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Abstract— For many machine learning tasks, the input
data lie on a low-dimensional manifold embedded in a high-
dimensional space and, because of this high-dimensional struc-
ture, most algorithms inefficient. The typical solution is to
reduce the dimension of the input data using a standard
dimension reduction algorithms such as ISOMAP, LAPLACIAN
EIGENMAPS or LLES. This approach, however, does not always
work in practice as these algorithms require that we have
somewhat ideal data. Unfortunately, most data sets either have
missing entries or unacceptably noisy values. That is, real data
are far from ideal and we cannot use these algorithms directly.

In this paper, we focus on the case when we have missing
data. Some techniques, such as matrix completion, can be used
to fill in missing data but these methods do not capture the
non-linear structure of the manifold. Here, we present a new
algorithm MR-MISSING that extends these previous algorithms
and can be used to compute low dimensional representation on
data sets with missing entries. We demonstrate the effectiveness
of our algorithm by running three different experiments. We
visually verify the effectiveness of our algorithm on synthetic
manifolds, we numerically compare our projections against
those computed by first filling in data using nlPCA and mDRUR
on the MNIST data set, and we also show that we can do
classification on MNIST with missing data. We also provide a
theoretical guarantee for MR-MISSING under some simplifying
assumptions.

I. INTRODUCTION

Many real world data sets can be reasonably modeled
as low dimensional manifolds embedded in much higher
dimensional spaces, and for these models, a class of tech-
niques play a crucial role in revealing or learning these
intrinsic manifolds. This class includes ISOMAP [1], Local
Linear Embedding (LLE) [2], HESSIAN-LLE [3], MAXI-
MUM VARIANCE UNFOLDING [4], KNN-DIFFUSION [5],
and LAPLACIAN EIGENMAP [6]. All of these algorithms
have the basic structure shown in Figure 1. Given data,
we compute a distance matrix (alternatively, we are given
a distance matrix), from which we determine neighborhoods
about each data point. Some of these algorithms find the
K closest points to each data point and others determine
the data points in an ε neighborhood about each data point.
Each algorithm then uses this neighborhood information to
compute local Euclidean coordinates in some fashion (i.e.,
to learn the underlying manifold) and, thus, to determine a
low-dimensional representation for the data.

Each of these algorithms assumes that the given or
computed distance matrix adheres to a metric. To see the

Fig. 1: General Manifold learning procedure

importance of using a distance matrix that satisfies a metric
with these algorithms, we show in Figure 2 the impact upon
the manifold returned by ISOMAP when we corrupt or perturb
the distance matrix so that it no longer satisfies a metric. Note
that these algorithms are robust to (small) perturbations in
the data but not in the distances among the data points.
In the top left figure (a), we have the original swissroll
dataset with 2,000 points. It is a two dimensional manifold
embedded in three dimensions. When we run ISOMAP on the
true distance matrix, we see in the upper right figure (b), an
“unrolled” version of the intrinsic manifold. To corrupt the
distance matrix, we add i.i.d. Gaussian noise ∼ N (0, 0.01)
to each non diagonal entry of the distance matrix. We
then replace all negative entries with zero and preserve
symmetry by averaging the corrupted distance matrix with
its transpose. The perturbed distances may not satisfy the
triangle inequality and, hence, the corrupted distances may
not adhere to a metric.

The lower left figure (c) is the embedding from the
corrupted distance matrix. It is considerably different from
the original embedding, points are missing, and there is
no apparent lower dimensional manifold structure at all.
Because the distances do not satisfy a metric, the points
all collapse to one location and cannot be distinguished in
the figure. In the lower right figure (d), we first repair the
corrupted distance matrix, using a metric repair algorithm
from [7], and then embed the data using ISOMAP. The re-
sulting embedding is much closer to the original embedding,
with some minor distortion. Thus, we can see that unless
the distance matrix satisfies a metric, dimension reduction
or manifold embedding algorithms fail catastrophically.
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(a) Original swissroll data set (b) true distance matrix

(c) corrupted distance matrix (d) repaired distance matrix

Fig. 2: (a) The original swissroll data set (2000 points)
and the results from ISOMAP for: (b) the original distance
matrix, (c) the corrupted distance matrix, and (d) the repaired
distance matrix.

A. Problem Set Up

This example illustrates the main problem we address: if
we have either missing data or missing or corrupted entries
in the distance matrix and we assume that the data come
from an intrinsic low dimensional manifold, compute a low
dimensional representation of the imputed or corrected data
set. One such approach for missing data is to complete
the data matrix using a matrix completion algorithm. These
algorithms assume that the data matrix is approximately
low rank and fills in the missing entries accordingly. These
algorithms fit the data to a linear subspace rather than an
intrinsically nonlinear embedding and may miss key features
of the data. Other methods that learn the intrinsic low
dimensional structure in a data set impute missing data values
in the original space but one cannot use other, potentially
better, algorithms for the embeddings. Our method aims to
repair the distance matrix of the data, so as to extend existing
embedding algorithms such as ISOMAP and LAPLACIAN
EIGENMAPS to handle missing data or corrupted distances.

To be precise, let X be the high-dimensional data set
and D the distance or dissimilarity matrix amongst the data
points, and consider the following four problem scenarios:

1) The data set X has corrupted entries,
2) The data set X has missing entries,
3) The dissimilarity matrix D has corrupted entries, or
4) The dissimilarity matrix D has missing entries.

In the first model X has added noise and many of the
traditional algorithms are robust and produce satisfactory
results. Hence, we shall focus on the second scenario where
X has missing entries. The second scenario covers the last
two (as missing data corrupt the distances between points)
and we sketch the applications of our methods to these
scenarios and leave a more in depth analysis of those models
as future work.

B. Previous work

There are two main approaches to filling in missing
manifold data that we summarize below. Both methods
strive to learn, in an unsupervised fashion, a representation
of the data and then to use that learned representation to
fill in the missing values. The first method employs a low-
dimensional representation as an intermediary step in the
overall data representation while the second method directly
learns a low-dimensional representation. We will also discuss
how matrix completion algorithms could be used for model 4

Non-linear Principle Component Analysis (nlPCA) [8].
This method is a non-linear analog to principle component
analysis. The idea is to use a five-layer neural network with
architectural dimensions n × m × d × m × n, where n is
the input dimension, m is usually bigger than n, and d
is the desired dimension of the embedding. We train the
neural network to learn the identity map so that the middle
layer with d neurons is the low-dimensional representation
of the data. To extend to missing data, the network is also
trained to reproduce the input data but during the training
procedure, any gradients that depend on missing values are
disregarded. Then, to fill in the missing data, the data with
missing values is input to the network and the output values
are used to fill in any missing data.

Missing Data Recovery through Unsupervised Regression
(mDRUR) [9]. The second major method is the missing data
recovery through unsupervised learning (mDRUR). Similarly
to the nlPCA algorithm, this algorithm is an extension of a
dimensionality reduction algorithm known as dimensionality
reduction through unsupervised learning (DRUR). Using the
notation of [9], let Y be the high dimensional representation
of the data and X the low dimensional representation. Then
we have two maps f, F such that Y = f(X) and X = F (Y ).
To learn the low-dimensional representation, we minimize

arg min
X,f,F

‖Y −f(X)‖2F+‖X−F (Y )‖2F+λfR(f)+λFR(F )

where R(f) and R(F ) are regularization terms. To fill
in missing data, we first use a linear matrix completion
method to fill in the missing values, then we use a spectral
method to compute X . Finally, we learn the low-dimensional
representation as above and optimize over the missing values
of Y to fill in the missing data.

Both algorithms are primarily dimensionality reduction
algorithms and, as such, we must first fix the lower
dimension and then solve an optimization problem. In most
real world applications we do not know the optimal low
dimension and, hence, in order to fill in the missing data,
we must first find this dimension and then fill in the data,
rather than separating these two tasks. Furthermore, the
imputed values depend on the computed, specific reduced
representation; we cannot avail ourselves of a variety of
dimension reduction algorithms and obtain what we hope
to be a consistent or robust approximation of the missing



values.

Euclidean distance matrix and metric completion. One
might be tempted to restrict our distances to Euclidean
distances as it is well known [10] that Euclidean distance
matrices (with squared Euclidean distance entries) are low
rank matrices with rank at most r + 2 if r is the dimension
of the space in which the points lie. Hence, the problem
of Euclidean matrix completion can be solved using stan-
dard low rank matrix completion algorithms. Additionally,
this specific problem has been further studied with many
successful algorithms in [11], [12], [13].

In some cases we want our original data to follow a non-
Euclidean metric. For example, it is has been shown that
for the MNIST dataset if we use the tangent distance metric
instead of Euclidean, then k nearest neighbor classifiers have
better performance. In this case, if we have the local neigh-
borhood information for the data we can still run ISOMAP
and other various algorithms to get lower dimensional repre-
sentations. Gower [10] showed that these matrices are either
low rank (with the same low rank condition as before) or
have full rank. In the case that they have full rank, we can
no longer use matrix completion algorithms.

Even when we have a low rank matrix, we only know
we can complete these matrices with high probability if
the entries present are sampled according to a certain dis-
tribution. Finally, even if we can successfully apply these
matrix completion algorithms, there are no guarantees that
the resulting distance matrices satisfy a metric.

C. Our approach and contributions

We focus on the second scenario. We separate the problem
into three steps. First we estimate distances between the data
points, we then correct these distances so that they adhere
to a metric, finally we run a suitable dimension reduction
algorithm. We use the Increase Only Metric Repair (IOMR)
algorithm in Gilbert and Jain [7] to repair the inaccurate
distance matrices. As we can see in Figure 1, all of the
dimension reduction algorithms depend on the local distances
and not on the actual data points themselves. Hence, filling
in the missing data is both costly and unnecessary. Instead,
we first estimate the distance matrix from the incomplete
data, then we correct it. This approach has two advantages
over the previous methods

• No parameters: Our algorithm has no parameters that need
tuning. Hence making it faster and easier to train compared
to nlPCA and mDRUR. Additionally, our algorithm is
quadratic is the number of dimensions. Hence, its perfor-
mance scales well with number of dimensions.

• Accuracy: The manner in which we estimate the distances
and then correct them is geared to exactly preserve the
local structure.

Remark 1: For the most general version of scenario three,
fast approximation algorithms for the general metric repair
problem do not currently exists. A class of approximation
algorithms can be found in Gilbert and Sonthalia [14].

The rest of the paper is organized as follows, Section
2 presents background knowledge, Section 3 presents our
algorithms for correcting a corrupted distance matrix so as
to produce an accurate low dimensional embedding of a data
set. We focus specifically on missing data. Section 4 provides
our experimental results.

II. BACKGROUND

A. Manifolds and Geodesic distances

Definition 1: M ⊂ Rn is called a d dimensional manifold
is for all x ∈ M there exists an ε > 0 such that there if
a continuous bijective function f from N = {y ∈ M :
‖x − y‖ < ε} to Rd such that the inverse is continuous as
well.

Intuitively the above definition says that if we look at a
d-dimensional manifold M and if we zoom in close enough
to any point then it looks like we are in Rd. For example
the swiss roll (from the introduction) is a two-dimensional
manifold because near any point it looks like a plane. As
we can see from the definition itself the local structure of
a manifold is important. Hence, all dimensionality reduction
algorithms start by computing the local neighborhood of each
point. This is done in one of two ways:
• determine the k nearest neighbors, or
• compute the neighbors within some distance ε

These local neighborhoods then overlap to describe the
general manifold structure. Hence, having this correct local
structure is crucial for the success of any of the dimension-
ality reduction algorithms.

In this paper we will we focus on using ISOMAP (though
we could have picked any of the other algorithms). For
ISOMAP once we have the graph (i.e., two data points are
adjacent if one is in the local neighborhood of the other)
we then compute the shortest distance (along this graph)
between all the points. This usually done using the Floyd
Warshall algorithm. We store these distances in a matrix D̃.
These distances are known as geodesic distances. They are
the distances we want between our data points in the low
dimensional representation.

B. Multidimensional Scaling

The technique used to go from the inferred distance
matrix D̃ to an actual embedding is called multidimensional
scaling (MDS) and we include this discussion to complete
Section IV. An important point to note is that the points
we recover are not unique, since rotating and translating the
embedding will not change the pairwise distances between
the points.

Suppose we have n by n distance matrix D̃. We want
to find points x1, . . . , xn in some d dimensional Euclidean
space such that dist(xi, xj) = D̃ij = D̃ji. Let us define

S = −1

2

(
I − 1n1Tn

n

)
D̃ ◦ D̃

(
I − 1n1Tn

n

)
where 1n is the n dimensional vector of all 1s and ◦ is
the Hadamard product, which we multiply the two matrices



coordinate wise.. Then using the fact that the points are trans-
lation invariant (we can assume the centroid of x1, . . . , xn is
the origin) using which it can be shown that Sij would then
be xi · xj . This matrix is now positive semi-definite, hence
has an eigenvalue decomposition

S = UΛUT

Where Λ is a diagonal matrix of the eigenvalues. If we
then define X = UΛ0.5. Then this is our embedding. We
get a d dimensional embedding by using only the biggest d
eigenvalues.

C. Metric Repair

Gilbert and Jain in [7] defined the sparse metric repair
problem. They define Symn(R≥0) to be the set of posi-
tive real symmetric matrices. More generally, let us define
Symn(S) to be the set of symmetric matrices with entries
drawn from S. Then, for any matrix D ∈ Symn(R≥0) we
say it satisfies a metric if the diagonal of D is all 0s and for
all i, j, k we have that Dij ≤ Dik +Dkj .

The sparse metric repair problem seeks a solution to the
following optimization problem: Given D ∈ Symn(R≥0) and
S ⊂ R

argmin‖P‖0 s.t. D + P is a metric and P ∈ Symn(S),
(1)

where ‖·‖p is the vector `0 is the pseudonorm that counts the
number of non-zero entries. In [7], they define three variants
of the corresponding to three different: S = R≤0 decrease
only metric repair (DOMR), S = R≥0 increase only metric
repair (IOMR), and S = R, which is simply called metric
repair or MR. In general, for any given set S we shall refer
to problem as MR(S)

For the rest of paper we will focus on the increase only
case and use the following algorithm from [7]:

Algorithm 1 IOMR Fixed

Require: D ∈ Symn(R≥0)
1: function IOMR-FIXED(D)
2: D̂ = D
3: for k ← 1 to n do
4: for i← 1 to n do
5: D̂ik = max(D̂ik,maxj<i(D̂ij − D̂jk))

6: return D̂ −D

While Gilbert and Jain showed that IOMR-FIXED worked
empirically, they could not provide any guarantees on its
performance nor did they demonstrate how it could be used
for actual applications. Gilbert and Sonthalia [14] provides
a more in-depth analysis of a generalized problem. One of
their results is to show that the problem of increase only
metric repair is NP-Hard for even simple sets S. They also
provide several approximation algorithms for this problem
and more general variants.

As it was noted in the [7], one could relax Equation (1) to
a convex optimization problem by minimizing ‖P‖1 instead
of ‖P‖0. Gilbert and Jain used various different convex

optimization methods, and while these methods produce
satisfactory results, they were extremely slow. Hence, we
stick with IOMR-FIXED. The speed of the optimization
algorithms will not scale well with the number of data points
as that the output solution D′ = D+P needs to be a metric.
In particular, for any i, j, k we need the entries for D′ to
satisfy the triangle inequality. Thus, if we have n data points,
we have O(n3) constraints. Even for simple applications
where we have 1000 data points, the optimization problem
has O(109) constraints.

III. METRIC REPAIR ON MANIFOLDS

In our model scenario, we are given an incomplete data
set X and a matrix Q that specifies the support of the known
entries. We present an algorithm to compute a (potentially
corrupted) distance matrix from the incomplete data and then
use metric repair to correct the perturbed distances. The idea
is to ignore missing entries when calculating the distances
between two points as in [15]. Thus, we have the following
algorithm.

Algorithm 2 MR-missing

Require: X Input data, Q support of the data (Qij = 1 if
and only if Xij is present. Qij = 0 otherwise)

1: function MR-MISSING(X,Q)
2: D = zeros(n, n)
3: for i← 1 to n do
4: for j ← 1 to n do
5: Dij =

(∑n
k=1Qik ·Qjk(Xik −Xjk)2

)1/2
6: P = IOMR-Fixed(D)
7: ISOMAP(D + P )

As we will see in Section IV, this algorithm works well in
practice and, in this section, we provide theoretical analysis
of its performance in a model setting. Before doing so, let us
develop some intuition about the algorithm. To analyze how
well the algorithm performs, supposed we had a probabilistic
model with the following two assumptions:
1) if two data points are far apart, then our estimated

distance is small with low probability; and,
2) if two data points are far and our estimated distance

is small, then, with high probability, we increase this
distance during metric repair.

Assuming the above two assumptions hold, we argue that
MR-MISSING maintains the local structure of the data.
When we compute the distance between two data points
so as to ignore missing entries, the estimated distance is
smaller than the true distance. Thus, if two points are initially
close, then they remain close together. This is beneficial since
the crucial structure for all manifold learning algorithms is
the local distances. It could happen, that because data are
missing, two points x, y that were not close together initially
have small inferred distance. Then, by assumption (1), this
would happen with small probability and, by assumption (2),
we would fix this distance with high probability. Finally,
since the metric has been repaired and we have, with high



probability preserved the local structure of the data set,
ISOMAP produces an embedding consistent with that of the
full data set. That is, with high probability, the algorithm
preserves the local structures and guarantees that all the
distances adhere to a metric, and we conclude the low di-
mensional embeddings calculated with this repaired distance
matrix to preserve most of the manifold structure of the data.

A. Theory Result

There are two steps to our algorithm. The first step is es-
timating distances between points with missing coordinates.
The second is increasing these distances so that the distances
adhere to a metric. In this subsection, we are going to analyze
the effectiveness of MR-MISSING by showing that in the
following model if two points are well separated then the
distance estimated by step 1 is large with high probability.

In this model our data consists of two Gaussians clusters
in Rn with means µ1, µ2 ∈ R (all coordinates for a data
point from one cluster have the same mean) and covariances
Σ1 = Σ2 = 0.5In, where In is the n dimensional identity
matrix.

We assume that, for any data point x, each of its n co-
ordinates is present independently with probability p. Under
these conditions, we want to show that with high probability
our algorithm preserves local neighborhoods.

For notational connivence let us define dp(x, y) to be
the distance between x, y estimated by step 1 of MR-
MISSING when each coordinate is present independently
with probability p.

Before we can state and prove our result we need a few
lemmas first

Lemma 1 (Birgé 2001, [16]): For all D ≥ 1, if X =

Z2
1 + . . . + Z2

D, where Zi ∼ N (µi, 1), and λ =

D∑
i=1

µ2
i ,

then, all 0 < c < D + λ, we have that

Pr[X ≤ c] ≤ e−
(D+λ−c)2
4(D+2λ) .

Lemma 2 (Hoeffding’s Inequality): If we have n i.i.d.
variables X1, . . . , Xn such that Xi = 1 with probability p
and Xi = 0 with probability 1 − p, then, for all ε > 0, we
have that

Pr

[∣∣∣∣∣
n∑
i=1

Xi − pn

∣∣∣∣∣ ≤ γn
]
≥ 1− 2e−2γ

2n.

Lemma 1 allows us to bound the tail of a non-central χ-
squared distribution and Lemma 2 allows us to bound the
probability that we have too much data missing. Combining
these two Lemmas, we have the following theorem.

Theorem 1: Suppose X ∼ N (µ11, 0.5I) and Y ∼
N (µ21, 0.5I) are two points in Rn such that each coordinate
of X,Y is missing with probability p. If µ = µ1 − µ2 and
q = p2, then, for all q(1 + µ2) > ε > 0 and q(1+µ2)−ε

(1+µ2 >
γ > 0, we have that

Pr[dp(x, y) < εn] ≤ e−2γ
2n +

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

Proof: Let Z = X − Y . Then Z1, . . . , Zn are i.i.d
Gaussian random variables with mean µ = µ1 − µ2 and
variance 1. We know from MR-MISSING that we use the
entry Zi to calculate the distance between X,Y if and only
if both Xi and Yi are present. This happens with probability
p2, which we define as q = p2. Thus, we have the entry Zi
with probability q.

Let q(1 + µ2) > ε > 0. We want to show that the
probability that the distance calculated by step 1 of MR-
MISSING is greater than ε is small. To do this, we use
Hoeffding’s inequality to divide into two cases, one in which
we observe a large number of coordinates and one a few
coordinates. We shall see that the case when we observe a
few coordinates occurs with low probability and we obtain
a bound on the distance. We will then see that for the
case where we see a large number of coordinates, then the
distance is large with high probability.

Let 0 < γ <
q(1 + µ2)− ε

(1 + µ2)
. Then, by definition of ε, we

see that q > γ > 0. Let K be the number of entries we
observe and, by Lemma 2, we have that

Pr[K ≤ (q − γ)n] ≤ e−2γ
2n.

For notational convenience, let D = (q − γ)n and consider
two cases.

Case 1: Suppose K ≤ D. That is, we observe fewer than
D entries. Then, by Hoeffding’s Inequality, we know that
this happens with probability at most e−2γ

2n.
Thus we have that

Pr[dp(x, y) < εn|K ≤ D] Pr[K ≤ D] ≤ e−2γ
2n

Case 2: Suppose K ≥ D. That is, we observe a large
number of entries. Let us condition on the actual value of
K. Suppose that K = k and we have observed entries
Zi1 , . . . , Zik . We know these entries are i.i.d. with mean µ
and we want to bound

pk := Pr

 k∑
j=1

Z2
ij ≤ εn

 .
In this case we see that the overall probability that we

have a small distance, given that K ≥ D, is
n∑

k=D

Pr[K = k]pk.

The next thing to observe is that pk is monotone decreasing
in k because each Zi is non-negative with non-zero mean.
Thus, we have the following upper bound

Pr[dp(x, y) < εn|K ≥ D] ≤
n∑

k=D

Pr[K = k]pk

≤
n∑

k=D

Pr[K = k]pD

≤ pD.



Now, we can use our tail bound for the χ-squared distri-
bution with c = εn, D = (q− γ)n, and λ = Dµ2. Thus, we
have

pD ≤ e
− ((q−γ)n(1+µ2)−εn)2

4(q−γ)n(1+2µ2)

=

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

Combining both cases, we see that the probability that the
distance calculated is less than εn is at most

Pr[dp(x, y) < εn] ≤ e−2γ
2n +

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

Let us take a closer look at the effect of the various
parameters on the above probability:
• The dimension n of the data: As n increases, we have

an exponential decrease in the probability that two points
from the two Gaussian clouds have distance smaller than
εn. Thus, we expect our algorithm to work better for high
dimensional data.

• The mean squared distance between the clusters µ2n: As
µ2 increases (i.e., as the data are better separated), the
probability that they have small distance in the presence
of missing data gets smaller. This also allows for a wider
range of ε and γ.

• The probability of a coordinate being present p: First, we
note that as p increases, q increases. Then, as q increases
(i.e., we have more data present), the probability that two
points from the two Gaussian clouds have distance smaller
than εn decreases. Additionally, for all q > 0, we have a
feasible range for ε. Thus, for any percentage of missing
data, if we have enough data points, we can use MR-
MISSING for dimensionality reduction.
The final parameter γ has a range of values it can take on

and we could optimize over it to get the smallest possible
bound.

Finally, as noted before, our method of estimating dis-
tances only decreases distances. Thus, points that were close
together stay close together. Now by the above the theorem
we see that if points were initially far apart, then our
method of estimating distances keeps them far apart with
high probability.

Then, since our method of repairing the metric only
increases the distance, we see that we maintain the local
neighborhood structure with high probability, in this data
model.

IV. EXPERIMENTS

Let us now verify that our algorithm does will in practice
through a variety of experiments. Dimensionality reduction
and clustering algorithms are normally used when we have
unlabeled date (i.e., in the regime of unsupervised learning).
In this case figuring out the ground truth can be difficult.
Hence, there are no natural numerical metrics on unlabeled
data that we can readily use to evaluate our algorithm.
Hence, decided to test the effectiveness of our algorithm

on both unlabeled and labeled data in a variety of different
experiments.

A. Unlabeled Data

For unlabeled data, we tested the performance of MR-
MISSING on synthetic manifolds visually as well as com-
pared our algorithms against nlPCA and mDRUR numeri-
cally.

1) Synthetic Manifolds: Let us first define the six mani-
folds we tested our algorithm on. For notational convenience,
let U(n,m) be an n×m matrix with entries drawn uniformly
at random from [0, 1] and let N(n,m) be an n×m matrix
with entries are drawn from a standard Gaussian distribu-
tion. Finally, we shall write f.(X) to represent applying f
coordinate wise to all elements of X . We generated the six
synthetic manifolds as follows:
1) M1 = cos .(U(2000, 2) ·N(2, 30))
2) M2 = cos .(sigmoid.(U(2000, 2)·N(2, 30))·N(30, 300))
3) M3 is a three dimensional manifold where x, y are drawn

from a standard normal and z = e−
√
x2+y2

4) M4 is a three dimensional manifold where x, y are drawn
from a uniform on [0, 1]2 and z = 20e(−(x

2+y2))

5) M5 = cos .(MSwiss Roll). Where MSwiss Roll is the manifold
used in the introduction.

6) M6 is closed helical curve in three dimensions. Where
u is uniformly drawn from [0, 4π], and v = 0.5u. Then
x = (3 + cos(u)) cos(v), y = (3 + cos(u)) sin(v), and
z = sin(u)

In each case we start with 2000 data points on the high di-
mensional representations of the six manifolds M1, . . . ,M6.
We then compute low dimensional representations using the
full data set and using data set with missing entries as
follows. We ran ISOMAP with the true distance matrices
to get the low dimensional projections, as depicted on the
left hand side of Figures 3 and 4. We then picked 40% on
the entries uniformly at random, declared these entries to
be missing, and used MR-MISSING to get the projections
depicted on right of Figures 3 and 4. We used the same
ISOMAP parameters across both algorithms. We then com-
pared how there projections looked visually. In most cases
our algorithm did well in preserving the general structure of
the low dimensional projection as can be seen in Figures 3
and 4.

In each case, we can see that MR-MISSING does well at
preserving not only the general shape of the low dimensional,
but also in maintaining the relative ordering of the data
points with some minor distortion. Therefore, it is also useful
for applications that use these projections for clustering and
classification. We test this in the next.

2) MR-missing vs nlPCA vs mDRUR: We compare MR-
MISSING against Non Linear PCA (nlPCA) and Missing
Data Recovery Through Unsupervised Regression (mDRUR)
on the MNIST data set. nlPCA and mDRUR are both
methods to complete missing data on a manifold, whereas
our algorithm is a method to estimate and correct distances
so that we can use dimensionality reduction algorithms on
data sets with missing entries. So, we must compare all



(a) M1 with full data (b) M1 with missing data

(c) M2 with full data (d) M2 with missing data

(e) M3 with full data (f) M3 with missing data

Fig. 3: The two-dimensional embeddings produced by
ISOMAP with complete data (left) versus the two-
dimensional embedding produced by ISOMAP where 40%
of the data is missing and we use MR-MISSING to correct
the distance matrix for the manifolds M1,M2,M3 (right).

of these algorithms on low dimensional representations. To
that end, for the nlPCA and mDRUR algorithm, we first
filled in missing data in the MNIST data set and then used
ISOMAP to determine the low dimensional projection. To
quantify how well these representations do we compared
these representations to the low dimensional representation
computed by using ISOMAP with the complete data set.
We kept the parameters for ISOMAP fixed across all four
projections.

We compared these projections in the following manner.
Let P be the ground truth projection and P̂ the projection
computed by any algorithm on the data set with missing
entries. We first aligned the two projections, using the
Procrustes method because the representation returned by
Multidimensional Scaling is unique only up to rotation
and translation. Additionally, since we care only about the
relative positions of the points and not the magnitude of the
distances between them, we also allowed for scaling. That
is, to ascertain the quality of the projection P̂ , we want to
find

argminQ,α,µ‖X − αY Q− 1mµ
t‖F

where X is the data matrix that we are trying to align Y with.
Here, each row is a data point, α is the scaling constant, Q

(a) M4 with full data (b) M4 with missing data

(c) M5 with full Data (d) M5 with missing Data

(e) M6 with full data (f) M6 with missing data

Fig. 4: The two-dimensional embeddings produced by
ISOMAP with complete data (left) versus the two-
dimensional embedding produced by ISOMAP where 40%
of the data is missing and we use MR-MISSING to correct
the distance matrix for the manifolds M4,M5,M6 (right).

is our orthogonal rotation matrix and µ is our translational
vector and 1m is the vector of all ones in m dimensions.

This problem has a closed form solution in terms of the
SVD decomposition of X . Finally, if we let P̃ be our new
scaled, rotated, and translated projection that best aligns with
the ground truth projection P , then we calculate the relative
error between the projections as

‖P − P̃‖F
‖P‖F

.

The data set we used is the first 1000 images of the digit
0,1,2,3,4 from MNIST. For nlPCA we used a 784 × 800 ×
12×800×784 structure. For mDRUR we initially filled in the
matrix using the singular value projection method. We then
calculated an initial 12 dimensional low representation using
LAPLACIAN EIGENMAPS. We can see the relative errors in
Table 1.

We can see that in all cases mDRUR does the worst so
we will focus on comparing MR-MISSING versus nlPCA.
When we have 40% missing data MR-MISSING does better
than the nlPCA version in all cases. For 50% missing we
see that nlPCA does better or as well in some cases with
MR-MISSING still doing better in a majority of the cases.
For 60% missing the algorithms have similar results and



Algorithm % Missing 2D 3D 4D 10D 12D 20D 50D 100D
nlPCA 40 0.363 0.350 0.385 0.404 0.451 0.514 0.623 0.686

mDRUR 40 0.369 0.363 0.359 0.420 0.427 0.505 0.630 0.717
MR-Missing 40 0.291 0.274 0.263 0.339 0.359 0.438 0.572 0.658

nlPCA 50 0.324 0.330 0.317 0.394 0.441 0.506 0.621 0.685
mDRUR 50 0.497 0.505 0.471 0.518 0.542 0.587 0.707 0.777

MR-Missing 50 0.323 0.317 0.328 0.393 0.417 0.482 0.615 0.707
nlPCA 60 0.366 0.365 0.399 0.405 0.441 0.520 0.635 0.696

mDRUR 60 0.595 0.595 0.573 0.654 0.667 0.712 0.802 0.849
MR-Missing 60 0.369 0.370 0.376 0.436 0.448 0.505 0.653 0.741

nlPCA 70 0.373 0.373 0.391 0.432 0.465 0.533 0.643 0.706
mDRUR 70 0.924 0.874 0.820 0.825 0.830 0.854 0.898 0.920

MR-Missing 70 0.484 0.491 0.595 0.498 0.510 0.573 0.697 0.784

TABLE I: Table comparing the relative error of the projection of MNIST data obtained via NLPCA vs mDRUR vs MR-
missing for various different dimensions and percentage of data missing

nlPCA does better in the case of 70% missing data. Thus,
MR-MISSING does better for smaller percentage of missing
data while for higher percentage of missing data nlPCA
does better. Additionally we can see that as the dimension
increases both methods have worse errors. We posit that this
occurs because to compute a rank k projection P (P̂ , P̃ )
we are using the first k singular values of the distance
matrix computed by ISOMAP (see section 1B). Hence our
estimation the distance matrix does better at preserving the
larger singular values as compared to the smaller values.

Let us also take a closer look at what our algorithm does
in the case of 70% missing data. See the two dimensional
representations shown in Figure 5.

(a) ISOMAP with actual distances (b) ISOMAP with repaired distances

Fig. 5: Two-dimensional projections of the first 1000 images
of the digits 0,1,2,3,4 from MNIST using ISOMAP with
true distance and ISOMAP with distance obtained from MR-
MISSING when 70% of the data is missing.

We see that we have a different looking projection, but the
projection still does well in maintaining the clustering of the
data, as we predicted theoretically in Section 3. In the next
subsection, we test the effectiveness of these computed low
dimensional representations for classification.

B. Labeled Data

One of the main reasons to find a lower dimensional data
representation is to efficiently carry out standard machine
learning tasks, such as classification. In this subsection, we
test the usefulness of the low dimensional representations
produced by MR-MISSING for classification. We calculate
a 100-dimensional representation of 500 images of each

digit from MNIST. This is our training set. We then used
the equation from [17] to calculate the projections for an
additional 100 images of each digit. This is our test set.
Then, for classification we trained an SVM (Kernel: RBF,
C = 200, γ = 0.0000002) for classification. We then
obtained the following classification accuracy for various
amounts of missing data shown in Table 2. We also ran
this classifier with no missing data as a benchmark. As we
expect, with missing data, we do not have as high accuracy
as we do with complete data, but from our experiments we
see that even in the presence of missing data, ISOMAP with
MR-MISSING produces embeddings on which we still have
reasonably high accuracy. Particularly in the cases of 40%
and 50% missing data, we have accuracy of over 90% and
the accuracy does not drop off drastically until we get to
80% missing data.

% missing 0 40 50 60 70 80 90
Accuracy 0.94 0.91 0.90 0.86 0.77 0.20 0.10

TABLE II: Table showing the accuracy of an SVM trained
on the low dimensional projections produced by MR

It is important to note that both the test and the training
set had data points missing. We see that MR-MISSING does
a good job of maintaining the original clusters of the data.

V. CONCLUSION AND FUTURE WORK

As we can see MR-MISSING has excellent experimental
results. That is, MR-MISSING is a method by which we
can use traditional dimensionality reduction algorithms in
the presence of missing data. While we have some theoretical
justification for this observed performance, more work needs
to be done in exploring the effectiveness of our method of
estimating distances in more general scenarios.

Additionally, we did not consider in a detailed fashion
other corrupted data or distance models. One approach to
metric completion (model scenario 4) is to take the given
distances, treat these as edges on a graph, and run APSP on
this graph to fill in the missing distances. It is possible that
APSP modifies some of the given distance information while
also filling in the missing values. Thus, a natural question



is are there conditions on the given data that guarantee that
an APSP algorithm will not change the given data while
simultaneously repairing those that are missing? Gilbert and
Sonthalia [14] provide some analysis which suggests a more
general version of metric repair may be applied to the metric
problem.

Theorem 2: (Gilbert and Sonthalia [14]) Suppose G is a
weighted chordal graph such that no three cycle is broken.
Then if we run APSP on this graph, the shortest path between
any two adjacent vertices, is the edge connecting them.

Corollary 1: (Gilbert and Sonthalia [14]) If the given
distances form a graph G, where G is a weighted chordal
graph such that no 3 cycle is broken, then this partial distance
information can be completed into a metric.

The condition that the given data satisfy a chordal graph
appears in Positive Semi-Definite matrix completion and
Euclidean distance matrix completion as well. While the first
theorem tells us when we can use APSP to complete a metric,
it doesn’t tell us what properties this new metric satisfies.
Hence, the problem of completing a distance matrix for a
general metric warrants further investigation.

In the model scenario 3, when we have a corrupted
distance matrix, we may not always want to increase dis-
tances. In some cases we might want to decrease distances.
Hence, we would need a general metric repair algorithm.
Fan, et al. [18] present an algorithm that runs in θ(n6) and
Gilbert and Sonthalia [14] present an alternative algorithm
that runs in O(n5). Both of these algorithms are impractical
and cannot be used on large data sets. Developing faster
algorithms for general metric repair and ascertaining the
usefulness of such methods for corrupted distance matrices
are two avenues for future work.
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