types of practical systems, as in [17].



perfect communications. However, aside from this significant

merit, achieving faster computational speed to generate an

equivalent solution is evidently desirable in designing this type

of randomized algorithms for many applications.

III. PRELIMINARIES

A. System model and objective

Network model. We consider a wireless network consisting

of a set N of n communication links (transmitter-receiver

pairs). Each link-i transmitter node has its local parameter xi

that determines its transmission power level from a discrete set

{0, . . . , Pmax} , M. Let x = {x1, . . . , xn}. Links interfere

with each other such that a transmission of one link is treated

as interference at other links. We consider the SINR-based

interference model. That is, when each link i sends a signal

with its power level xi, the receiver of each link i attains its

SINR level, γi(x) =
giixi∑

j 6=i gjixj+n0
, where gij is the channel

gain from link-i transmitter to link-j receiver, and n0 is the

thermal noise. The link i then obtains its transmission rate

ci(γi(x)) as a function of the experienced SINR level, which

is a typically monotone function, such as log(1 + γi(x)). Let

X , Mn, and call an instance x = {x1, . . . , xn} ∈ X
configuration. We denote by c(x) = {ci(x)}i∈N a capacity

vector with configuration x. We will also use x[S] = {xi}i∈S ,

for S ⊆ N to denote a subset S of configuration x.

Main objective. We require that each link controls its trans-

mission power level in order to achieve a certain performance

objective. Specifically, we aim at designing a distributed

algorithm that makes decisions x(t) ∈ X so that the long-term

time proportion of the configuration converges to a solution to

(OPT-MW) maximizex∈X

∑

i∈N

wici(x),

where wi is a weight of link i. In the following, we call the

pair of product wici(x) , fi(x) performance objective, fi :
X → R, of link i associated with each configuration x ∈ X .

A significant motivation for considering OPT-MW is its

relevance to the throughput-optimality in queueing systems. To

be more specific, suppose that each link maintains a queue fed

by an exogenous packet arrival process. In [16], it was shown

that if in each time slot, a configuration is selected according

to the above max-weight rule, where the weight is queue size,

then the queues can be stabilized (keeping all link queues

finite) for all arrival vectors that are within the capacity region

determined by the convex combination of capacity vectors with

all possible configurations. While in our problem setting the

weight parameters are assumed to be constant, an algorithm

that solves OPT-MW with large enough weights can be shown

to be throughput-optimal based on the time-scale separation

assumption, and the assumption can be relaxed by the recent

queue-based adaptation schemes [22], [8].

In general, OPT-MW is known to be an NP-hard problem,

and therefore it is unlikely that there exists an efficient

algorithm to solve it even in a centralized manner. Our solution

approach to the problem is to utilize the simulated annealing

method, which is known to guarantee to find the optimal

solution with high probability in a certain asymptotic sense

even for NP-hard problems.

B. Simulated annealing

Central to the idea of simulated annealing is the Metropolis

Hastings (MH) algorithm, which is a Monte Calro Markov

Chain (MCMC) method that can be used for obtaining a

sequence of samples from a given probability distribution.

We here briefly review the MH algorithm and its relation to

simulated annealing to solve OPT-MW.

Consider an irreducible Markov chain Xt with a finite state

space Ω and its transition probability matrix P = {Pij}i,j∈Ω.

Let π = {π}i∈Ω be a probability distribution over the state

space. The MH algorithm is intended to obtain a transition

probability matrix P that has π as its stationary distribution

while satisfying the reversibility condition, i.e., πiPij = πjPji.

The details of the MH algorithm are described as follows. At

the current state i of Xt, the next state Xt+1 is proposed

with a probability with proposal distribution cij - the state

transition probability of an arbitrary irreducible Markov chain

on the same state space, where cij > 0 if and only if

cji > 0. The proposed state transition is accepted with

probability αij = min
{

1,
πjcji
πicij

}

, and is rejected with prob-

ability 1 − αij . Therefore, the transition probability Pij is

given by Pij = cijαij = min{cij , cjiπj/πi}, for i 6= j,

and Pii = 1 −∑j 6=i Pij . When the proposal distribution is

symmetric, i.e., cij = cji for all i, j ∈ Ω, the form of transition

probabilities reduces to Pij = cij min{1, πj/πi}.

As an application of the MH algorithm, an important class

of probability distribution to be used for solving combinatorial

optimization problems is Boltzmann-Gibbs distribution, which

is typically constructed for OPT-MW by

π(x) =
1

Z
eβf(x), x ∈ X , (1)

where f(x) =
∑

i∈N fi(x), Z is the normalization constant:

Z =
∑

x
′∈X eβf(x

′), and β > 0 is a parameter related

to capturing the trade-off between optimality and conver-

gence speed. Evidently, as β becomes large, the probabil-

ity distribution will be concentrated on the set of optimal

solutions X ∗ := {x ∈ X : f(x) = maxx′∈X f(x′)}.

In this form of π = {π(x)}x∈X , the constructed transi-

tion probabilities by the MH algorithm can be written as

P (x,x′) = c(x,x′)e−β[f(x)−f(x′)]+ , for x,x′ ∈ X (x 6= x
′)

and P (x,x) = 1 − ∑
x
′∈X P (x,x′), given that a suitably

defined proposal distribution c(x,x′) is symmetric.

The simulated annealing is an adapted version of the MH

algorithm. The most distinct feature of SA is that it allows β
to increase monotonically in time, but with sufficiently slowly

varying rate, in order to guarantee the convergence to the

optimal solution in a certain probabilistic sense. The time-

varying parameter T (t) = 1/β(t) is often referred to as the

temperature at time t, and the sequence of T (t) is called

cooling schedule. Many proofs of convergence of cooling

schedules have already appeared in the literature [4], [10].

We defer discussion of this topic in Section V-B.



Algorithm 1 Basic SA (BSA) Algorithm (in time slot t)

Pick phase:

1: The network selects a link i ∈ N u.a.r.

2: The link i chooses xi(t) ∈ M\{xi(t− 1)} u.a.r.

3: Set xj(t) = xj(t− 1), ∀j ∈ N\{i}.

Train phase:

4: Test the new configuration x(t).
5: Every link j ∈ N locally measures fj(x(t)).
6: Set ∆j = fj(x(t)) − fj(x(t − 1)).

Messaging phase:

7: Each link j ∈ Ni sends ∆j to link i.
Decision phase: (at node i)

8: Set ∆ = ∆i +
∑

j∈Ni
∆j .

9: if ∆ ≤ 0 then xi(t) = xi(t− 1) w.p. 1− eβ∆

IV. THE IMPLEMENTATION AND THE CHALLENGE

A. Implementation structure

Realizing the SA idea in a distributed network requires

a considerable attention since the specific implementation

in practical networks will differ greatly depending on the

characteristics and the constraints of the network systems. We

present our implementation structure of the SA idea to be

performed in the SINR model.

In our implementation, time is divided into discrete time

slots where each time slot t consists of four phases which

include pick, training, messaging, and decision. In the pick

phase, the network selects a link i ∈ N uniformly at random

(u.a.r.). The task of selecting a random link can be done in a

distributed manner by having each link trigger an independent

poisson clock with a unit rate over continuous time domain,

and by suitably defining a time slot as an interval of each

clock tick. The selected link generates a new power level state

xi(t) u.a.r. different from its previous state xi(t − 1). The

newly generated configuration x(t) is then tested by having

each transmitter node transmit a test signal with the selected

power level, and the receiver node of each link measures its

performance objective. Each receiver node then constructs a

message containing the objective differential - the measured

quantity subtracted by that of previous time slot - and transmits

it to the transmitter node of link i during the messaging phase.

Upon receiving the messages, the link i decides whether to

accept the new power level state or not, based on the received

information and the previously described MH algorithm to

achieve π in Eq (1).

Note that if links are located sparsely over a geographical

region and the channel gain quickly decreases with the dis-

tance between a receiver and an interfering transmitter, then it

is reasonable to assume that the interference from links that are

far away can be ignored. Specifically, we define a neighbor set

Ni for each link i such that a link j belongs to the neighbor set

Ni if link-j receiver is located within a given radius of link-i
transmitter, and will consider only those links in the neighbor

set as the primary sources of the interference. Therefore, each

link-i transmitter node only needs to collect information from

its neighboring links j ∈ Ni during the messaging phase. The

detailed algorithm is outlined in Algorithm 1.

At first glance, our implementation appears to be similar

to the standard PICK-and-COMPARE methods as introduced

in [6], [13], [15]. The main idea of the previous approaches

is to have every node generate its new random power level,

and compare its objective value with that of the previous

power allocation. If the new power allocation improves the

objective value, then the new allocation is accepted to use in

the next time slot, and if otherwise, remains to use the previous

one. However, in multi-hop wireless networks, this comparison

task is very challenging because it requires to compare the

network-wide weighted-sum rates achieved by the two power

allocation. To this end, they adopted a gossip-like algorithm,

however, the computation of each power allocation using the

gossip algorithm requires up to O(n3) information exchange,

which may not be easily implementable for large networks.

On the other hand, we do not require such a network scale

comparison, as we perform the comparison task at link level.

That is, we propose to change only a single state at a time,

which makes the computation of the objective differential easy

and suitable to be implementable in a distributed manner.

B. The challenge with imperfect communications

We have described the basic SA algorithm based on the

assumption that the message containing the objective differ-

ential locally measured at each node is perfectly delivered to

the intended node during the messaging phase. In practice,

however, the delivery of messages may not always be suc-

cessful, and there can be several reasons that can prevent the

message delivery from being successful.

1) Fading. A primary reason for the delivery failure is due to

the inherently unreliable nature of wireless communications.

In wireless communications, the transmission channel suffers

from temporal variations in its condition with various vari-

ables, and this can often result in a great amount of signal

attenuation and message decoding errors.

2) Message complexity. When the network experiences

frequent events of join and leave of nodes, it may not be easy

for each node to find a proper coordination in a deterministic

way for receiving multiple messages from different neighbors.

To deal with such a potential dynamics, an Aloha-type of

randomized neighbor discovery method can be used as an

alternative, e.g. [25]. One way to do is to allocate multiple

sub-slots during the messaging phase, and in each sub-slot,

nodes transmit their message with some probability. In this

way, nodes can deliver messages while avoiding collisions in a

randomized fashion. However, there is always a chance that the

delivery of messages may not be successful, since the number

of sub-slots is finite and fixed.

We capture various factors that can cause message drops

by means of probability to represent the combined effect. In

specific, we assume that in each time t, the selected node i is

only able to collect a subset S(t) of nodes from its neighbors

Ni with some unknown probability qi,S(t), S(t) ⊆ Ni, which



is i.i.d. over time slots, where the probability of collecting the

full set information is assumed to be non-zero, i.e., qi,Ni
> 0.

This limited capability of the message passing poses the

following practical challenge: when the subset S(t) of infor-

mation collected at time t is strictly smaller than Ni, the node

i cannot compute the state transition probability correctly, and

therefore it is unclear how to behave in this time slot. A

straightforward idea to deal with the problem is as follows.

If the intended node gathers all the information from the

full set of its neighbors successfully, then the node performs

Algorithm 1. And, if otherwise, it defers performing the

algorithm and simply maintains the current state (Algorithm

2).

Algorithm 2 Lazy SA (LSA) algorithm (at node i in time t)

Message Input : S(t) ⊆ Ni and {∆j}j∈S(t).

Decision phase:

1: if S(t) ≡ Ni then perform (8-9) in Algorithm 1

2: else xi(t) = xi(t− 1)

We verify that this algorithm has its stationary distribution

as π in Eq. (1), of which proof is in Appendix.
Proposition 1: The stationary distribution of LSA algo-

rithm is π.

As one can notice, the problem of this algorithm is its

slow computational speed. Suppose that a node has multiple

neighbors and the messages each from different neighbors

drop independently with some non-zero probability. Then,

the probability that it obtains all the information so that it

can perform the algorithm decreases exponentially fast with

the number of neighboring nodes. Next, we present a new

approach that can greatly improve the algorithm operation

speed in the presence of message drops.

V. IMPROVING THE COMPUTATIONAL SPEED

A. Proposed solution: rapid SA (RSA) algorithm

The high level description of the main idea we introduce

here is as follows. In many network application scenarios, a

change of a single nodal configuration often results in a limited

amount of impact to the dependent performance objectives.

With the knowledge of the bounded impact, we construct a

confidence range on the objective differential that can be made

due to the change of configuration, and utilize it to compute

the desired level of probabilistic uncertainty in the stochastic

acceptance criterion of SA. As a result, a certain level of

impreciseness on the evaluation of objective differentials can

be tolerated without affecting its optimality.

To give a motivating example, consider the following simple

network scenario with a set of four nodes, N = {a, b, c, d},

where each node represents a distinct pair of communication

link. Each node i ∈ N can be either active, xi = 1, or inactive,

xi = 0, and two nodes connected in the graph (presented in

Fig 1) conflict with each other such that a node obtains a

unit capacity only if it is active and all its neighbor nodes

(the set of nodes connected to it in the graph) are inactive,

and obtains zero capacity if otherwise. The objective is to

maximize f(x) :=
∑

i∈N wici(x) where the weights wi’s are

chosen as wa = 5, wb = 7, wc = 10, wd = 3. With this setup,

suppose that the configuration at current time t is x(t) =
{1, 1, 0, 0}, i.e., only a and b are active, and consider to switch

the state of node c from inactive to active, i.e., x(t + 1) =
{1, 1, 1, 0} according to the SA framework. In this case, the

local objective differential measured (during the train phase)

at each node is ∆a = −5, ∆b = −7, ∆c = 0, and ∆d = 0,

respectively, and the values ∆a, ∆b, ∆d are to be transmitted

in the messaging phase towards node c. Suppose further in

this particular time slot, ∆a and ∆b are delivered successfully

whereas ∆d has not reached node c due to a temporally bad

condition experienced over the communication channel. Since

node c did not receive ∆d, it cannot correctly compute the

aggregate objective differential which is needed to compute the

transition probability. On the other hand, with the knowledge

of ∆a and ∆b, node c can determine a bounded range on the

consequential aggregate objective differential such that ∆a +
∆b + ∆c + ∆d = ∆ ∈ [−15,−12], since ∆d ∈ {−3, 0} can

be easily inferred by node c: ∆d = −3 if node d was active,

and ∆d = 0 if it was inactive. Our main idea we propose here

is to suggest to make a transition based on the lower bounded

transition probability (e−15β in this case, rather than e−12β ,

that with the true objective differential) that can be computed

based on any subset information.

This new idea relies on the following assumption: each node

i has a known lower bound (upper bound in minimization

problem) on the differential contribution to the objective fj
of any neighboring node j that can be made due to solitary

change of node i’s configuration from xi to x′
i such that

min
x[−i]

fj(x
′
i,x[−i])−max

x[−i]

fj(xi,x[−i]) ≥ bijxi,x′
i
,

where x[−i] = x[N\{i}], and it is allowed to have bijxi,x′
i
= −∞

in the case that there is no known bound for it. For the

max-weight problem under the SINR model, one can obtain

a trivial bound: bijxi,x′
i

is −wjc
max
j if x′

i ≥ xi and is zero

if otherwise, where cmax
j is the (a priori known) maximum

achievable rate of link j due to physical constraints of wireless

technology in use, and wj can be easily informed as it only

requires a one-time transmission. It is possible to obtain

a tighter bound if additional information on the objective

function, such as the gain term gij between node i and j,

is available. The efficiency of this approach essentially relies

on the tightness of the bounds, however, we observe through

extensive simulations that loose bounds are often sufficient

to offer substantial improvement on the algorithm operation

speed when the packet drop rate is high. A formal description

of this idea is presented in Algorithm 3.

In RSA algorithm, nodes are allowed to perform the al-

gorithm based on the bounded estimate on the potential

objective differential, which can be computed based on the

subset information currently observed. Compared to the LSA

algorithm, we add additional transitions on the system dy-

namics, so its faster computational speed is expected. In the
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Fig. 1. An example topology in which the messages ∆a and ∆b are delivered
successfully to node c, whereas the massage ∆d is lost.

Algorithm 3 Rapid SA (RSA) algorithm (at node i in time t)

Message Input : S(t) ⊆ Ni and {∆j}j∈S(t).

Decision phase:

1: Set ∆[S(t)] = ∆i+
∑

j∈S(t)∆j+
∑

j∈Ni\S(t) b
ij
xi(t−1),xi(t)

.

2: if ∆[S(t)] ≤ 0 then xi(t) = xi(t− 1) w.p. 1− eβ∆[S(t)]

previous case, for example, when the message ∆d was lost,

the network configuration had to remain on the same state in

LSA algorithm, whereas now it has some degree of probability

that can transit to a new state in RSA algorithm. We obtain

the following relation among the algorithms, of which proof

is provided in Appendix.

Proposition 2: Let PB , PR, and P
L denote the transition

probability matrices of BSA, RSA, and LSA algorithms,

respectively. Then, for all x,x′ ∈ X (x 6= x
′), it holds

PB(x,x′) ≥ PR(x,x′) ≥ PL(x,x′).

B. Optimality

Note that RSA algorithm does not necessarily achieve the

same stationary distribution π we intended, and it is difficult to

find a closed form solution for it. Technically speaking, the al-

gorithm experiences bias on the desired stationary distribution

due to the additional transitions we added onto the algorithm.

For this reason, the conceptual argument that the probability

distribution gets concentrated on the optimal states as β grows

cannot be used. Our main concern here is therefore to see if

the algorithm is still able to find optimal solutions under the

standard SA framework. To that end, we first formally define

the notion of an algorithm being optimal.

Definition 1: An algorithm is called annealing-optimal if a

Markov chain, X(t), governed by the algorithm with a proper

cooling schedule for β(t) achieves

lim
T→∞

1

T

T
∑

t=1

P{X(t) ∈ X ∗} = 1. (2)

In the conventional SA, the cooling schedule is typically

constructed by β(t) = log(t)/d where d is some positive

constant that determines the order of cooling rate. Using this

cooling schedule, by the proper cooling schedule we mean that

an algorithm is said to be annealing optimal if Eq. (2) can be

verified for sufficiently large enough d.

To verify the optimality of RSA algorithm, we adopt a tech-

nical method introduced in [4], in which the optimality of the

original simulated annealing algorithm is proven. The authors

in [4] have verified the annealing optimal of SA algorithms for

a certain class of Markov chains whose transition probabilities

can be written as

pij(t) = cijǫ(t)
Vij , (3)

where Vij , cij ≥ 0, for all i, j,
∑

j 6=i cij = 1, for all i, pii(t) =
1 −∑j 6=i pij(t), and 0 ≤ ǫ(t) ≤ 1, t ≥ 1 is the parameter

related to the cooling schedule. Note that the conventional

simulated annealing algorithm can be represented by this form

with setting Vij = [f(j)− f(i)]+ and ǫ(t) = e−β(t) in which

minimum f(·) is sought. It is a straightforward job to verify

that both BSA and LSA algorithms can be represented by the

above form, from which their optimalities easily follow.

On the other hand, it turns out that the transition probabil-

ities of the RSA algorithm does not conform to Eq. (3), and

thus their analysis cannot be immediately applied to show its

optimality. Nevertheless, we obtain the following result.

Theorem 1: RSA algorithm is annealing optimal.

The major part of the analysis is to generalize the transition

probability form of Eq. (3) in order to represent multiple con-

ditional transition probabilities of RSA algorithm for different

message acquisition events, and to verify a suitably defined

notion of recurrence order of each state, which conceptually

captures how likely the system tends to stay on the state

in a certain asymptotic sense, remains the same as that of

BSA algorithm albeit the generalization. For brevity of the

presentation, we provide the detailed steps for the proof in

Appendix.

C. Efficiency in asymptotic variance rate

We now provide an insight into understanding the benefit

of the proposed approaches by comparing different algorithms:

BSA, LSA, and RSA algorithms. To quantitatively analyze and

compare these algorithms, we first need to choose a specific

metric that characterizes one algorithm being a good one.

One popular metric often considered in the literature is the

mixing time. Conceptually, the mixing time of a Markov chain

is the time until the Markov chain is close to its stationary

state. In the standard Markov chain theory [14], the mixing

time is precisely defined as

tmix(ǫ
′) = min{t ≥ 1 : maxi∈Ω ‖Pt(i, A)− π(A)‖TV ≤ ǫ′, ∀A ⊆ Ω},

which is the formalization of the idea: how large must t be

until the time-t distribution is ǫ′-close to π. Unfortunately,

directly dealing with this quantity is a very difficult task, and

most of existing analytic techniques rely on the spectral anal-

ysis based on the relation tmix(ǫ
′) ≤ log(1/(ǫ′πmin))/(1 −

SLEM(P)), where SLEM(P) = max{η2, |η|Ω||} is the second

largest eigenvalue modulus and 1 = η1 ≥ . . . ≥ η|Ω| ≥ −1 are

the left eigenvalues of P. Although the common wisdom in

the literature is that the smaller SLEM is the smaller mixing

time the chain P will have, its ordering relation on the upper

bounds does not necessarily imply the chain with a smaller

SLEM will actually mix faster in a rigorous sense.

Instead, we look at another performance metric that has

been extensively used in the sampling theory. Sampling

schemes are often used to estimate Eπ(h) ,
∑

i∈Ω h(i)π(i)



for various functionals h : Ω → R by generating t
samples {X(s)}ts=1 and constructing an estimator µ̂t(h) =
1
t

∑t
s=1 h(X(s)). In assessing the accuracy of this estimator,

the asymptotic variance rate has been used as an important

criterion in the literature. The asymptotic variance rate σ(P, h)
of the estimate µ̂t(h) is defined in [14] as

σ(P, h) = lim
t→∞

t · Var(µ̂t(h)). (4)

It has been known that the quantity
√
t(µ̂t(h) − Eπ(h))

converges in distribution to a Gaussian random variable with

zero mean and variance σ(P, h).
We consider the ordering relationship among the three

algorithms in term of the asymptotic variance rate. A useful

technique related to this task is the so-called Peskun ordering,

which is described next.

Definition 2 (Peskun ordering): [19] For two finite irre-

ducible Markov chains on a finite state space Ω with P =
{Pij}i,j∈Ω and P

′ = {P ′
ij}i,j∈Ω with the same stationary

distribution π, it is said that P′ dominates P off the diagonal,

written as P � P
′ if Pij ≤ P ′

ij for all i, j ∈ Ω (i 6= j).

Lemma 1: [19] If P and P
′ are reversible with respect to

π, and P � P
′, then σ(P, h) ≥ σ(P′, h) for any h with

Varπ(h) ,
∑

i∈Ω(h(i)π(i) − Eπ(h))
2 < ∞.

Note from Proposition 1 that the stationary distributions of

LSA and BSA algorithms are identical as π in Eq. (1). Also,

the relation P
B(x,x′) ≥ P

L(x,x′) for x,x′ ∈ X (x 6= x
′)

in Proposition 2 is exactly the definition of Peskun ordering.

Therefore, we obtain the following consequence.

Proposition 3: σ(PL, h) ≥ σ(PB , h), for any h with

Varπ(h) < ∞.

However, the stationary distribution of RSA algorithm,

denoted by π
R, is not necessarily equivalent to π. For this rea-

son, we cannot rely on the Peskun ordering relation between

RSA and the others. Unfortunately, the efficiency analysis

for comparing two Markov chains with different stationary

distributions is notoriously difficult, and to the best of our

knowledge there are no known technical tools applicable to

our case. We leave the following statement as our conjecture.

Conjecture 1: σ(PL, h) ≥ σ(PR, h) ≥ σ(PB , h), for any

h with Varπ(h) < ∞ and Var
π

R(h) < ∞.

The rationale for the conjecture is that we observed from

various simulations that the distributional bias of RSA al-

gorithm is often very small, and hence we expect from

Proposition 2 that a similar ordering relation will hold. This

conjecture is empirically found to be true in diverse cases.

VI. NUMERICAL EVALUATION

In this section, we present the numerical experiments for the

proposed algorithms. We first consider the network scenario of

the four link case presented in Section V, where simulations

are performed with using fixed but different temperature

parameters in order to observe how different algorithms behave

in a specific temperature regime. We assume that the weight

parameters, {wi}, are given and fixed as such described in

the earlier section, and each node knows these parameters
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Fig. 2. Comparison of different algorithms in their stationary distributions
with different β.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 100  200  300  400  500  600  700  800  900 1000

V
ar

(Σ
t=

1
n   1

cX
(t

))
/n

n

BSA
LSA
RSA

(a) Message drop pr. is 0.1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100  200  300  400  500  600  700  800  900 1000

V
ar

(Σ
t=

1
n   1

cX
(t

))
/n

n

BSA
LSA
RSA

(b) Message drop pr. is 0.5

Fig. 3. The variance rate of the link c’s service process over different time
scales (β = 0.5).

for all of its neighbor nodes. And, we chose bijxi,x′
i

is 0 for

xi = 1, x′
i = 0, and is −wj for xi = 0, x′

i = 1, for all i
and j ∈ Ni for the bound parameters. Fig 2-A and 2-B plot

the stationary distributions obtained from different algorithms

for β = 0.1 and β = 1, respectively. Messages generated

from neighbor nodes are set to be lost independently with

probability 0.5 for LSA and RSA algorithms. Note that the

results of BSA algorithm corresponds to those of LSA (or

RSA) algorithm with no message loss events. As expected

from the traditional analysis of SA and the form of Gibbs

distribution, it can be seen from the figure that the distribution

from BSA algorithm is scattered around different states for

small β (β = 0.1), whereas it becomes concentrated on the

optimal state, (1, 1, 0, 1), for large β (β = 1). Similarly, the

results of both LSA and RSA algorithms also match well with

them, which reveals that the same annealing optimality will

hold for RSA algorithm as well.

In Fig 3, we plot the variance rate defined in Eq. (4) with

the choice of h(X(t)) = 1c(X(t)) , 1{X(t) = (0, 0, 1, 0)}
in order to look at the variability of the cumulative service

process of link c over different time scales. In this case,

β = 0.5 is used. The figure 3-(a) shows the result with the

message drop probability 0.1, in which the variability of link

service process due to LSA algorithm increases quite a bit,

whereas the result from RSA algorithm is almost same as that

of BSA algorithm. When the message drop rate is high (as in

Fig 3-(b)), the performance loss due to LSA algorithm is quite

significant, whereas RSA algorithm can still be performed as

if there is no message drop in this case. These results are

consistent with our expectation described in Conjecture 1.

We here consider a queueing application scenario, where

each node is associated with queue fed by an external packet

arrival process. Let Qi(t) be the queue size of node i at time
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Fig. 4. Average queue size of link c

t of which dynamics is determined by the typical queueing

process: Qi(t) = [Qi(t − 1) + ai(t) − ci(x(t))]
+, t ≥ 1,

where the arrival process ai(t) is assumed to be a constant ai
over time. In order to adapt to the dynamic queue size, we

adopt the popular technique of dynamic fugacity scheme used

in the CSMA scheduling, in which the weight parameters are

chosen such that Wi(t) = log(Qi(t) + 1). The parameter β
is simply set to be 1, since setting large weight parameters

(or equivalently large queue size) will act as setting large β
in the max-weight problem, and the appropriate weights will

be automatically found from the queue sizes. Now the weight

parameters are dynamic over time, and therefore they should

also be informed to the corresponding nodes as a form of

message, which is also subject to the delivery failure events.

Since the queue dynamics has a limited evolution over time:

Qi(t) + aik − k ≤ Qi(t + k) ≤ Q(t) + aik, k ≥ 0, each

node i can obtain an upper bounded estimate for the weights

wj(t + k) for j ∈ Ni, based on the most recently observed

value of wj(t). We have implemented these schemes in the

simulation, and plotted the average queue size of link c in Fig

4. The results show that the improvement of average queue size

by RSA algorithm can be quite significant especially when the

message drop rate is high.

We also perform simulations with a realistic SINR model

in a larger network with 10 pairs of communication links

randomly deployed in a 500m × 500m geographical region

as shwon in Fig 5. The parameter settings are as following.

The transmitter node of each link i has three transmission

power modes, xi ∈ {0, 5, 10}mW, and the transmitted signal

experiences pass loss by d−γ
ij , where γ = 4 and dij is

the distance between the transmitter i and the receiver j of

the signal, and the thermal noise n0 = 10−12mW is used

for all links. Each link obtains different amount of capacity

depending on its experienced SINR level as described in Table

I, and the bound parameters are chosen with cmax
i = 3, ∀i and

in the way we described in Section V-A. We have selected the

set of neighbors from which the messages are to be collected

during the messaging phase such that a link j belongs to link

i’s neighbor set Ni if the receiver node of link j is located

within the range of 250m of the transmitter node of link i
(denoted as red-dotted lines in Fig 5). The packets are injected

uniformly to every queue with varying rates from 0.05 to

which any queue gets saturated. We observe that the link with

The log function is used to effectively emulate the time scale separation
assumption in a large queue regime which is a standard technique [22], [8].

Fig. 5. Network topology.
Arrows represent communication
links, and red-dotted lines indicate
the message collection structure.

SINR (dB)
Data rate

(units per slot)

(−∞, 10] 0

(10, 20] 1

(20, 30] 2

(30,∞) 3

TABLE I
DATA RATES AS A FUNCTION OF SINR
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Fig. 6. Average queue size of the red-circled link in Fig 5.

red-circled node tends to have the largest queue among all

links, and hence we look at its queue size in the following.

The average queue size of the link with the message drop

probabilities is plotted in Fig 6. We observe that the queueing

performance of LSA algorithm is very sensitive to the message

drop events, and it can be shown in Fig 6-(a) that its queue size

quickly grows even with very small drop probability, where

the performance of RSA algorithm is fairly close to the one

without any message drop event. Fig 6-(b) shows that as the

drop probability increases, the performance of RSA algorithm

also gets worse, however, its improvement is substantial in

comparison to LSA algorithm.

We also look at the impact of using loose bounds, rather than

using the known-tight bound. For this, we intentionally used

large values of cmax
i ∈ [3, . . . , 10] for the bound parameters,

and performed the simulations. Fig 7 plots the ratio of the

measured queue size between RSA and LSA algorithm with

using different bound parameters under the different message

drop regimes (from 0.05 to 0.4). It shows that in both cases of

light and heavy packets arrival intensity, the improvement is

remarkable even with using twice larger bound than the tight

bound when e.g., drop rate is 0.2 (the ratio in this case is 0.85

and 0.78 for the arrival rate 0.2 and 0.4 respectively), and

in general the improvement by RSA algorithm can be seen

substantial unless the bound is too loose.

VII. DISCUSSION

In this section, we discuss the relationship of our proposed

approach with existing solutions from a practical viewpoint.

We remark that our implementation structure is comparable

to those in [2] and [21]. While the goal of achieving the desired

stationary distribution is the same, their implementation is

a little different from ours. Their schemes are close to a
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proactive approach in the following sense. Each node evaluates

the performance objective of others based on its locally stored

variable and prior knowledge on their functionals. Whenever

a node changes its state, it proactively broadcasts (within a

suitably defined local range) to other nodes to convey the new

state, and those local variables can be updated upon receiving

the message. On the other hand, our approach can be seen as

a reactive approach in that whenever a node wants to update

its state, it sends out a request signal to other nodes, and

then those nodes that received the signal reacts to the request

by sending messages containing its functional difference as

described in our algorithm.

We notice that the proactive approach has a few drawbacks.

First, even in the one-hop interference model - a capacity

model that only considers interference from nodes within a

directly communicable range - the earlier mentioned broad-

casting task has to be performed over a two-hop range, except

for some special instances [2]. Also, the condition that each

node has a prior knowledge on the objective function of others

may not be a realistic assumption in practice. In the SINR

model, this condition requires that all pairs of links have

knowledge of the channel gain terms between the transmitter

of their own link and the receiver of their neighboring links,

which is difficult to know a priori.

Regarding the message overhead, we take no position on

one approach being better than the other, as it will greatly

differ depending on the type of network topology and how to

realize those message exchange mechanisms with particular

communication systems. Typically, broadcasting is easier than

receiving different information from different nodes, however,

it has been well known that ensuring the correct reception

of broadcasting is a difficult job, which may incur additional

overhead. Needless to say, doing that with two-hop broadcast-

ing is even more difficult. To avoid this difficulty, [2] and

[21] suggest using out-dated values, i.e., the most recently

known values about the corresponding variables. However,

the mismatch between the local variables and the actual ones

will incur bias to the resulting stationary distribution, and thus

whether it can achieve the same optimality is not clear. This

fact has been neglected in those works.

In contrast, in our approach, in the one-hop interference

model, we only require one-hop information, where its com-

plexity can be robustly handled by the new approach we

introduced in this paper. Furthermore, our algorithm does not

need to know the precise form of the objective functions.

Hence, our implementation approach is advantageous and

should be applicable to communication systems that go even

beyond the SINR model.

VIII. CONCLUSION

In this paper, we investigate important practical considera-

tions and performance issues that arise when the traditional SA

is implemented in wireless networks with imperfect communi-

cations. We recognize that various practical factors including

the inherently noisy nature of wireless communications and

the increasing message complexity in modern communication

technologies can be critical sources that prevent the efficient

realization of SA in general wireless networks. Our simulation

results show that a straightforward solution to bypass this

problem is not practical due to its slow operation speed.

To tackle this problem, we propose a novel approach that

allows the algorithm to operate with only partial observations

on the system performance objective, which helps improve

its computational speeds. We rigorously show that the new

algorithm exhibits the same convergence in probability to the

optimal states under the standard annealing technique.
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APPENDIX

In this appendix, we provide proofs for Proposition 1, 2,

and Theorem 1. To that end, we first write down the transition

probabilities of BSA, LSA and RSA algorithms, respectively

denoted by P
B , P

L, and P
R, to be referred in the proofs.

For notational simplicity, we denote for two configurations

x,x′ ∈ X which differ only at one node i ∈ N , i.e., xi 6= x′
i

and xj = x′
j for all j ∈ N\{i}, that î(x,x′) (or simply î when

its definition is clear) indicates the node with the different

state.

The transition probability of BSA algorithm, PB(x,x′), for

x,x′ ∈ X (x 6= x
′), is

PB(x,x′) = c(x,x′)e−β[−∆(x,x′)]+ , (5)

where ∆(x,x′) =
∑

j∈N
î
∪{î} fj(x

′)− fj(x) and

c(x,x′) =











1
n(|M|−1) ,

if for some i ∈ N , xi = x′
i and,

xj 6= x′
j , ∀j ∈ Ni\{i}

0, if otherwise.

The transition probability of LSA algorithm, PL(x,x′), for

x,x′ ∈ X (x 6= x
′), is

PL(x,x′) = c(x,x′)qî,N
î
e−β[−∆(x,x′)]+ . (6)

The transition probability of RSA algorithm PR(x,x′), for

x,x′ ∈ X (x 6= x
′), is

PR(x,x′) = c(x,x′)
∑

S⊆N
î

qî,Se
−β[−∆[S](x,x

′)]+ (7)

where

∆[S](x,x
′) =

∑

j∈S∪{î}

fj(x
′)− fj(x) +

∑

j∈N
î
\{S}

bîjx
î
,x′

î

.

For all three algorithms, their self transition probabilities

are obtained by PB(x,x) = 1−∑
x
′ 6=x

PB(x,x′) (similarly

for PL and PR), for all x ∈ X .

Proof of Proposition 1.

Proof: Let π
L be the stationary distribution of LSA

algorithm. Then, for any x,x′ ∈ Ω (x 6= x
′), it holds

πL(x)PL(x,x′) = πL(x′)PL(x′,x)

⇔ πL(x)PB(x,x′) = πL(x′)PB(x′,x).

Since π is the unique solution of π
L in the above set of

equations along with the probability constraint,
∑

x
πL(x) =

1, it follows π = π
L.

Proof of Proposition 2.

Proof: Note that for any x,x′ ∈ X in which only one

node state is different, and for any S ⊆ Nî, the following

holds

∆(x,x′) = ∆[N
î
](x,x

′)

=
∑

j∈N
î
∪{î}

fj(x
′
î
,x[−î])− fj(xî,x[−î])

≥
∑

j∈S∪{î}

fj(x
′
î
,x[−î])− fj(xî,x[−î])

+
∑

j∈N
î
\{S}

(

min
x[−i]

fj(x
′
î
,x[−î])−max

x[−î]

fj(xî,x[−î])

)

≥
∑

j∈S∪{î}

fj(x
′
î
,x[−î])− fj(xî,x[−î]) +

∑

j∈N
î
\S

bîjx
î
,x′

î

= ∆[S](x,x
′), (8)

and therefore we have

e−β[−∆[S](x,x
′)]+ ≤ e−β[−∆(x,x′)]+ . (9)

Since qi,Ni
≤ ∑

S⊆Ni
qi,S = 1 holds for all i ∈ N , the

statement follows from the transition probabilitiy of each

algorithm in Eq. (5-7) and the inequality in Eq. (9).

Proof of Theorem 1.

Proof: Our proof for the theorem is based on the tech-

nique introduced in [4], in which the annealing optimality of

the original SA is proven. We first briefly overview the major

steps therein, and apply them to show the optimality of RSA

algorithm.

The authors in [4] consider a class of Markov chains whose

transition probabilities can be written as a form of Eq. (3), in

which the conventional simulated annealing algorithm can be

represented by setting Vij = [f(j)− f(i)]+ and ǫ(t) = e−β(t)

for achieving minimum f(·). For this class of Markov chains,

they define the recurrence order for each state and transition

of the Markov chain as follows.



Definition 3: The order of recurrence of a state i ∈ Ω,

denoted αi, is

αi :=



















−∞, if
∑∞

t=1 µi(t) < ∞,

p−, if p = sup {c ≥ 0 :
∑∞

t=1 ǫ(t)
cµi(t) = ∞}

and
∑∞

t=1 ǫ(t)
pµi(t) < ∞,

p if p = max {c ≥ 0 :
∑∞

t=1 ǫ(t)
cµi(t) = ∞}

where µi(t) = P{X(t) = i} and p is regarded as strictly larger

than p−, i.e., p > p− > p− δ0 for some δ0 > 0. Similarly, the

order of recurrence of the transition from i to j is defined by,

Definition 4: The order of recurrence of the transition from

i to j, denoted αij , is

αij :=



















−∞, if
∑∞

t=1 µij(t) < ∞,

p−, if p = sup {c ≥ 0 :
∑∞

t=1 ǫ(t)
cµij(t) = ∞}

and
∑∞

t=1 ǫ(t)
pµij(t) < ∞,

p if p = max {c ≥ 0 :
∑∞

t=1 ǫ(t)
cµij(t) = ∞}

where µij(t) = P{X(t) = i,X(t+1) = j}. They also defined

ρ, the order of cooling of {ǫ(t)}, as follows.

Definition 5: The order of the cooling schedule {ǫ(t)},

denoted ρ, is defined as

ρ :=



















−∞, if
∑∞

t=1 ǫ(t) < ∞,

p−, if p = sup {c ≥ 0 :
∑∞

t=1 ǫ(t)
c = ∞}

and
∑∞

t=1 ǫ(t)
p < ∞,

p if p = max {c ≥ 0 :
∑∞

t=1 ǫ(t)
c = ∞}

Having defined the above terms, we summarize the main

results established in [4] as well as in [3], [5], which are valid

under the following mild assumptions.

Assumptions

1) d is sufficiently large. In particular, d≥2
∑

(i,j)|Vij<∞Vij .

2) ∃ j ∈ Ni ⇔ ∃ i ∈ Nj ∀i, j ∈ Ω.

Lemma 2: [4], [3], [5] Under the above assumptions, the

followings hold.

1) The relation between αi and αij is

αij = αi − Vij for all i, j ∈ Ω (i 6= j), (10)

2) There is a balance of recurrence orders across every edge

in the graph of the Markov chain such that

max
i∈A,j∈Ac

αij = max
i∈A,j∈Ac

αji for all A ⊆ Ω. (11)

3) {αi} is the unique solution {λi} of

max
i∈A,j∈Ac

λi − Vij = max
i∈A,j∈Ac

λj − Vji for all A ⊆ Ω,

max
i∈Ω

λi = ρ.

4) Recall that d is the rate of the cooling schedule ǫ(t) =
t−1/d, t ≥ 1. It can be shown that

d = max
i∈Ω

αi = ρ, and αi = ρ iff i ∈ Ω∗,

where Ω∗ = {i ∈ Ω : f(i) = minj∈Ω f(j)}.

5) Let Ω† be the set of states of the largest recurrence order,

i.e., Ω† := {i ∈ Ω : αi = maxj∈Ω αj}. Then,

lim
T→∞

1

T

T
∑

t=1

P{X(t) ∈ Ω†} = 1. (12)

Note that the transition probability of RSA algorithm in

Eq. (7) cannot be represent by Eq. (3). To pursue the above

approach to verifying the optimality of RSA algorithm, it is

necessary to consider a more general class of Markov chains

which has the transition probabilities of the form,

pij(t) = cij
∑

m∈Mij

amij ǫ(t)
V m
ij , (13)

where M ij is some finite set associated with the transition

from i to j, i, j ∈ Ω, and amij ∈ (0, 1] is a probability of an

element m ∈ M ij defined over its sample space M ij , and

V m
ij ≥ 0 for all m ∈ M ij . Now the transition probability of

RSA algorithm can be represented by Eq. (13) by replacing

the corresponding terms: Ω ⇔ X , i, j ∈ Ω ⇔ x,x′ ∈ X ,

cij ⇔ c(x,x′), M ij ⇔ S(x,x′) := {S ∈ P(Ni′) : qî,S > 0},

m ∈ M ij ⇔ S ∈ S(x,x′), amij ⇔ qî,S , V m
ij ⇔ V S(x,x′) :=

∆[S](x,x
′), where P(A) is the powerset of a set A. For this

form, we obtain the generalized correspondence of eq. (10) as

stated in the following lemma.

Lemma 3: αij = αi −maxm∈Mij V m
ij , ∀i, j ∈ Ω.

Proof: By the Chapman-Kolmogorov equation, we obtain

µij(t) = cij
∑

m∈Mij

amij ǫ(t)
V m
ij µi(t)

and observe that
∞
∑

t=1

∑

m∈Mij

amij ǫ(t)
c+V m

ij µi(t) = ∞

holds if and only if there exists some m ∈ M ij such that

∞
∑

t=1

ǫ(t)c+V m
ij µi(t) = ∞.

Therefore, we have

sup{c ≥ 0 :
∑∞

t=1

∑

m∈Mij amij ǫ(t)
c+V m

ij µi(t) = ∞}
= sup{c ≥ 0 :

∑∞
t=1 ǫ(t)

c+max
m∈Mij V m

ij µi(t) = ∞}
from which the result follows by the definitions of αi and αij .

Let α(x) and α(x,x′) be the recurrence order of state x and

that of state transition from x to x
′, for x,x′ ∈ Ω (x 6= x

′)
due to the Markov chain induced by BSA Algorithm, and let

α̂(x) and α̂(x,x′) be those of the chain from RSA algorithm,

respectively. In the following lemmas, we verify that all the

recurrence orders for any state and transition are equivalent

between the two algorithms.

In [4], [3], the convergence analysis is only conducted for showing

lim supT→∞
1

T

∑T
t=1

P{X(t) ∈ Ω†} = 1, for a general class of cooling
schedules, however it can be shown that the limit holds for the particular
cooling schedule ǫ(t) = t−1/d [5].



Lemma 4: maxx∈X α̂(x) = ρ = d.

Proof: Note that
∑∞

t=1 ǫ(t)
c < ∞ for c > d and

∑∞
t=1 ǫ(t)

c = ∞ for c ≤ d, and thus by the definition of

ρ, d = ρ. On the other hand,

∞
∑

t=1

ǫ(t)d =
∑

x∈X

(

∞
∑

t=1

ǫ(t)dµx(t)

)

= ∞,

where µx(t) = P{X(t) = x}, implying
∑∞

t=1 ǫ(t)
dµx(t) =

∞ for some x ∈ X . Therefore, maxx∈X α(x) = d, and the

same analysis also applies to α̂(x).
Lemma 5: α(x) = α̂(x), and α(x,x′) = α̂(x,x′), for all

x,x′ ∈ Ω,

Proof: Note that the order balance equation of Eq. (11)

for the BSA algorithm can be written by

max
x∈A,x′∈Ac

α(x,x′) = max
x∈A,x′∈Ac

α(x′,x), ∀A ⊆ X ,

and {α(x)} is the unique solution of {λ(x)} of the equations

max
x∈A,x′∈Ac

λ(x) − V N
î(x,x′) = max

x∈A,x′∈Ac
λ(x′)− V N

î(x′,x),

(14)

for all A ⊆ X along with maxx∈X λ(x) = ρ. On the other

hand, a similar characterization of {α̂(x)} of RSA algorithm

using the order balance equation,

max
x∈A,x′∈Ac

α̂(x,x′) = max
x∈A,x′∈Ac

α̂(x′,x), ∀A ⊆ X ,

can be written (from Lemma 3) as the solution {λ̂(x)} of

max
x∈A,x′∈Ac

(

λ̂(x) − max
S⊆S(x,x′)

V S(x,x′)

)

= max
x∈A,x′∈Ac

(

λ̂(x′)− max
S⊆S(x′,x)

V S(x′,x)

)

, (15)

for all A ⊆ X with maxx∈X λ̂(x) = ρ (due to Lemma 4).

Observe that for any S ⊆ S(x,x′), x,x′ ∈ X (x 6= x
′), it

holds

V N
î(x,x′) = ∆[N

î
](x,x

′) ≥ ∆[S](x,x
′) = V S(x,x′),

where the inequality is from Eq. (8). Since qi,Ni
> 0 for all

i ∈ N , we have

V N
î(x,x′) = max

S∈S(x,x′)
V S(x,x′),

and hence,

α̂(x,x′) = α̂(x) − max
S∈S(x,x′)

V S(x,x′)

= α̂(x) − V N
î(x,x′), (16)

for all x,x′ ∈ X (x 6= x
′), which presents the same forms in

Eq. (14). Therefore, Lemma 2-3) implies that the (unique)

solution for Eq. (15) is identical to that of Eq. (14), i.e.,

α(x) = α̂(x) for all x ∈ X . Also, α(x,x′) = α̂(x,x′) holds

for all x,x′ ∈ Ω (x 6= x
′) from eq. (16).

The result follows from the above lemma and Lemma 2-4)

and 2-5).
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