
ar
X

iv
:1

81
0.

04
23

0v
1

 [
cs

.I
T

]
 9

 O
ct

 2
01

8

Capacity of Private Linear Computation for Coded

Databases

Sarah A. Obead†, Hsuan-Yin Lin‡, Eirik Rosnes‡, and Jörg Kliewer†
†Helen and John C. Hartmann Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey 07102, USA
‡Simula UiB, N–5020 Bergen, Norway

Abstract—We consider the problem of private linear compu-
tation (PLC) in a distributed storage system. In PLC, a user
wishes to compute a linear combination of f messages stored in
noncolluding databases while revealing no information about the
coefficients of the desired linear combination to the databases.
In extension of our previous work we employ linear codes to
encode the information on the databases. We show that the PLC
capacity, which is the ratio of the desired linear function size
and the total amount of downloaded information, matches the
maximum distance separable (MDS) coded capacity of private
information retrieval for a large class of linear codes that includes
MDS codes. In particular, the proposed converse is valid for any
number of messages and linear combinations, and the capacity
expression depends on the rank of the coefficient matrix obtained
from all linear combinations.

I. INTRODUCTION

Private information retrieval (PIR) from public databases

has been the focus of attention for several decades in the

computer science community (see, e.g., [1], [2]). Recently,

the aspect of minimizing the communication cost, e.g., the

required rate or bandwidth of privately querying the databases

with the desired requests and downloading the corresponding

information from the databases has in particular been of

interest also in the information theory and coding commu-

nities (see, e.g., [3]–[10]). Those settings primarily focus on

distributed storage systems (DSSs), where data is encoded by

a linear code and then stored across several databases.

A recently proposed generalization of the PIR problem

[11]–[15] addresses the private computation (PC) of functions

of these messages. In PC a user has access to a given number

of databases and intends to compute a function of messages

stored in these databases. This function is kept private from the

databases, as they may be under the control of an adversary.

In [11], [12], the authors consider that the data is replicated

at each database, which are assumed to be noncolluding.

Both works characterize the fundamental information-theoretic

communication overhead needed to privately compute a given

linear function, called private linear computation (PLC), and

specify the corresponding capacity and achievable rates as

a function of the number of messages and the number of

databases, respectively. Interestingly, the obtained PLC ca-

pacity is equal to the PIR capacity of [6]. The extension

to the coded case is addressed in [13], [14]. In [13], a PC

This work is supported by US NSF grant CNS-1526547 and the Research
Council of Norway (grant 240985/F20).

scheme for polynomial functions of the data over t colluding

databases is constructed by generalizing the star-product PIR

scheme of [9]. Specifically, for systematically coded storage,

this scheme considers functions that are polynomials of fixed

degree g, and achieves a rate matching the best asymptotic

rate (when the number of messages goes to infinity) of coded

PIR R = 1 − γc for g = t = 1 (the case of linear function

retrieval and noncolluding databases), where γc denotes the

code rate. In our previous work [14], we consider maximum

distance separable (MDS) coded storage and the computation

of linear message functions. The presented scheme is able to

achieve the MDS-coded PIR capacity in [8], referred to as the

MDS-PIR capacity in the sequel, and strictly generalizes the

achievable schemes in [11], [12].

On the other hand, for the case of noncolluding databases,

a PIR protocol for a DSS where data is stored using a

non-MDS linear code, is proposed in [10]. The protocol is

shown to achieve the asymptotic MDS-PIR capacity for several

example codes. In [16], [17], this approach is extended to

colluding databases and it is proved that both the asymptotic

and the nonasymptotic MDS-PIR capacity can be achieved

for a large class of linear codes in the noncolluding case.

For noncolluding databases, the first family of non-MDS

codes for which the PIR capacity is known is found in [18],

[19]. Further, PIR on linearly-coded databases for the case of

colluding databases is also addressed in [5], [9], [20]. For the

PLC case however, capacity results for arbitrary linear codes

have not been addressed so far in the open literature to the

best of our knowledge.

In this work, we intend to fill this void and propose an

extension of our previous works in [14] and [17] to PLC for

arbitrary linear codes with noncolluding databases. Surpris-

ingly, we show that the PLC capacity for a large class of linear

codes matches the MDS-PIR capacity when a user wishes

to compute an arbitrary linear combination of f independent

equal-sized messages over some finite field Fq , distributed

over n noncolluding linearly-coded databases. In particular, by

extending our previous work [14] where only achievable rates

are stated, we also adapt the converse proof of [19, Thm. 4] to

the PLC problem in this paper. In contrast to [12], our converse

is valid for any number of messages f and any number of

desired linear combinations µ, and our capacity result depends

on the rank of the coefficient matrix obtained from all µ linear

combinations.

http://arxiv.org/abs/1810.04230v1

II. DEFINITIONS AND PROBLEM STATEMENT

A. Notation and Definitions

We denote by N the set of all positive integers and for

some a, b ∈ N, a ≤ b, [a : b] , {a, a+1, . . . , b}. Random and

deterministic quantities are carefully distinguished as follows.

A random variable is denoted by a capital Roman letter, e.g.,

X , while its realization is denoted by the corresponding small

Roman letter, e.g., x; vectors are boldfaced, e.g., X denotes a

random vector and x denotes a deterministic vector; random

matrices are represented by bold sans serif letters, e.g., X, and

X represents its realization. In addition, sets are denoted by

calligraphic upper case letters, e.g., X , and X c denotes the

complement of a set X in a universe set. For a given index

set S, we also write X
S and YS to represent

{
X

(v) : v ∈ S
}

and
{
Yj : j ∈ S

}
, respectively. Furthermore, some constants

are also depicted by Greek letters or a special font, e.g., X.

We denote a submatrix of X that is restricted in columns by

the set I by X|I . The function H(·) represents the entropy of

its argument and I(X ;Y) denotes the mutual information of

the random variables X , Y . (·)T denotes the transpose of its

argument, while rank(V) denotes the rank of a matrix V. We

use the customary code parameters [n, k] to denote a code C

over the finite field Fq of blocklength n and dimension k. A

generator matrix of C is denoted by G
C . A set of coordinates

of C , I ⊆ [1 : n], of size k is said to be an information set if

and only if GC |I is invertible. The function χ(x) denotes the

support of a vector x.

B. System Model

The PLC problem for coded DSSs is described as follows.

We consider a DSS that stores f messages W
(1), . . . ,W(f),

where each message W
(m) =

(
W

(m)
i,j

)
, m ∈ [1 : f], can be

seen as a random matrix of size β× k over Fq with β, k ∈ N.

Each message is encoded using an [n, k] code as follows. Let

W
(m)
i =

(
W

(m)
i,1 , . . . ,W

(m)
i,k

)
, i ∈ [1 : β], be a message vector

corresponding to the i-th row of W
(m)

. Each W
(m)
i is encoded

by an [n, k] code C over Fq into a length-n codeword C
(m)
i =

(
C

(m)
i,1 , . . . , C

(m)
i,n

)
. The βf generated codewords C

(m)
i are

then arranged in the array C =
(
(C(1))T| . . . |(C(f))T

)
T

of

dimensions βf × n, where C
(m) =

(
(C

(m)
1)T| . . . |(C

(m)
β)T

)
T

.

The code symbols C
(m)
1,j , . . . , C

(m)
β,j , m ∈ [1 : f], for all f

messages are stored on the j-th database, j ∈ [1 : n].
Let L , β · k. Then, each message W

(m), m ∈ [1 : f],
can also be seen as a random vector variable W

(m) =
(W

(m)
1 , . . . ,W

(m)
L

) of L symbols that are chosen indepen-

dently and uniformly at random from Fq. Thus,

H

(

W
(m)

)

= L, ∀m ∈ [1 : f],

H

(

W
(1), ...,W(f)

)

= fL (in q-ary units).

C. Private Linear Computation for Coded DSSs

We consider the case where no set of databases can collude.

A user wishes to privately compute exactly one linear function

from the µ candidate linear functions X
(1), . . . ,X(µ) from

the coded DSS, where X
(v) =

(
X

(v)
1 , . . . , X

(v)
L

)
. The µ-tuple

(
X

(1)
l , . . . , X

(µ)
l

)
T

, ∀ l ∈ [1 : L], is mapped by a deterministic

matrix V of size µ× f over Fq by







X
(1)
l
...

X
(µ)
l







= Vµ×f







W
(1)
l
...

W
(f)
l






. (1)

Hence, the user privately generates an index v ∈ [1 : µ] and

wishes to compute the v-th linear function while keeping the

index v private from each database. Here, we also assume that

the rank of V is equal to rank(V) = r ≤ min{µ, f} and the

indices corresponding to a basis for the row space of V are

denoted by the set L , {ℓ1, . . . , ℓr} ⊆ [1 : µ].

In order to retrieve the linear function X
(v) from the coded

DSS, v ∈ [1 : µ], the user sends a query Q
(v)
j over Fq to the j-

th database for all j ∈ [1 : n]. Since the queries are generated

by the user without any prior knowledge of the realizations of

the candidate linear functions, the queries are independent of

the linear functions. In other words, we have

I

(

X
(1), . . . ,X(µ) ;Q

(v)
1 , . . . , Q(v)

n

)

= 0, ∀ v ∈ [1 : µ].

In response to the received query, database j sends the answer

A
(v)
j back to the user. A

(v)
j is a deterministic function of Q

(v)
j

and the data stored in the database. Thus, ∀ v ∈ [1 : µ],

H

(

A
(v)
j

∣
∣
∣Q

(v)
j ,C[1:f]

)

= 0, ∀ j ∈ [1 : n].

Next, we define a PLC protocol for coded DSSs as follows.

Definition 1: Consider a DSS with n noncolluding databases

storing f messages using an [n, k] code. The user wishes to

retrieve the v-th linear function X
(v), v ∈ [1 : µ], from the

available information Q
(v)
j and A

(v)
j , j ∈ [1 : n]. For a PLC

protocol, the following conditions must be satisfied ∀ v ∈ [1 :
µ],

[Privacy]

I
(
v ;Q

(v)
j , A

(v)
j ,X(1), . . . ,X(µ)

)
= 0, ∀ j ∈ [1 : n],

[Recovery]

H
(
X

(v)
∣
∣A

(v)
1 , . . . , A(v)

n , Q
(v)
1 , . . . , Q(v)

n

)
= 0.

To measure the efficiency of a PLC protocol, we consider

the required number of downloaded symbols for retrieving the

L symbols of the candidate linear function.

Definition 2 (PLC Rate and Capacity for Coded DSSs): The

rate of a PLC protocol, denoted by R, is the ratio of the desired

linear function size L to the total required download cost D,

i.e.,

R ,
L

D
.

The PLC capacity CPLC is the maximum possible PLC rate

over all possible PLC protocols for a given [n, k] storage code.

D. MDS-PIR Capacity-Achieving Codes

In [16], [17], a PIR protocol for any linearly-coded DSS that

uses an [n, k] code to store f messages, named Protocol 1,

is proposed. The corresponding PIR rate depends on the

following property of the underlying storage code C .

Definition 3: Let C be an arbitrary [n, k] code. A ν × n

binary matrix Λκ,ν(C) is said to be a PIR achievable rate

matrix for C if the following conditions are satisfied.

1) The Hamming weight of each column of Λκ,ν is κ, and

2) for each matrix row λi, i ∈ [1 : ν], χ(λi) always

contains an information set.

In other words, each coordinate j of C , j ∈ [1 : n], appears

exactly κ times in {χ(λi)}i∈[1:ν], and every set χ(λi) contains

an information set.

In [16], [17], it is shown that the MDS-PIR capacity (i.e.,

the PIR capacity for a DSS where data is encoded and stored

using an MDS code) can be achieved using Protocol 1 for

a special class of [n, k] codes. In particular, to achieve the

MDS-PIR capacity using Protocol 1, the [n, k] storage code

should possess a specific underlying structure as given by the

following theorem.

Theorem 1 ([16], [17]): Consider a DSS that uses an [n, k]
code C to store f messages. If a PIR achievable rate matrix

Λκ,ν(C) with κ
ν
= k

n
exists, then the MDS-PIR capacity

CMDS-PIR ,

(

1−
k

n

)[

1−
(k

n

)f
]−1

is achievable.

This gives rise to the following definition.

Definition 4: A PIR achievable rate matrix Λκ,ν(C) with
κ
ν
= k

n
for an [n, k] code C is called an MDS-PIR capacity-

achieving matrix, and C is referred to as an MDS-PIR

capacity-achieving code.

In Section IV, we will present a PLC protocol and a

general achievable rate for any rank(V) = r by using the

PIR achievable rate matrix Λκ,ν of an [n, k] code.

III. PLC CAPACITY FOR MDS-PIR CAPACITY-ACHIEVING

CODES

The main result of this paper is the derivation of the PLC

capacity for a coded DSS where data is encoded and stored

using a linear code from the class of MDS-PIR capacity-

achieving codes introduced in [16], [17], which is stated in

the following theorem.

Theorem 2: Consider a DSS that uses an [n, k] MDS-

PIR capacity-achieving code C to store f messages. Then,

the maximum achievable PLC rate over all possible PLC

protocols, i.e., the PLC capacity, is

CPLC ,

(

1−
k

n

)[

1−
(k

n

)r
]−1

(2)

for any rank r of the linear mapping from (1).

The achievable scheme is provided in Section IV, while

the converse proof is given in Section V. Note that the

class of MDS-PIR capacity-achieving codes includes MDS

codes, cyclic codes, Reed-Muller codes, and certain classes

of distance-optimal local reconstruction codes [16], [17].

We remark here that it is known that if rank(V) = f , then

the PLC capacity for an MDS-coded DSS is equal to the MDS-

PIR capacity [14], i.e., if rank(V) = f , then

CPLC =
(

1−
k

n

)[

1−
(k

n

)f
]−1

= CMDS-PIR.

IV. ACHIEVABLE SCHEME

We start with a coded PIR query scheme for a message of µ

dependent virtual messages. Given that the messages are stored

using an [n, k] MDS-PIR capacity-achieving code C , we find

the associated ν×n MDS-PIR capacity-achieving matrix Λκ,ν

and obtain the PIR interference matrices Aκ×n and B(ν−κ)×n

as given by the following definition.

Definition 5 ([16], [17]): For a given ν×n PIR achievable

rate matrix Λκ,ν(C) = (λu,j), we define the PIR interference

matrices Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j) for the code

C with

ai,j , u if λu,j = 1, ∀j ∈ [1 : n], i ∈ [1 : κ], u ∈ [1 : ν],

bi,j , u if λu,j = 0, ∀j ∈ [1 : n], i ∈ [1 : ν − κ], u ∈ [1 : ν].

Note that in Definition 5, for each j ∈ [1 : n], distinct

values of u ∈ [1 : ν] should be assigned for all i. Thus, the

assignment is not unique in the sense that the order of the

entries of each column of A and B can be permuted. Next, for

the sake of illustrating our query set generation algorithm, we

make use of the following definition.

Definition 6: By S(u|Aκ×n) we denote the set of column

coordinates of matrix Aκ×n = (ai,j) in which at least one of

its entries is equal to u, i.e.,

S(u|Aκ×n) , {j ∈ [1 : n] : ∃ ai,j = u, i ∈ [1 : κ]}.

As a result, we require the size of the message to be L =
νµ · k (i.e., β = νµ). The scheme is completed in µ rounds.

A. Query Generation

Before running the main algorithm to generate query sets,

the following index preparation for the coded symbols stored

in each database is performed.

1) Index Preparation: The goal is to make the coded

symbols queried from each database to appear to be chosen

randomly and independently from the desired linear function

index. Note that the linear function is computed separately

for the t-th row of all messages, t ∈ [1 : β]. Therefore,

similar to the PLC scheme in [12] and the MDS-coded PLC

scheme in [14], we apply a permutation that is fixed across all

coded symbols for the t-th row to maintain the dependency

across the associated message elements. Let π(·) be a random

permutation function over [1 : β], and let

U
(v)
t,j , vvCπ(t),j, t ∈ [1 : β], j ∈ [1 : n],

denote the t-th permuted code symbol associated with the v-

th virtual message X
(v) stored in the j-th database. Here, vv

represents the v-th row vector of the matrix Vµ×f = (vi,j) and

Ct,j ,
(
C

(1)
t,j , . . . , C

(f)
t,j

)
T

. The permutation π(·) is randomly

selected privately and uniformly by the user.

2) Preliminaries: For τ ∈ [1 : µ], a sum U
(v1)
i1,j

+ U
(v2)
i2,j

+

· · ·+U
(vτ)
iτ ,j

, j ∈ [1 : n], of τ distinct symbols is a τ -sum for any

subset {i1, i2, . . . , iτ} ⊆ [1 : β], and {v1, v2, . . . , vτ} ⊆ [1 : µ]
determines the type of the τ -sum. Since we have

(
µ
τ

)
different

selections of τ distinct elements out of µ elements, a τ -sum

can have
(
µ
τ

)
different types. The query generation procedure

is subdivided into µ rounds. For a requested linear function

indexed by v ∈ [1 : µ], a query set Q
(v)
j , j ∈ [1 : n],

is composed of µ disjoint subsets, one generated by each

round τ ∈ [1 : µ]. For each round the query subset is

further subdivided into two subsets. The first subset Q
(v)
j (D; τ)

consists of τ -sums with a single symbol from the desired

linear function and τ − 1 symbols from undesired linear

functions, while the second subset Q
(v)
j (U ; τ) contains τ -

sums with symbols only from undesired linear functions. To

this end, in the scheme we introduce κn auxiliary query

sets Q
(v)
j (ai,j ,D; τ), i ∈ [1 : κ], where each query consists

of a distinct symbol from the desired linear function and

τ − 1 symbols from undesired linear functions, and (ν − κ)n

auxiliary query sets Q
(v)
j (bi,j ,U ; τ), i ∈ [1 : ν − κ], to

represent the side information query sets for each database

j ∈ [1 : n]. We utilize these sets to generate the query sets of

each round according to the PIR interference matrices Aκ×n

and B(ν−κ)×n. The query sets for all databases are generated

by Algorithm 1 through the following procedures.1

3) Initialization (Round τ = 1): In the initialization step,

the algorithm generates the auxiliary queries for the first round.

This round is described by Steps 5 to 11 of Algorithm 1, where

we have τ = 1 for the τ -sum. At this point, Algorithm 1 in-

vokes the subroutine Initial-Round given in Algorithm 2

to generate Q
(v)
j (ai,j ,D; 1), i ∈ [1 : κ], such that each of

these query sets contains α1 = κµ−1 distinct code symbols.

Furthermore, to maintain function symmetry, the algorithm

asks each database for the same number of distinct symbols

of all other linear functions in Q
(v)
j (ai,j ,U ; 1), i ∈ [1 : κ],

resulting in a total number of
(
µ−1
1

)
κµ−1 symbols. As a result,

the queried code symbols in the auxiliary query sets for each

database are symmetric with respect to all linear function

vectors indexed by v′ ∈ [1 : µ]. We associate the symbols of

undesired functions in κ groups, each placed in the undesired

query sets Q
(v)
j (ai,j ,U ; 1), i ∈ [1 : κ], to be exploited as

distinct side information for the second round of the scheme.

Since this procedure produces κ undesired query sets for each

database, database symmetry is maintained.

4) Desired Function Symbols for Rounds τ > 1: For

the following rounds a similar process is repeated in terms

of generating auxiliary query sets containing distinct code

symbols from the desired linear function U
(v) = (U

(v)
t,j).

1Note that a query Q
(v)
j sent to the j-th database usually indicates the

row indices of the stored code symbols that the user requests, while the

answer A
(v)
j to the query Q

(v)
j refers to the particular code symbols requested

through the query. In Algorithm 1, with some abuse of notation, the generated
queries are sets containing their answers.

Algorithm 1: Q-Gen

Input : v, µ, κ, ν, n, Aκ×n, and B(ν−κ)×n

Output: Q
(v)
1 , . . . , Q

(v)
n

1 for τ ∈ [1 : µ] do

2 Q
(v)
j (D; τ)← ∅, Q(v)

j (U ; τ)← ∅, j ∈ [1 : n]

3 ατ ← κµ−1 +
∑τ−1

h=1

(

µ−1
h

)

κµ−(h+1)(ν − κ)h

4 ⊲ Generate query sets for the initial

round

5 if τ = 1 then
6 for u ∈ [1 : ν] do
7 for j ∈ S(u|Aκ×n) do

8 Q
(v)
j (u,D; τ),Q(v)

j (u,U ; τ)←
Initial-Round(u, ατ , j, v, τ)

9 end
10 end
11 end
12 ⊲ Generate query sets for the following

rounds τ > 1
13 else
14 for u ∈ [1 : ν] do
15 ⊲ Generate desired symbols for the

following rounds τ > 1
16 for j ∈ S(u|Aκ×n) do

17 Q
(v)
j (u,D; τ)← Desired-Q(u, ατ , j, v, τ)

18 end
19 ⊲ Generate side information for the

following rounds τ > 1
20 for j ∈ S(u|B(ν−κ)×n) do

21 Q
(v)
j (u,U ; τ − 1)← Exploit-SI(u,Q

(v)
1 (u,U , τ −

1), . . . , Q
(v)
n (u,U , τ − 1), j, v, τ)

22 end
23 end
24 ⊲ Generate the final desired query sets

for the following rounds τ > 1
25 for j ∈ [1 : n] do

26 Q̃
(v)
j (U ; τ − 1)←

⋃

i∈[1:ν−κ]

Q
(v)
j (bi,j ,U ; τ − 1)

27 Q̃
(v)
j (1,U ; τ − 1), . . . , Q̃

(v)
j (κ,U ; τ − 1)←

Partition
(

Q̃
(v)
j (U ; τ − 1)

)

28 for i ∈ [1 : κ] do

29 Q
(v)
j (ai,j ,D; τ)←

SetAddition
(

Q
(v)
j (ai,j ,D; τ), Q̃

(v)
j (i,U ; τ − 1)

)

30 end
31 end
32 ⊲ Generate the query sets of undesired

symbols by forcing message symmetry for

the following rounds τ > 1
33 for u ∈ [1 : ν] do
34 for j ∈ S(u|Aκ×n) do

35 Q
(v)
j (u,U ; τ)← M-Sym

(

Q
(v)
j (u,D; τ), j, v, τ

)

36 end
37 end
38 end
39 for u ∈ [1 : ν] do
40 for j ∈ S(u|Aκ×n) do

41 Q
(v)
j (D; τ)← Q

(v)
j (D; τ) ∪Q

(v)
j (u,D; τ)

42 Q
(v)
j (U ; τ)← Q

(v)
j (U ; τ) ∪Q

(v)
j (u,U ; τ)

43 end
44 end
45 end
46 for j ∈ [1 : n] do

47 Q
(v)
j ←

⋃

τ∈[1:µ]

(

Q
(v)
j (D; τ) ∪Q

(v)
j (U ; τ)

)

48 end

Algorithm 2: Initial-Round

Input : u, ατ , j, v, and τ
Output: φ(v)(u,D; τ), φ(v)(u,U ; τ)

1 φ(v)(u,D; τ)← ∅, φ(v)(u,U ; τ)← ∅
2 for l ∈ [1 : ατ] do

3 φ(v)(u,D; τ)← φ(v)(u,D; τ) ∪
{

U
(v)

(u−1)·ατ+l,j

}

4 φ(v)(u,U ; τ)← φ(v)(u,U ; τ) ∪
(

µ
⋃

v′=1

{

U
(v′)

(u−1)·ατ+l,j

}

\
{

U
(v)

(u−1)·ατ+l,j

}

)

5 end

This is accomplished in Steps 16 to 18 by calling the

subroutine Desired-Q, given in Algorithm 3, to generate

Q
(v)
j (ai,j ,D; τ), i ∈ [1 : κ], such that each of these query sets

contains (ατ − 1)−ατ−1+1 =
(
µ−1
τ−1

)
κµ−(τ−1+1)(ν− κ)τ−1

distinct code symbols from the desired linear function U
(v).

Algorithm 3: Desired-Q

Input : u, ατ , j, v, and τ
Output: φ(v)(u,D; τ)

1 φ(v)(u,D; τ)← ∅
2 for l ∈ [ατ−1 : ατ − 1] do

3 φ(v)(u,D; τ)← φ(v)(u,D; τ) ∪
{

U
(v)
l·ν+u,j

}

4 end

5) Side Information Exploitation: In Steps 20 to 22, we

generate the side information query sets Q
(v)
j (bi′,j ,U ; τ − 1),

i′ ∈ [1 : ν−κ], from the auxiliary query sets Q
(v)
1 (ai,1,U ; τ−

1), . . . , Q
(v)
n (ai,n,U ; τ − 1), i ∈ [1 : κ], of the previous round

τ−1, τ ∈ [2 : µ], by applying the subrountine Exploit-SI,

given by Algorithm 4. This subroutine is extended from [12]

based on our coded storage scenario. Note that in Algorithm 4

the function Reproduce(j,Q
(v)
j′ (u,U ; τ − 1)), j′ ∈ [1 : n] \

{j}, simply reproduces all the queries in the auxiliary query

set Q
(v)
j′ (u,U ; τ − 1) with a different coordinate j.

Algorithm 4: Exploit-SI

Input : u, Q
(v)
1 (u,U ; τ − 1), . . . , Q

(v)
n (u,U ; τ − 1), j, v, and

τ
Output: φ(v)(u,U ; τ − 1)

1 φ(v)(u,U ; τ − 1)← ∅
2 for i ∈ [1 : κ] do
3 for j′ ∈ [1 : n] \ {j} do
4 if u = ai,j′ then

5 φ(v)(u,U ; τ − 1)← Reproduce(j, Q
(v)
j′

(u,U ; τ − 1))
6 break
7 end
8 end
9 end

Next, we update the desired query sets Q
(v)
j (ai,j ,D; τ) in

Steps 25 to 31. First, the function Partition
(
Q̃

(v)
j (U ; τ −

1)
)

denotes a procedure that divides a set into κ disjoint

equally-sized subsets. This is viable since based on the subrou-

tine Initial-Round and the following subroutine M-Sym,

one can show that
∣
∣Q̃

(v)
j (U ; τ − 1)

∣
∣ =

(
µ−1
τ−1

)
κµ−(τ−1)(ν −

κ)(τ−1)−1 · (ν − κ) for each round τ ∈ [2 : µ], which is

always divisible by κ. Secondly, we assign the new query set

of desired symbols Q
(v)
j (ai,j ,D; τ) for the current round by

using an element-wise set addition SetAddition(Q1, Q2).
The element-wise set addition is defined as

{
qil + qi′

l
: qil ∈

Q1, qi′
l
∈ Q2, l ∈ [1 : ρ]

}
with |Q1| = |Q2| = ρ, where ρ is an

appropriate integer. In Steps 33 to 37, the subroutine M-Sym,

given in Algorithm 5, is invoked to generate the undesired

query sets Q
(v)
j (ai,j ,U ; τ) by utilizing message symmetry.

This subroutine selects symbols of undesired messages to

generate τ -sums that enforce symmetry in the round queries.

The procedure resembles the subroutine M-Sym proposed in

[12]. In Algorithm 5, Πτ denotes the set of all possible

selections of τ distinct indices in [1 : µ] and Lexico(Πτ)
denotes the corresponding set of ordered selections (the indices

(v1, . . . , vτ) of a selection of Πτ are ordered in natural

lexicographical order). Further, the notation U
(vx)
∗,j implies that

the row index of the code symbol can be arbitrary. This is

the case since only the linear function indices (v1, . . . , vτ) are

necessary to determine iz , ∀ z ∈ [1 : τ]. As a result, symmetry

over the linear functions is maintained.

Algorithm 5: M-Sym

Input : Q
(v)
j (u,D; τ), j, v, and τ

Output: φ(v)(u,U ; τ)
1 φ(v)(u,U ; τ)← ∅
2 for (v1, . . . , vτ) ∈ Lexico(Πτ), v /∈ {v1, . . . , vτ} do

3 φ(v)(u,U ; τ)← φ(v)(u,U ; τ) ∪
{

U
(v1)
i1,j

+ . . .+ U
(vτ)
iτ ,j

}

such that ∀ z ∈ [1 : τ],

∃U (v)
iz ,j

+
∑

x∈[1:τ]
x 6=z

U
(vx)
∗,j ∈ Q

(v)
j (u,D; τ)

4 end

6) Query Set Assembly: Finally, in Steps 39 to 48, we

assemble each query set from disjoint query subsets obtained

in all τ rounds. It can be shown that Q
(v)
j (D; τ) ∪Q

(v)
j (U ; τ)

contains κµ−(τ−1)(ν − κ)τ−1 τ -sums for every τ -sum type.

B. Sign Assignment and Redundancy Elimination

After Algorithm 1, the user will know which row indices

of the stored code symbols he/she is going to request. To

reduce the total number of downloaded symbols, the linear

dependency among the candidate linear functions is exploited.

We adopt a similar sign assignment process over σ
(v)
t ∈

{+1,−1} to each symbol in the query sets: σ
(v)
t U

(v)
t,j , based

on the desired linear function index v as introduced in [12,

Sec. 4.2]. Here, the sign σ
(v)
t is privately generated by the

user with a uniform distribution over {−1,+1}. The intuition

behind the sign assignment is to introduce a uniquely solvable

equation system from the different τ -sum types given the side

information available from all other databases. By obtaining

such a system of equations in each round, the user can

determine some of the queries offline to decode the desired

linear function and/or interference, thus reducing the download

rate. Based on this insight we can state the following lemma.

Lemma 1: For all v ∈ [1 : µ], each database j ∈ [1 : n],
and based on the side information available from the databases,

there are
(
µ−r
τ

)
redundant τ -sum types out of all possible types

(
µ
τ

)
in each round τ ∈ [1 : µ− r] of the query sets.

Since repetition codes and MDS codes are MDS-PIR

capacity-achieving codes, Lemma 1 generalizes [12, Lem. 1]

and [14, Lem. 1]. We can extend the proof of [12, Lem. 1]

to our scheme based on the insight that the redundancy

resulting from the linear dependencies between messages is

also present for MDS-PIR capacity-achieving codes. We now

make the final modification to our PLC query sets. We first

directly apply the sign assignment σ
(v)
t , then remove all τ -

sums corresponding to redundant τ -sum types from every

round τ ∈ [1 : µ] (see Lemma 1). Note that, in our case the

redundancy is dependent on the rank of the functions matrix,

rank(V) = r ≤ min{µ, f}, thus generalizing the MDS-coded

PLC case. Finally, we generate the queries Q
(v)
1:n.

C. Example

To illustrate the key idea of the scheme we use the following

example.

Consider four messages W
(1)

, W
(2)

, W
(3)

, and W
(4)

that

are stored in a DSS using a [4, 2] MDS-PIR capacity-achieving

code C with generator matrix

G
C =

(
1 0 1 1
0 1 1 1

)

for which Λ1,2 =

(
1 0 1 0
0 1 0 1

)

is a PIR achievable rate matrix. According to Definition 5 we

obtain the PIR interference matrices A1×4 =
(
1 2 1 2

)

and B1×4 =
(
2 1 2 1

)
. Suppose that the user wishes to

obtain a linear function X
(v) from a set of µ = 3 candidate

linear functions, i.e., v ∈ [1 : 3], defined by

Vµ×f =





1 0 0 1
1 1 0 0
2 1 0 1



.

We simplify notation by letting xt,j = U
(1)
t,j , yt,j = U

(2)
t,j ,

and zt,j = U
(3)
t,j for all t ∈ [1 : β], j ∈ [1 : n], where β =

νµ = 8. Let the desired linear function index be v = 1. For this

example, the construction of the query sets is briefly presented

in the following steps.

Initialization (Round τ = 1): Algorithm 1 starts with τ = 1
to generate auxiliary query sets for each database holding

κµ−1 = 1 distinct instances of xt,j . By message symmetry

this also applies to yt,j and zt,j . The auxiliary query sets for

the first round are given in Table I(a). Note that the queries

for zt,j can be generated offline by the user and thus are later

removed from the query sets.

Following Rounds (τ > 1): As can be seen from Ta-

ble I(b) and (c), using the interference matrices A1×4 and

B1×4, the algorithm further generates the auxiliary query sets

Q
(1)
j (a1,j ,D; τ) that contain new symbols to be queried jointly

with symbols of the desired linear function during the exploita-

tion of side information for the j-th database, j ∈ [1 : n]. After

generating the desired auxiliary query sets Q
(1)
j (a1,j ,D; τ),

the undesired auxiliary query sets Q
(1)
j (a1,j ,U ; τ) are gen-

erated by enforcing message symmetry. Finally, we apply

the sign assignment scheme to the query sets and remove

redundant queries from each database. The resulting queries

are shown in Table II.

The PLC rate of the achievable scheme is equal to νµ·k
D

=
8·2
6·4 = 2

3 , which is equal to the PLC capacity in (2) with

rank(V) = 2.

TABLE I
AUXILIARY QUERY SETS FOR EACH ROUND. THE MAGENTA DASHED

ARROWS AND THE CYAN ARROWS INDICATE THAT THE EXPLOIT-SI

ALGORITHM AND THE M-SYM ALGORITHM ARE USED, RESPECTIVELY.

j 1 2 3 4

Q
(1)
j (a1,j ,D; 1) x(1−1)·1+1,1 x(2−1)·1+1,2 x(1−1)·1+1,3 x(2−1)·1+1,4

Q
(1)
j (a1,j ,U ; 1)

y(1−1)·1+1,1 y(2−1)·1+1,2 y(1−1)·1+1,3 y(2−1)·1+1,4

z(1−1)·1+1,1 z(2−1)·1+1,2 z(1−1)·1+1,3 z(2−1)·1+1,4

(a)

j 1 2 3 4

Q
(1)
j (a1,j ,D; 2)

x1·2+1,1 + y2,1 x1·2+2,2 + y1,2 x1·2+1,3 + y2,3 x1·2+2,4 + y1,4

x2·2+1,1 + z2,1 x2·2+2,2 + z1,2 x2·2+1,3 + z2,3 x2·2+2,4 + z1,4

Q
(1)
j (a1,j ,U ; 2) y4+1,1 + z2+1,1 y4+2,2 + z2+2,2 y4+1,3 + z2+1,3 y4+2,4 + z2+2,4

(b)

j 1 2 3 4

Q
(1)
j (a1,j ,D; 3) x3·2+1,1 + y6,1 + z4,1 x3·2+2,2 + y5,2 + z3,2 x3·2+1,3 + y6,3 + z4,3 x3·2+2,4 + y5,4 + z3,4

(c)

TABLE II
FINAL QUERY SETS (AFTER SIGN ASSIGNMENT AND REMOVAL OF

REDUNDANT QUERIES) FOR ROUNDS ONE TO THREE FOR A CODED DSS
THAT USES THE [4, 2] CODE OF SECTION IV-C TO STORE f = 4

MESSAGES.

j 1 2 3 4

Q
(1)
j (D; 1) x1,1 x2,2 x1,3 x2,4

Q
(1)
j (U ; 1) y1,1 y2,2 y1,3 y2,4

Q
(1)
j (D; 2)

x3,1 − y2,1 x4,2 − y1,2 x3,3 − y2,3 x4,4 − y1,4

x5,1 − z2,1 x6,2 − z1,2 x5,3 − z2,3 x6,4 − z1,4

Q
(1)
j (U ; 2) y5,1 − z3,1 y6,2 − z4,2 y5,3 − z3,3 y6,4 − z4,4

Q
(1)
j (D; 3) x7,1 − y6,1 + z4,1 x8,2 − y5,2 + z3,2 x7,3 − y6,3 + z4,3 x8,4 − y5,4 + z3,4

D. Achievable Rate

The resulting achievable rate of Algorithm 1 after removing

redundant τ -sums according to Lemma 1 is given as

R
(a)
=

kνµ

n
∑µ

τ=1

((
µ
τ

)
−
(
µ−r
τ

))

κµ−(τ−1)(ν − κ)τ−1

(b)
=

κνµ

ν
∑µ

τ=1

((
µ
τ

)
−
(
µ−r
τ

))

κµ−(τ−1)(ν − κ)τ−1

=
νµ

(
ν−κ
ν

)

∑µ

τ=1

((
µ
τ

)
−
(
µ−r
τ

))

κµ−τ (ν − κ)τ

...

(c)
=

νµ
(
1− κ

ν

)

νµ− κrνµ−r

=
(

1−
κ

ν

)[

1−
(κ

ν

)r]−1

,

where we define
(
m
n

)
, 0 if m < n; (a) follows from the

PLC rate in Definition 2, the fact that Q
(v)
j (D; τ)∪Q

(v)
j (U ; τ)

contains κµ−(τ−1)(ν − κ)τ−1 τ -sums for every τ -sum type,

and Lemma 1; (b) follows from Definition 4; and (c) follows

by adapting similar steps as in the proof given in [14].

V. CONVERSE PROOF

In [18], [19], the PIR capacity of MDS-PIR capacity-

achieving codes is shown to be equal to the MDS-PIR capacity.

In this section, we adapt the converse proof of [19, Thm. 4] to

the scenario of the linearly-coded PLC problem. We will show

that the PLC capacity of MDS-PIR capacity-achieving codes

is equal to (2). Before we proceed with the converse proof,

we give some general results that are useful for the proof.

1) From the condition of privacy,

H
(
A

(v)
j

∣
∣X

(v),Q
)
= H

(
A

(v′)
j

∣
∣X

(v),Q
)
, (3)

where v 6= v′, v, v′ ∈ [1 : µ], and Q ,
{
Q

(v)
j : v ∈ [1 :

µ], j ∈ [1 : n]
}

denotes the set of all possible queries

made by the user. Although this seems to be intuitively

true, a proof of this property is still required and can be

found in [21, Lem. 3].

2) Consider a PLC protocol for a coded DSS that uses an

[n, k] code C to store f messages. For any subset of

linear combinations V ⊆ [1 : µ] and for any information

set I of C , we have

H
(
A

(v)
I

∣
∣X

V ,Q
)
=

∑

j∈I

H
(
A

(v)
j

∣
∣X

V ,Q
)
. (4)

The proof uses the linear independence of the columns

of a generator matrix of C corresponding to an in-

formation set, and can be seen as a simple extension

of [8, Lem. 2] or [21, Lem. 4]. This argument ap-

plies to the case of PLC due to the fact that A
(v)
I

is still a deterministic function of independent ran-

dom variables {Cj : j ∈ I} and Q, where Cj ,
(
C

(1)
1,j , . . . , C

(1)
β,j , C

(2)
1,j , . . . , C

(f)
β,j

)
T

denotes the f coded

chunks that are stored in the j-th database.

Next, we state Shearer’s Lemma, which represents a very

useful entropy method for combinatorial problems.

Lemma 2 (Shearer’s Lemma [22]): Let S be a collection

of subsets of [1 : n], with each j ∈ [1 : n] included in at least

κ members of S . For random variables Z1, . . . , Zn, we have
∑

S∈S

H(ZS) ≥ κH(Z1, . . . , Zn).

For our converse proof for the coded PLC problem, we also

need the following lemma, whose proof has been omitted due

to lack of space.

Lemma 3: Consider the linear mapping V = (vi,j) defined

in (1) with rank(V) = r where vi1,j1 , . . . , vir ,jr are the

entries corresponding to the pivot elements of V. It follows

that
(
X

(i1), . . . ,X(ih)
)

and
(
W

(j1), . . . ,W(jh)
)

are identi-

cally distributed, for some h ∈ [1 : r]. In other words,

H
(
X

(i1), . . . ,X(ih)
)
= hL, h ∈ [1 : r].

Now, we are ready for the converse proof. By [17, Lem. 2],

since the code C is MDS-PIR capacity-achieving, there exist

ν information sets I1, . . . , Iν such that each coordinate j ∈
[1 : n] is included in exactly κ members of I = {I1, . . . , Iν}
with κ

ν
= k

n
.

Applying the chain rule of entropy we have

H
(
A

(v)
[1:n]

∣
∣X

V ,Q
)
≥ H

(
A

(v)
Ii

∣
∣X

V ,Q
)
, ∀ i ∈ [1 : ν].

Let v ∈ V and v′ ∈ Vc , [1 : µ] \ V . Following similar

steps as in the proof given in [8], [21], we get

ν H
(
A

(v)
[1:n]

∣
∣X

V ,Q
)

≥

ν∑

i=1

H
(
A

(v)
Ii

∣
∣X

V ,Q
)

=

ν∑

i=1




∑

j∈Ii

H
(
A

(v)
j

∣
∣X

V ,Q
)



 (5)

=

ν∑

i=1




∑

j∈Ii

H
(
A

(v′)
j

∣
∣X

V ,Q
)



 (6)

=

ν∑

i=1

H
(
A

(v′)
Ii

∣
∣X

V ,Q
)

(7)

≥ κH
(
A

(v′)
[1:n]

∣
∣X

V ,Q
)

(8)

= κ
[

H
(
A

(v′)
[1:n],X

(v′)
∣
∣X

V ,Q
)

−H
(
X

(v′)
∣
∣A

(v′)
[1:n],X

V ,Q
)]

= κ
[

H
(
X

(v′)
∣
∣X

V ,Q
)

+ H
(
A

(v′)
[1:n]

∣
∣X

V ,X(v′),Q
)
− 0

]

(9)

= κ
[

H
(
X

(v′)
∣
∣X

V
)
+H

(
A

(v′)
[1:n]

∣
∣X

V ,X(v′),Q
)]

, (10)

where (5) and (7) follow from (4); (6) is because of (3); (8)

is due to Shearer’s Lemma; (9) is from the fact that the v′-th

linear combination X
(v′)

is determined by the answers A
(v′)
[1:n]

and all possible queries Q; and finally, (10) follows from the

independence between all possible queries and the messages.

Therefore, we can conclude that

H
(
A

(v)
[1:n]

∣
∣X

V ,Q
)

≥
κ

ν
H
(
X

(v′)
∣
∣X

V
)
+

κ

ν
H
(
A

(v′)
[1:n]

∣
∣X

V ,X(v′),Q
)

=
k

n
H
(
X

(v′)
∣
∣X

V
)
+

k

n
H
(
A

(v′)
[1:n]

∣
∣X

V ,X(v′),Q
)
, (11)

where we have used Definition 4 to obtain (11).

Since there are in total µ linear combinations and L ,

{ℓ1, . . . , ℓr} ⊆ [1 : µ] is the set of row indices corresponding

to the selected basis for the row space of V, we can recursively

use (11) r − 1 times to obtain

H
(
A

(ℓ1)
[1:n]

∣
∣X

(ℓ1),Q
)

≥

r−1∑

v=1

(k

n

)v

H
(
X

(ℓv+1)
∣
∣X

{ℓ1,...,ℓv}
)

+
(k

n

)r−1

H
(
A

(ℓr)
[1:n]

∣
∣X

{ℓ1,...,ℓr},Q
)

≥

r−1∑

v=1

(k

n

)v

H
(
X

(ℓv+1)
∣
∣X

{ℓ1,...,ℓv}
)

(12)

=

r−1∑

v=1

(k

n

)v

L, (13)

where (12) follows from the nonnegativity of entropy. (13)

holds since it follows from Lemma 3 that H
(
X

(ℓv+1)
∣
∣

X
{ℓ1,...,ℓv}

)
= H

(
X

(ℓv+1)
)
= L. Here, we also remark that

the recursive steps follow the same principle of the general

converse for dependent PIR (DPIR) from [15, Thm. 1]. In

[15], the authors claim that the general converse for the DPIR

problem strongly depends on the chosen permutation of the

indices of the candidate functions. However, the best index

permutation for the candidate linear functions for the PLC

problem results from finding a basis for V. Now,

L = H

(

X
(ℓ1)

)

= H
(
X

(ℓ1)
∣
∣Q

)
−H

(
X

(ℓ1)
∣
∣A

(ℓ1)
[1:n],Q

)

︸ ︷︷ ︸
=0

(14)

= I
(
X

(ℓ1) ;A
(ℓ1)
[1:n]

∣
∣Q

)

= H

(

A
(ℓ1)
[1:n]

∣
∣
∣Q

)

−H

(

A
(ℓ1)
[1:n]

∣
∣
∣X

(ℓ1),Q
)

≤ H

(

A
(ℓ1)
[1:n]

∣
∣
∣Q

)

−

r−1∑

v=1

(k

n

)v

L, (15)

where (14) follows since any message is independent of the

queries Q, and knowing the answers A
(ℓ1)
[1:n] and the queries Q,

one can determine X
(ℓ1); (15) holds because of (13).

Finally, the converse proof is completed by showing that

R =
L

∑n

j=1 H

(

A
(ℓ1)
j

)

≤
L

H

(

A
(ℓ1)
[1:n]

) (16)

≤
L

H

(

A
(ℓ1)
[1:n]

∣
∣
∣Q

) (17)

≤
1

1 +
∑r−1

v=1

(
k
n

)v = CPLC, (18)

where (16) holds because of the chain rule of entropy, (17)

is due to the fact that conditioning reduces entropy, and we

apply (15) to obtain (18).

VI. CONCLUSION

We have provided the capacity of PLC for DSSs, where

data is encoded and stored using an arbitrary linear code from

the class of MDS-PIR capacity-achieving codes. Interestingly,

the capacity is equal to the corresponding PIR capacity. Thus,

privately retrieving arbitrary linear combinations of the stored

messages does not incur any overhead in rate compared to

retrieving a single message from the databases.

REFERENCES

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

[2] S. Yekhanin, “Private information retrieval,” Commun. ACM, vol. 53,
no. 4, pp. 68–73, Apr. 2010.

[3] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE

Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun. 29 – Jul. 4, 2014, pp.
856–860.

[4] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval
for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory, Hong Kong,
China, Jun. 14–19, 2015, pp. 2842–2846.

[5] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” 2018, to
app. in IEEE Trans. Inf. Theory.

[6] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[7] ——, “The capacity of robust private information retrieval with collud-
ing databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370,
Apr. 2018.

[8] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[9] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geom., vol. 1, no. 1, pp. 647–664, Nov. 2017.

[10] S. Kumar, E. Rosnes, and A. Graell i Amat, “Private information retrieval
in distributed storage systems using an arbitrary linear code,” in Proc.

IEEE Int. Symp. Inf. Theory, Aachen, Germany, Jun. 25–30, 2017, pp.
1421–1425.

[11] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,”
Nov. 2017, arXiv:1711.04677v2 [cs.IT]. [Online]. Available: https://arx
iv.org/abs/1711.04677

[12] H. Sun and S. A. Jafar, “The capacity of private computation,” Oct.
2017, arXiv:1710.11098v3 [cs.IT]. [Online]. Available: https://arxiv.or
g/abs/1710.11098

[13] D. Karpuk, “Private computation of systematically encoded data with
colluding servers,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA,
Jun. 17–22, 2018, pp. 2112–2116.

[14] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” in Proc. IEEE Int. Symp. Inf. Theory, Vail,
CO, USA, Jun. 17–22, 2018, pp. 2117–2121.

[15] Z. Chen, Z. Wang, and S. Jafar, “The asymptotic capacity of private
search,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun.
17–22, 2018, pp. 2122–2126.

[16] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat, “Achieving
maximum distance separable private information retrieval capacity
with linear codes,” Dec. 2017, arXiv:1712.03898v3 [cs.IT]. [Online].
Available: https://arxiv.org/abs/1712.03898

[17] H.-Y. Lin, S. Kumar, E. Rosnes, and A. Graell i Amat, “An MDS-
PIR capacity-achieving protocol for distributed storage using non-MDS
linear codes,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun.
17–22, 2018, pp. 966–970.

[18] ——, “Asymmetry helps: Improved private information retrieval
protocols for distributed storage,” to be pres. at IEEE Inf. Theory

Workshop, Guangzhou, China, Nov. 25–29, 2018. [Online]. Available:
https://arxiv.org/abs/1806.01342

[19] ——, “On the fundamental limit of private information retrieval for
coded distributed storage,” Aug. 2018, arXiv:1808.09018v1 [cs.IT].
[Online]. Available: https://arxiv.org/abs/1808.09018

[20] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-
Trautmann, D. Karpuk, and I. Kubjas, “t-private information retrieval
schemes using transitive codes,” Dec. 2017, arXiv:1712.02850v1
[cs.IT]. [Online]. Available: https://arxiv.org/abs/1712.02850

[21] J. Xu and Z. Zhang, “On sub-packetization of capacity-achieving PIR
schemes for MDS coded databases,” Dec. 2017, arXiv:1712.02466v2
[cs.IT]. [Online]. Available: http://arxiv.org/abs/1712.02466

[22] J. Radhakrishnan, “Entropy and counting,” in Computational mathemat-

ics, modelling and algorithms, J. C. Misra, Ed. Narosa Publishing
House, 2003, pp. 146–168.

https://arxiv.org/abs/1711.04677
https://arxiv.org/abs/1710.11098
https://arxiv.org/abs/1712.03898
https://arxiv.org/abs/1806.01342
https://arxiv.org/abs/1808.09018
https://arxiv.org/abs/1712.02850
http://arxiv.org/abs/1712.02466

	I Introduction
	II Definitions and Problem Statement
	II-A Notation and Definitions
	II-B System Model
	II-C Private Linear Computation for Coded DSSs
	II-D MDS-PIR Capacity-Achieving Codes

	III PLC Capacity for MDS-PIR Capacity-Achieving Codes
	IV Achievable Scheme
	IV-A Query Generation
	IV-B Sign Assignment and Redundancy Elimination
	IV-C Example
	IV-D Achievable Rate

	V Converse Proof
	VI Conclusion
	References

