
ar
X

iv
:1

60
4.

08
23

0v
2

 [
cs

.I
T

]
 2

4
A

ug
 2

01
8

Flexible Fractional Repetition Codes for

Distributed Storage Networks
Imad Ahmad, Member, IEEE, and Chih-Chun Wang, Senior Member, IEEE

Abstract—Consider the following fundamental question of
distributed storage networks: Given any arbitrary (n, k, d)
values, whether there exists an intelligent helper selection
scheme (assuming unlimited memory and computing power)
that can strictly improve the storage-bandwidth (S-B) tradeoff.
Ahmad et al. 18’ answered this question by proving that for a
subset of (n, k, d) values, no helper selection scheme can ever
improve the S-B tradeoff, and for the (n, k, d) not in that subset,
a new scheme called family helper selection (FHS) can strictly
improve the S-B tradeoff over a blind helper selection scheme.
Nonetheless, the analysis of FHS is done by a min-cut analysis
with no actual code construction.

This work fills this gap between pure min-cut analysis
and actual code construction by pairing FHS with a new,
generalized version of the existing fractional repetition (FR)
codes. Specifically, existing FR codes are exact-repair codes that
admit the highly-desirable repair-by-transfer property, but its
unique construction limits the application to a restricted set
of (n, k, d) values. In contrast, our new construction, termed
flexible fractional repetition codes, can be applied to arbitrary
(n, k, d) while retaining most of the practical benefits of FR
codes, i.e., admitting small repair bandwidth, being exact-repair,
and being almost repairable-by-transfer.

Index Terms—Distributed storage, regenerating codes, family
helper selection schemes, flexible fractional repetition codes,
network coding

I. INTRODUCTION

C
ONSIDER the distributed storage network (DSN) for-

mulated in [4]. In [2], Ahmad et al. identified a set of

(n, k, d) parameters, denoted by S, for which an optimally

designed helper selection scheme can achieve strictly better

storage-bandwidth (S-B) tradeoff than the blind helper selec-

tion (BHS) scheme originally proposed in [4]. The results

in [2] also proved the corresponding converse: That is, for

any (n, k, d) /∈ S, no helper selection scheme can do better

than BHS, i.e., BHS is already optimal. The results in [2]

thus answer a fundamental question: Under what (n, k, d)
values can an intelligent helper selection scheme improve

the performance of a DSN?

This work was supported in part by NSF grants ECCS-1407603, CCF-
1422997, and CCF-1618475.

I. Ahmad is currently with AT&T Labs {imadfahmad@gmail.com} and
C.-C. Wang is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette {chihw@purdue.edu}.

This work is motivated by an important code design

problem that was omitted in the achievability results of [2].

Specifically, [2] devised a helper selection scheme termed

the family helper selection (FHS) scheme, characterized its

S-B tradeoff for those (n, k, d) ∈ S, and showed that the

corresponding S-B curve is strictly better than that of BHS.

Specifically, the S-B tradeoff curve of FHS was derived using

a graph-based analysis that quantifies the minimum possible

min-cut value of FHS without any actual code construction.

In a way similar to [4], the approach in [2] assumed that

there exist network codes that can achieve the min-cut-based

S-B tradeoff without any discussion whether/how such a

code can be constructed. Unfortunately, such a widely used

assumption (see [4]) represents a missing link in a truly

rigorous DSN analysis. For example, whether there exists an

S-B-curve achieving code depends heavily on the underlying

finite field GF(q) and on the sub-packetization levels of

the construction. None of these important code attributes is

carefully analyzed in the min-cut analysis of [2], [4]. Whether

there exists a large but fixed GF(q) that attains the S-B

tradeoff curve is a non-trivial problem in the DSN literature

since the results in [1], [8] only guarantee the existence of

GF(q) broadcast network codes for any network/graph of

bounded size, but the size of the information flow graph (IFG)

of a distributed storage code (see [4] or [2] for the description

of these graphs) is unbounded. Therefore, the conclusion in

[1] and [8] does not imply the code existence.

The original min-cut analysis of regenerating codes (RCs)

in [4] is complemented by a follow-up work [17], which

proved that there exists a fixed alphabet GF(q) and a

corresponding network code that achieves the graph-based

S-B tradeoff characterized in [4]. Specifically, it outlined a

detailed code construction that achieves all the points on

the S-B tradeoff curve of RCs [4] and the codes provided

in [17] fall under the category of functional-repair codes.

Subsequent development in this direction (constructing codes

that attain the graph-based S-B tradeoff) has been focused

on exact-repair codes [3], [5], [12], [14], [15], [18], [19], for

which during repair, the newcomer has to restore the data that

was originally stored on the failed node. E.g., an exact-repair

code construction, called product-matrix construction, that

achieves the minimum-bandwidth-regenerating (MBR) point

1

http://arxiv.org/abs/1604.08230v2

of RCs was proposed in [12]. Another type of exact-repair

codes called fractional repetition (FR) codes was proposed

in [5], which, additionally, admits an important practical

property called repair-by-transfer.

Each of the product-matrix codes and the FR codes has

its own distinct advantage. For example, the product-matrix

codes [12] can naturally handle multiple failures since it

guarantees that the newcomer can repair from any set of d
surviving nodes. In contrast, the FR codes rely on the concept

of repetition and thus were originally designed for the single-

failure scenario. There are new generalizations of FR codes

for multiple failures [5], [7], [9], [10], but they are at the

cost of decreasing the performance (not necessarily achieving

the MBR point of BHS anymore) and further restricting the

applicable (n, k, d) values. On the other hand, the repair-

by-transfer property of FR codes allows each helper to send

a subset of the packets they store (without mixing them)

to the newcomer, which significantly reduces the encoding

complexity and, perhaps more importantly, the disk/memory

I/O.

Along a similar line of the functional-repair code con-

struction in [17] and the subsequent exact-repair code con-

structions in [5], [12], this work focuses on explicit code

design that can attain the purely graph-based S-B tradeoff

curve of the FHS scheme [2]. The results of this work thus

complement the min-cut analysis of [2] in the same way as

[17] complements [4]. Also see Fig. 1 for the illustration.

Fig. 1. Comparison of the DSN results: FHS is the achievability helper se-
lection needed when characterizing the (n, k, d) set S . This work discusses
the pairing code construction.

The contribution of our new code construction, called

flexible fractional repetition (FFR), is 3-fold: (i) it closes

the loop of the min-cut-based analysis in [2] by explicitly

designing a code that achieves the MBR point of the FHS

scheme, see Fig. 1. As a result, the fundamental question

when can intelligent helper selection improve the S-B trade-

off is now answered with rigorous code construction, rather

than the previous graph-based analysis. (ii) The proposed

FFR construction can be viewed as a generalization of the

existing FR codes. However, unlike FR codes which require

that n · d be even, our FFR codes are applicable to arbitrary

(n, k, d) values while retaining most of the practical benefits

of FR codes, i.e., FFR codes are exact-repair codes and the

majority of the nodes of a FFR code can be repaired-by-

transfer.

(iii) The concept of the original FR codes is based on

the “repair-by-transfer (RBT) graph.” An edge-counting ar-

gument for regular RBT graph is then developed in [5] and its

subsequent works [7], [10], [16]. Our work develops an edge

counting argument for irregular RBT graphs and also estab-

lishes the connection between the code-construction-based

RBT graphs and the min-cut-based information flow graphs

in [2]. By matching the former (an achievability result) and

the latter (a converse result), we prove the optimality of FFR

under some (n, k, d, α, β), see Propositions 4 and 5. Such a

new analysis approach will further enrich the literature of FR

codes and broaden their applications.

The rest of this paper is organized as follows. Section II

reviews existing work on FR codes. Section III gives the

notation used in this paper and states the existing results

on FHS [2]. Section IV motivates FFR codes by providing

two examples that demonstrate their construction. Section V

presents the construction of FFR codes. Section VI sketches

the analysis of FFR codes. Section VIII concludes the paper.

II. RELATED WORK ON FRACTIONAL REPETITION

CODES

The first construction of a special-case FR code appeared

in [13], [14] (although not termed FR initially). The code

construction in there was based on encoding the file first

using an MDS code and then assigning the encoded packets

to the edges of a complete graph. This code construction

achieves the MBR point of RCs with d = n − 1. Shortly

after, the concept of assigning MDS-coded packets to edges

of graphs was generalized to hypergraphs and the term “FR

codes” was coined in [5], in which the MDS code was

referred to as the outer code and the repetition code as the

inner code.

In FR codes, the number of times packets are replicated

in the network is termed the repetition degree. FR codes

with repetition degree 2 were proposed in [5] based on

regular graphs and are shown to achieve the MBR point

of RCs with BHS if and only if n · d is even. Utilizing

Steiner systems, [5] was able to construct FR codes for when

the repetition degree is larger than 2. A subsequent work

[11] proposed DRESS codes that are randomly constructed

codes utilizing the idea of FR codes. Reference [7] presented

graph-based constructions of Steiner systems that translate

into FR codes for repetition degrees that are much smaller

than the storage allowed per node. FR code constructions

using resolvable designs were given in [10] that are able to

cover a set of parameters not covered by Steiner systems.

2

Moreover, [20] gave FR constructions for storage networks

with heterogeneous numbers of helpers.

All FR codes in the above mentioned works are based

on the following two steps. Step 1: Construct MDS coded

packets and duplicate each packet r ≥ 2 times; and Step 2:

the duplicated copies are carefully distributed and stored in

network nodes. Those nodes that store the same packet will

be helpers of each other when one of the them fails. Although

the 2-step process is very powerful, only for a restricted

collection of (n, k, d) values can we successfully complete

Steps 1 and 2, which thus limits the application of FR codes.

In contrast, the main focus of the proposed FFR codes is

not about designing Step 2. Instead, the helper selection of

FFR codes is designed by the graph-based min-cut analysis

in [2]. Specifically, [2] shows that in terms of the min-cut

values, a new helper selection policy, called family helper

selection (FHS), outperforms BHS whenever possible,1 and

is guaranteed to be optimal for some (n, k, d) values. FFR

codes directly use the FHS scheme in its Step 2 without any

modification. However, it turns out that, with FHS in Step 2,

it becomes impossible to reuse the original Step 1. Instead,

the focus of the FFR codes is to modify Step 1 so that the

combination of the modified Step 1 and the use of the FHS

scheme in Step 2 results in a code that realizes the superior

performance promised by the min-cut analysis in [2]. By

jointly revising Steps 1 and 2, the proposed FFR code can

be applied to any (n, k, d) values while retaining most of the

practical appeals of the original FR codes, e.g., exact-repair

and repair-by-transfer. This was previously not possible when

the design efforts were focused on Step 2 only.

III. FLASHBACK OF [2] AND NOTATION

We denote the total number of nodes in a network by

n. The number of helper nodes, the nodes participating in

the repair of a failed node, is denoted by d. This means

that during repair, the node that is replacing the failed node,

called the newcomer, can contact d nodes for repair. For the

reliability requirement, we require that any set of k nodes of

the total n nodes must2 be able to reconstruct the original

data.

The performance of a system is measured by the amount

of storage-per-node, α, the amount of communications or

bandwidth-per-helper, β, and the size of the original data/file,

M. See [2], [4] for detailed definitions of (n, k, d, α, β,M).
An intelligent helper selection scheme chooses the d

helpers carefully based on the past failure patterns. In con-

1A more rigorous statement is: If there exists a helper selection that strictly
outperforms BHS in terms of the S-B tradeoff, then FHS strictly outperforms
BHS.

2For a detailed explanation of the parameters d and k and the distinction
between the desired protection level k and the actual achievable protection

level k∗ of a code, see [2].

trast, a blind helper selection (BHS) scheme chooses the d
helpers blindly. We then have

Definition 1: An arbitrarily given (n, k, d) value is

indifferent-to-helper-selection (ITHS) if there exists no in-

telligent helper selection scheme (even with unlimited com-

puting power) that can strictly outperform BHS in terms of

the achievable (α, β,M).
For example, if the (n, k, d) satisfies d = n − 1, then

such (n, k, d) is clearly ITHS. The reason is that when d =
n − 1, there is only one way of choosing the d = n − 1
helpers, i.e., all the remaining n − 1 nodes must help the

newcomer. Therefore, there is no room for improvement for

any intelligent helper selection scheme and the (n, k, d) is

clearly ITHS by definition. Surprisingly, there are many other

(n, k, d) values with d < n − 1 that are also ITHS. That

is, even if we have the new degree of freedom of carefully

choosing d out of n− 1 remaining nodes, for some (n, k, d)
no additional performance can be gained by intelligent helper

selection.

Knowing whether (n, k, d) is ITHS or not is very ben-

eficial. For example, if a given (n, k, d) is not ITHS, then

there must exist an intelligent helper selection scheme that

can strictly outperform BHS and the network designer should

focus on how to harvest the promised performance gain. [2]

finds the following necessary and sufficient condition for all

ITHS (n, k, d) values.

Proposition 1: [2, Propositions 1 and 2] An (n, k, d) value

is ITHS if and only if at least one of the following two

conditions is true (i) d = 1, k = 3, and n is odd; and (ii)

k ≤
⌈

n
n−d

⌉

.

The achievability part of the above results (the only if

direction), i.e., proving the existence of a helper selection

scheme that can do strictly better, is established by analyzing

the min-cut values of a new class of helper selection schemes

termed the family helper selection (FHS) scheme. The basic

concepts and notation of the FHS scheme will be introduced

in the next subsection.

A. The Family Helper Selection Scheme

At any time t, the helper choices of the FHS scheme are

described by {Di : i = 1, · · · , n}, where Di is the helper

set when the i-th node fails and contains exactly d nodes.

The sets {Di} are defined as follows. Label the storage

nodes by 1 to n. Then, the first (n − d) nodes are grouped

as the first complete family and the second (n − d) nodes

are grouped as the second complete family and so on. In

total, there are c ,
⌊

n
n−d

⌋

complete families. The remaining

n mod (n − d) nodes, if there are any, are grouped as an

incomplete family. For any node i in a complete family, the

helper set Di contains all the nodes not in the same family of

node i. For any node i in the incomplete family, we choose

3

Di = {1, · · · , d}, the first d nodes. An example of the FHS

scheme will be provided in Section IV-B.

IV. TWO EXAMPLES THAT DEMONSTRATE THE

CONSTRUCTION OF FFR CODES

We now present two examples demonstrating the differ-

ence between FR and our new proposed FFR codes.

A. Example 1: Not All FR Codes Are Equal

Consider the parameter value (n, k, d, α, β) =
(6, 3, 3, 3, 1). As described in [5], the FR code is based on

finding a regular graph of n = 6 nodes and node degree

d = 3. This is possible since n · d is even. One (possible)

regular graph for this (n, k, d, α, β) is shown in Fig. 2.

Fig. 2. A regular graph of the FR code for (n, k, d, α, β) = (6, 3, 3, 3, 1).

Using the regular graph in Fig. 2, we can construct an FR

code that can protect M = 6 packets. The construction is as

follows. First use a (9, 6)-MDS code to convert the M = 6
original packets into 9 MDS-coded packets. Then, each MDS

coded packet is assigned to one of the 9 edges in Fig. 2. Each

node will then store the d = 3 packets corresponding to its 3

adjacent edges. To see that any k = 3 nodes can reconstruct

the original file, we observe3 that any nodes have ≥ 6 distinct

edges incident to them. E.g., nodes {1, 2, 6} have exactly 6

adjacent edges. Then, by the MDS property, these ≥ 6 MDS-

coded packets can be used to reconstruct the original file.

Note that [4] proves that if BHS is used, then a dis-

tributed storage network with (n, k, d, α, β) = (6, 3, 3, 1, 1)
can protect at most M = 6. However, by plugging in

the (n, k, d) = (6, 3, 3) value into Proposition 1, we have

k = 3 >
⌈

n
n−d

⌉

=
⌈
6
3

⌉
= 2, which implies that there

exists an intelligent helper selection scheme that strictly

outperforms the best performance of BHS [4], which is

M = 6. This thus prompts the question whether we can

design an FR code of (n, k, d, α, β) = (6, 3, 3, 1, 1) that can

protect a larger file, say M = 7.

3This can be verified by a simple computer program that examines all
(

6

3

)

node combinations and counts the adjacent edges.

We observe that the regular graph for this example is

actually not unique. Instead, we can consider another regular

graph in Fig. 3 which also has n = 6 nodes and node degree

d = 3. We observe that in this new regular graph, any k = 3
nodes have ≥ 7 distinct adjacent edges.4 As a result, if we

use a (9, 7)-MDS code in the beginning and use the regular

graph in Fig. 3, then the resulting FR code can protect a file

of size M = 7.

Fig. 3. An alternative regular graph for (n, k, d, α, β) = (6, 3, 3, 3, 1).

This example demonstrates that the performance of an FR

code depends on how one chooses the underlying regular

graph. Perhaps more importantly, it hints that the helper

selection benefits promised by the min-cut analysis in Propo-

sition 1 can be realized by a clever construction of FR codes,

at least for the case of (n, k, d, α, β) = (6, 3, 3, 1, 1). Our

proposed FFR codes build on top of these two observations.

That is, we generalize FR codes for irregular graphs and show

that it is true that any helper selection benefits promised by

the min-cut analysis in Proposition 1 can indeed by realized

by our FFR codes.

B. Example 2: Sometimes No FR Code Is Good Enough

We use the parameter value (n, k, d, α, β) = (7, 3, 3, 3, 1)
to demonstrate the limitation of FR codes and how our FFR

codes work. For (n, k, d, α, β) = (7, 3, 3, 3, 1), [4] proves

that BHS can protect a file of size M = 6. Again by plugging

in Proposition 1, we have k = 3 >
⌈

n
n−d

⌉

=
⌈
7
4

⌉
= 2, which

implies that there exists an intelligent helper selection scheme

that can protect M > 6 packets, say protect M = 7 packets.

The remaining question is how to design such a scheme.

Following the success in Example 1, one may like to

directly apply the FR code in this scenario. However, for

this (n, k, d) = (7, 3, 3) it is provably impossible to find any

regular graph with n = 7 nodes and degree d = 3. Therefore,

no FR code exists for (n, k, d) = (7, 3, 3). In the following,

we show how our FFR code works for (n, k, d) = (7, 3, 3).

4Again a simple computer program can verify this fact.

4

First, we have that
⌊

n
n−d

⌋

=
⌊
7
4

⌋
= 1. Following the

FHS description in Section III-A, we have 1 complete family,

nodes {1, 2, 3, 4}, and 1 incomplete family, nodes {5, 6, 7}.

More specifically, any of nodes 1 to 4 will request help from

nodes 5 to 7. Any of nodes 5 to 7 will request help from

nodes 1 to 3. Note the asymmetry of the helper relationship,

i.e., node 4 requests help from nodes 5 to 7 but is not a

helper for any of nodes 5 to 7. See Fig. 4 for illustration,

in which we use the dashed line to represent the asymmetric

helper relationship of node 4.

Fig. 4. The graph representation of the code for (n, k, d, α, β) =
(7, 3, 3, 3, 1).

Our FFR code is based on GF(32) and can protect a file

of 7 packets while satisfying (n, k, d, α, β) = (7, 3, 3, 3, 1).
The 7 packets of the file are denoted by W1,W2, . . . ,W7.

We first encode the 7 packets into 9 packets X1 to X9 where

Xi = Wi for i = 1 to 7 and X8 and X9 are

X8 = 23W1+3W2 + 9W3 + 24W4+

30W5 + 8W6 + 8W7, (1)

X9 = 25W1+25W2 + 2W3 + 18W4+

12W5 + 25W6 + 27W7. (2)

Finally, we create 3 additional packets X10, X11, and X12

by

X10 = X1 +X4 +X7, (3)

X11 = X2 +X5 +X8, (4)

X12 = X3 +X6 +X9. (5)

Once the X1 to X12 packets are encoded from W1 to W7,

we assign the packets X1, X2, . . . , X9 to the solid edges as

shown in Fig. 4 and assign the packets X10, X11, and X12

to the dashed edges incident to incomplete family nodes 5,

6, and 7, respectively. Each physical node in {1, 2, 3, 5, 6, 7}
(excluding node 4) stores the packets corresponding to the

solid edges adjacent to it. Node 4 stores the packets cor-

responding to the dashed edges incident to itself.5 One can

clearly see that, in this code construction, each node stores

exactly α = 3 packets.

Repair: If any of the nodes in {1, 2, 3, 5, 6, 7} (excluding

node 4) fails, then the newcomer downloads the lost packets

of the solid edges from its adjacent nodes. If node 4 fails,

then nodes 5, 6, and 7 generate and send to the newcomer the

linear combinations X1+X4+X7, X2+X5+X8, and X3+
X6 +X9, respectively. This is always possible since node 5

stores {X1, X4, X7}, node 6 stores {X2, X5, X8}, and node

7 stores {X3, X6, X9}. Notice that these generated packets

correspond to the packets X10, X11, and X12 of the dashed

edges, see (1) and (2), and node 4 is thus exactly-repaired.

Our FFR construction is almost repairable-by-transfer, since

all nodes but node 4 can be repaired by transfer.

Reconstruction: One can verify, by a computer-based

exhaustive search, that the given code assignment can recon-

struct the M = 7 packets of the original file from any k = 3
nodes of the total n = 7 nodes. That is, we use a computer

to verify that the coding matrix of the packets in any k = 3
nodes is always of full rank 7. Note that in FFR, one cannot

simply count the edges as in [5]. Instead one has to check

for the matrix invertability since the underlying graph, see

Fig. 4, is non-regular and of asymmetric helper relationship

(solid versus dashed edges). One of the contributions of this

work is to analytically characterize the protected file size M
of our FFR codes for arbitrary (n, k, d) values.

V. THE FLEXIBLE FRACTIONAL REPETITION CODES

The motivation of the FFR design is to achieve the MBR

point of the FHS scheme computed by the min-cut analysis

in [2]. See Fig. 1. In this section, we will first describe the

MBR point of the FHS scheme and then describe the FFR

construction that attains it.

A. The MBR Point of the FHS Scheme

Define nfam =
⌈

n
n−d

⌉

and define a sequence of n numbers

w1 to wn by

(w1, · · · , wn) =




nfam
︷ ︸︸ ︷

0, · · · , 0,

nfam
︷ ︸︸ ︷

1, · · · , 1, · · · ,

nfam
︷ ︸︸ ︷

δ, · · · , δ,

n mod nfam
︷ ︸︸ ︷

δ + 1, · · · , δ + 1



 , (6)

5The FFR code construction for general (n, k, d) values will be detailed
in Section V-B.

5

where δ ,

⌊
n

nfam

⌋

−1. Namely, wi contains a strictly increas-

ing integer sequence 0, 1, 2, · · · with each entry repeated for

nfam times. The value δ is the last entry that can be repeated

for nfam times. The values of the remaining (n mod nfam)
entries are assigned to δ+1. With the above construction of

wi, we define yi , (i− 1)− wi for all i = 1 to n.

Proposition 2: [2, Proposition 6] For any given

(n, k, d, α, β) values satisfying α = dβ, thus the MBR point,

the largest file size M that can be protected by the FHS

scheme is

M =

k∑

i=1

(d− yi)β. (7)

For example, if (n, k, d, α, β) = (7, 3, 3, 3, 1), then we

have nfam = ⌈7/(7 − 3)⌉ = 2, (w1, w2, w3) = (0, 0, 1), and

(y1, y2, y3) = (0, 1, 1). The protected file size M becomes
∑3

i=1(3− yi) = (3− 0) + (3− 1) + (3− 1) = 7.

Also note that Proposition 2 characterizes the performance

of FHS by a pure min-cut-based analysis. In Proposition 3

of Section VI-B, we prove that the MBR point described in

Proposition 2 can be achieved by our FFR code construction

for any (n, k, d) values.

B. The Construction of FFR Codes

Before describing the construction of FFR codes, we

list some notational definitions. Consider the FHS scheme

described in Section III-A, we denote the set of nodes of the

i-th complete family by Ni. Recall that there are c ,
⌊

n
n−d

⌋

complete families. For the last complete family, i.e., i = c,
we split its nodes into two disjoint node sets, N−c is the

set of nodes in family c that is not in the helper set of the

incomplete family nodes and Nc is the set of the remaining

nodes of this complete family. We denote the set of nodes

in the incomplete family by N0. The set of all nodes in the

network is denoted by N . For example, if (n, d) = (7, 3) as

in the example of Section IV-B, we have c = 1 complete

family, N1 = {1, 2, 3}, N−1 = {4}, and N0 = {5, 6, 7}.

In short, we denote the incomplete family as family 0,

and split the last complete family, family c, into two family

indices c and −c, where the latter represents those nodes that

are not helpers of any node. See Fig. 4. Then, Nx contains

the nodes that have family index x. For any node i ∈ Nx,

we define the inverse map x = FI(i), which stands for the

family index of i. In the above example, FI(i) = 1 for i = 1
to 3, FI(4) = −1, and FI(i) = 0 for i = 5 to 7.

We assume without loss of generality that β = 1 and α = d
with the unit being “packets”. The goal of FFR codes is to

protect a file of size described in (7) against any (n − k)
simultaneous failures. Since β = 1, we can rewrite (7) by

M =

k∑

i=1

(d− yi) packets. (8)

In all the subsequent discussions, we assume M is a fixed

integer computed by (8).

The core idea of FFR codes stems from the concatenation

of an inner code that is based on a graph representation of

the distributed storage network and a carefully designed outer

code that satisfies special properties. We first introduce the

graph-based inner code of the FFR code.

The inner code: The inner code is based on the following

graph representation of the distributed storage network. Each

physical node in the network is represented by a vertex in

the graph, which is denoted by G = (V,E) where V denotes

the set of vertices of G and E denotes its set of edges. As

will be described, the graph consists of two disjoint groups

of edges. Graph G has the following properties:

1) V = {1, 2, · · · , n}. Each vertex i in V corresponds to

physical node i in N . For convenience, throughout our

discussion, we simply say vertex i ∈ Nx if the physical

node that vertex i corresponds to is in Nx.

2) Any two vertices i ∈ Nx and j ∈ Ny are con-

nected by an edge in E if |x| 6= |y| and (x, y) /∈
{(0,−c), (−c, 0)}. The collection of all those edges is

denoted by Ē.

3) Any two vertices i ∈ N0 and j ∈ N−c are connected

by an edge in E. The collection of all those edges is

denoted by Ẽ.

4) From the above construction, we have E = Ē ∪ Ẽ. We

further assume that all the edges are undirected.

Fig. 4 of Example 2 in Section IV is an example of the

above graph representation of the inner code. Notice that the

edges in Ē are represented by solid lines, while the edges in

Ẽ are represented by dashed lines.

Recall that FI(i) denotes the family index of node i. We

define the following three sets:

IJ
[1] = {(i, j) : 1 ≤ i < j ≤ n, 1 ≤ |FI(i)| < |FI(j)| ≤ c}

IJ
[2] = {(i, j) : 1 ≤ i < j ≤ n, 1 ≤ FI(i) ≤ c, FI(j) = 0}

IJ
[3] = {(i, j) : 1 ≤ j < i ≤ n, FI(i) = 0, F I(j) = −c}.

One can easily verify that the union of the first two sets,

IJ
[1]∪ IJ

[2], can be mapped bijectively to the edge set Ē, and

the third set IJ[3] can be mapped bijectively to the edge set

Ẽ. The difference between sets IJ
[1], IJ[2] and IJ

[3] and Ē
and Ẽ is that the sets IJ

[1] to IJ
[3] focus on ordered pairs

while the edges in E correspond to unordered vertex pairs

(undirected edges).

The unordered edge sets Ē and Ẽ capture the main design

ideas in a more intuitive way while the ordered sets IJ
[1]

to

IJ
[3] are easier to use during the actual counting process. For

example, there are
(n−|N0|)(d−|N0|)

2 pairs in IJ
[1], d|N0| pairs

6

in IJ
[2]

, and |N−c| · |N0| pairs in IJ
[3]

. Thus, in total, there

are

(n− |N0|)(d − |N0|)

2
+ d|N0|+ |N−c| · |N0| (9)

distinct pairs in the overall index set IJ[1] ∪ IJ
[2] ∪ IJ

[3]. This

implies that the total number of edges of graph G is also

characterized by (9).

Each edge of graph G corresponds to one coded packet that

is stored in the distributed storage system. More specifically,

each edge (i, j) ∈ Ē represents a packet P(i,j) that is stored

in the two physical nodes i and j, i.e., both nodes i and

j store an identical copy of the packet P(i,j). On the other

hand, each edge (i, j) ∈ Ẽ represents a packet P̃(i,j) that

is stored in only one of its two vertices, the corresponding

vertex in N−c. One can verify by examining the IJ
[1] to IJ

[3]

index sets defined previously that each physical node stores

exactly α = d packets.

The outer code: We now describe how to generate the

|IJ[1]| + |IJ[2]| + |IJ[3]| coded packets (the P(i,j) and P̃(i,j)

packets depending on whether (i, j) ∈ Ē or (i, j) ∈ Ẽ) from

the M original packets, where M is specified by (8). Our

goal is to design the |IJ[1]| + |IJ[2]| + |IJ[3]| coded packets

satisfying the following two properties.

Property 1: For any i0 ∈ N0, there are d different j
indices satisfying (j, i0) ∈ IJ

[2]
and they are those j ∈ N1 ∪

N2∪· · ·∪Nc for all (j, i0) ∈ IJ
[2]. We require that any given

coded packet P̃(i0,j) corresponding to some (i0, j) ∈ IJ
[3]

must be a linear combination of the d packets P(j0,i0) for all

j0 satisfying (j0, i0) ∈ IJ
[2], i.e., those d packets stored in

node i0.

We now describe the second required property. Recall that

there are |N0| = n mod (n − d) nodes in the incomplete

family and they have node indices c(n−d)+1 to c(n−d)+
|N0| where c is the family index of the last complete family.

Consider any arbitrary but fixed subset of edges Esub ⊆ Ē∪Ẽ
and we will define (|N0| + 1) different values a0 to a|N0|

in the following way. Define am, m = 1 to |N0|, as the

number of edges e ∈ Esub satisfying that e is connected

to the node (c(n − d) + m), the m-th vertex in N0. By

definition, it is clear that
∑|N0|

m=1 am = |Esub ∩ (IJ[2] ∪ IJ
[3])|,

where we abuse the notation slightly by treating the ordered-

pair sets IJ
[2] and IJ

[3] as unordered edge sets. Define a0 as

the number of e ∈ Esub that are not connected to any of

the vertices in N0, i.e., a0 , |Esub ∩ IJ
[1]|. Define a.count

∆
=

a0+
∑|N0|

m=1 min(am, d). The above description specifies how

to compute a value a.count from any given Esub.

The intuition of this a.count computation is as follows. In

the traditional FR construction, each edge carries a distinct

packet generated by an MDS code. Therefore the packets

are as linearly independent as possible. The rank of the

corresponding coding matrix is thus equal to the number

of distinct edges. However, the construction of FFR has to

satisfy Property 1. That is, the packets corresponding to those

edges in IJ
[3] must be a linear sum of the α = d packets

stored in the node i0 ∈ N0, see Property 1. Therefore,

the packets are not as independent to the same degree as

with the MDS-code-based construction. As a result, one

uses the minimum between am and d to take into account

the linear dependency imposed by Property 1. The value of

a.count then represents an upper bound on the rank of the

coding matrix corresponding to the packets in edges Esub.

The following Property 2 then imposes that the packets must

be as linearly independent as possible, with the matrix rank

meeting the upper bound a.count whenever possible.

Property 2: The |E| coded packets must satisfy that for

any subset of edges Esub satisfying a.count ≥ M, the

corresponding packets can be used to reconstruct the original

file of size M packets, i.e., the corresponding coding matrix

being of full rank.

In the following, we describe how to construct the outer

code, i.e., how to design coded packets for the |E| edges

that satisfy the above two properties. Specifically, we can

use a two-phase approach to generate the packets. We

first independently and uniformly randomly generate |Ē| =
(n−|N0|)(d−|N0|)

2 + d|N0| linearly encoded packets from the

M packets of the original file. These packets are fixed and

arbitrarily assigned to the edges in Ē (one for each edge).

After this first step, all physical nodes store exactly d packets

except those nodes in N−c, each of which now stores exactly

(d − |N0|) packets. Now, from each node in u ∈ N0, we

generate independently and uniformly a random set of |N−c|
linearly encoded packets from the d packets stored in u.

We fix these newly generated packets and assign them to

each of the |N−c| edges in {(u,w) ∈ Ẽ : ∀w ∈ N−c}.

Specifically, these |N−c| packets will now be stored in node

w ∈ N−c, one for each w. Repeat this construction for all

u ∈ N0. After this second step, each edge in Ē ∪ Ẽ has

been assigned one distinct coded packet and each node in

N = N1 ∪ · · ·Nc ∪N−c ∪N0 now stores exactly d packets.

The Phase 1 construction is now complete.

After the initial random-construction phase, we enter the

second phase, the verification phase. In this phase, we fix

the packets and deterministically check whether they satisfy

Property 2 (by our construction the coded packets always

satisfy Property 1). The following lemma states that with

high probability, the randomly generated packets in Phase 1

will satisfy Property 2.

Lemma 1: When GF(q) is large enough, with close-to-

one probability, the above random construction will satisfy

Property 2.

The proof of Lemma 1 is relegated to Appendix A.

To illustrate the construction/notation of FFR codes, we

return to Example 2 of Section IV. In that example, we

7

have (n, k, d, α, β) = (7, 3, 3, 3, 1) and |E| = 12, |Ē| = 9,

and |Ẽ| = 3, see Fig. 4. The packets corresponding to the

edges in Ē are P(1,5) = X1, P(1,6) = X2, P(1,7) = X3,

P(2,5) = X4, P(2,6) = X5, P(2,7) = X6, P(3,5) = X7,

P(3,6) = X8, and P(3,7) = X9. On the other hand, the packets

corresponding to edges in Ẽ are P̃(5,4) = X10, P̃(6,4) = X11,

and P̃(7,4) = X12. It is clear by (3) to (5) that the construction

satisfies Property 1. The coefficients in (1) and (2) are chosen

randomly while using computers to verify that Property 2 is

satisfied for the final construction.

VI. ANALYSIS OF FFR CODES

A. The Repair Operations

In this section, we first argue that FFR codes can be

exactly-repaired using FHS. First, consider the case that node

i fails for some i ∈ N1∪N2∪· · ·∪Nc∪N0 (those in N\N−c).

The d packets stored in node i thus need to be repaired. We

then notice that the d packets in node i correspond to the

d edges in Ē that are incident to node i. Therefore, each

of those d packets to be repaired is stored in another node j
and node i can thus be repaired-by-transfer. Note that by our

construction, the neighbors of node i are indeed the helper

set Di in FHS. Also see our discussion in Example 2 of

Section IV for illustration.

We now consider the case in which node i in N−c fails.

We again notice that (c−1)(n−d) of its d packets correspond

to (solid) edges in Ē. Therefore, each of those (c − 1)(n −
d) packets is also stored in another node and can again be

repaired-by-transfer. To restore the remaining n mod (n −
d) packets, by our construction, these packets correspond to

the edges in {(w, i) ∈ Ẽ : (w, i) ∈ IJ
[3]}. By Property 1

of our outer code construction, for any w0 ∈ N0, P̃(w0,i),

of those in IJ
[3], is a linear combination of the d packets

{P(j,w0) : (j, w0) ∈ IJ
[2], j = 1, 2, · · · , d} stored in node

w0. Thus, during repair, newcomer i can ask physical node

w0 to compute the packet P̃(w0,i) and send the final result

for all w0 ∈ N0. Therefore, newcomer i can exactly-repair

all the remaining n mod (n − d) packets as well. Also see

our discussion in Example 2 of Section IV for illustration.

B. The Reconstruction Operations

The following proposition shows that the FFR code with

FHS can protect against any (n− k) simultaneous failures.

Proposition 3: Consider the FFR code with any given

(n, k, d) values. For any arbitrary selection of k nodes, one

can use all the k ·d packets stored in these k nodes (some of

them may be identical copies of each other) to reconstruct

the original file M packets with M described in (8).

The proof of Proposition 3 will be provided shortly. Since

the α, β, and M values in (8) match the MBR point of the

FHS scheme in (7), Proposition 3 shows that the explicitly

constructed FFR code indeed achieves the MBR point of the

FHS scheme predicted by the min-cut-based analysis. It turns

out that FFR is indeed optimal in some scenarios.

Proposition 4: If d is even, n = d+ 2, k = n/2 + 1, and

α = dβ, then FFR is optimal. Namely, there is no code that

can protect a file size strictly larger than the protected file

size of FFR characterized by (7).

Proposition 5: If n mod (n − d) = 0, k = n − 1, and

α = dβ, then FFR is again optimal, i.e., achieves the largest

M.

Propositions 4 and 5 are direct corollaries of Proposition 3

and [2, Propositions 3 and 4]. Their proofs are thus omitted.

The rest of this subsection is dedicated to the proof of

Proposition 3.

Proof: Consider an arbitrarily given set of k nodes in the

distributed storage network, denoted by S. Denote nodes in

S that belong to Ni by Si
∆
= S ∩ Ni. We now consider

the set of edges that are incident to the given node set

S, i.e., those edges have at least one end being in S and

each of the edges corresponds to a distinct packet stored in

nodes S. Recall that for any set of edges, we can compute

the corresponding a.count value as defined in Property 2

of our code construction. The key to the proof is to show

that the a.count value of the edges incident to S is no less

than M. Then Property 2 immediately leads to the proof of

Proposition 3.

To that end, we describe the following step-by-step proce-

dure, termed COUNT, that computes the value a.count. We

will later analyze each step of the procedure to quantify the

a.count value.

1) We first define G1 = (V1, E1) = G = (V,E) as the

original graph representation of the FFR code. Choose

an arbitrary order for the vertices in S such that all nodes

in S−c come last. Call the i-th vertex in the order, vi.
That is, we have that S−c = {vi : k−|S−c|+1 ≤ i ≤ k}
and S1 ∪ · · · ∪ Sc ∪ S0 = {vi : 1 ≤ i ≤ k − |S−c|}.

2) Set e(S) = 0, where e(S) will be used to compute

a.count.
Now, do the following step sequentially for i = 1 to

|S| = k:

3) Consider vertex vi. We first compute

xi = |{(vi, j) ∈ Ei ∩ Ē : j ∈ N}|+ 1{vi∈S−c}·
∑

u∈N0

1{(u,vi)∈Ei∩Ẽ} · 1{|{(u,j)∈Ei:j∈N}|>|N−c|}.

(10)

Once xi is computed, update e(S) = e(S)+xi. Remove

all the edges incident to vi from Gi. Denote the new

graph by Gi+1 = (Vi+1, Ei+1).

Intuitively, the above procedure first “counts” the number

of edges in Gi that belongs to Ē and is connected to the

8

target vertex vi, namely, the |{(vi, j) ∈ Ei ∩ Ē : j ∈ N}|
term in (10). Then, if the target vertex vi ∈ S−c, we compute

one more term in the following way. For each edge (u, vi) ∈
Ei ∩ Ẽ, if the following inequality holds, we also count this

specific (u, vi) edge:

|{(u, j) ∈ Ei : j ∈ N}| > |N−c|. (11)

That is, we check how many edges (including those in Ē∩Ei

and in Ẽ ∩Ei) are still connected to u. We count the single

edge (u, vi) if there are still at least (|N−c|+1) edges in Ei

that are connected to u. Collectively, this additional counting

mechanism for the case of vi ∈ S−c gives the second term

in (10). After counting the edges incident to vi, we remove

those edges from Ei so that in the future counting rounds

(rounds > i) we do not double count the edges in any way.

Claim 1: After finishing the subroutine COUNT, the final

e(S) value is exactly the value of a.count.
Proof: The proof of the above claim is as follows. We

first note that in the subroutine, we order the nodes in S
in the specific order such that all nodes in S−c are placed

last. Therefore, in the beginning of the subroutine COUNT,

all the vi vertices do not belong to S−c. For that reason,

the second term in (10) is zero. Since vi /∈ S−c, all the

edges connected to vi are in Ē. The first term of (10) thus

ensures that we count all those edges in this subroutine. Since

we remove those counted edges in each step (from Gi to

Gi+1), we do not double count any of the edges. Therefore,

before we start to encounter a vertex vi ∈ S−c, the subroutine

correctly counts the number of edges incident to the vj for

all 1 ≤ j < i.
We now consider the second half of the subroutine, i.e.,

when vi ∈ S−c. We then notice that the subroutine still

counts all those edges in Ē through the first term in (10).

The only difference between COUNT and a regular counting

procedure is the second term in (10). That is, when counting

any edge in Ẽ, we need to first check whether the total

number of edges in Gi incident to u is greater than |N−c|. To

explain why we have this conditional counting mechanism,

we notice that in the original graph G, each node u ∈ N0 has

|{(u, j) ∈ Ē : j ∈ N}| = d and |{(u, j) ∈ Ẽ : j ∈ N}| =
|N−c|. Therefore, the total number of edges connected to u
is |{(u, j) ∈ E : j ∈ N}| = d + |N−c|. Note that during

the counting process, those counted edges are removed from

the graph during each step. Since Gi is the remaining graph

after removing all those counted edges in the previous (i−1)
steps, if we still have |{(u, j) ∈ Ei : j ∈ N}| > |N−c|,
then it means that we have only removed strictly less than

(d + |N−c|) − |N−c| = d number of edges in the previous

(i − 1) counting rounds. The above argument thus implies

that in the previous (i − 1) counting rounds, we have only

counted < d edges that are incident to node u.

Without loss of generality, we assume that u is the m-

th node of N0. Then it means that the am value (the

number of edges connected to u) computed thus far (until

the beginning of the i-th counting round) is still strictly

less than d. Therefore, when computing the objective value

a.count = a0 +
∑

mmin(am, d), the to-be-considered edge

(vi, u) in the second term of (10) will increment am value

by 1 and thus increment a.count by 1. Since our goal is to

correctly compute the a.count value by this subroutine, the

subroutine needs to include this edge into the computation,

which leads to the second term in (10).

On the other hand, if the total number of edges in Gi that

are adjacent to u is ≤ |N−c|, it means that we have removed

≥ (d+ |N−c|)− |N−c| = d number of edges in the previous

counting rounds. That is, when counting those edges adjacent

to u, we have already included/encountered ≥ d such edges

in the previous (i−1) rounds. As a result, the corresponding

am value is ≥ d. Therefore, when computing the objective

value a.count = a0 +
∑

m min(am, d), the to-be-considered

edge (vi, u) will increment the value of am by 1 but will not

increment the a.count value. In the subroutine COUNT, we

thus do not count the edges in Ẽi anymore, which leads to

the second term in (10).

The new constraint put in Step 3 thus ensures that the final

output e(S) is the value of a.count.
We now need to prove that for any set S of k nodes, the

corresponding e(S) ≥ M. Assuming this is true, we can then

invoke Property 2, which guarantees that we can reconstruct

the M packets of the original file from the coded packets

stored in S.

To prove that e(S) ≥ M, we need the following claim.

Claim 2: For any arbitrarily given set S, there exists an

r̃

∆
= (r̃1, · · · , r̃k) ∈ {1, 2, · · · , n}k such that

e(S) =

k∑

i=1

(d− zi(r̃)), (12)

where zi(·) is a function zi : {1, · · · , n}k 7→ N defined as

zi(r) = |{a ∈ Dri : ∃j < i, a = rj}|, where N is the set

of all positive integers and Dri is the helper set of node ri
in our FFR code construction. Additional explanation of the

function zi(·) can be found in [2, Lemma 8].

Using the above claim, we have

a.count = e(S) =

k∑

i=1

(d− zi(r̃)) (13)

≥ min
r∈{1,··· ,n}k

k∑

i=1

(d− zi(r)) (14)

=

k∑

i=1

(d− yi) (15)

= M. (16)

9

where (13) follows from Claim 2; (14) follows from taking

the minimum operation; (15) follows from [2, Proposition 6]

and Lemmas 8 to 11 of the proof of [2, Proposition 5]; and

(16) follows from (8). By Property 2, we have thus proved

that the k ·d packets stored in any set of k nodes can be used

to jointly reconstruct the original file of size M.

The proof of Claim 2 is provided in Appendix B. The proof

that the FFR codes can protect against (n− k) simultaneous

failures is hence complete.

VII. THE EXTENSION OF THE FFR CODES

In our FFR codes, the helper selection scheme is based on

the FHS scheme proposed in [2]. In [2], the FHS scheme is

also extended to a new scheme called, family-plus scheme.

In this section, we introduce some basic notation/concepts

of the family-plus helper selection scheme and then discuss

how we can generalize the FFR codes in this work so that

we can also replace the FHS scheme in the FFR codes by

the new family-plus scheme.

A. The Family-Plus Helper Selection Scheme

The family-plus helper selection scheme is an extension of

the FHS scheme for n ≫ d. In family-plus helper selection,

the n nodes are grouped into several disjoint groups of 2d
nodes and one disjoint group of nremain nodes. The first type

of groups is termed the regular group while the second type is

termed the remaining group. If there has to be one remaining

group (when n mod (2d) 6= 0), then it is enforced that the

size of the remaining group is as small as possible but still

satisfying nremain ≥ 2d + 1. After the partitioning, the FHS

scheme is applied to the individual groups. Specifically, if

a newcomer belongs to the first group, then all its helpers

are chosen within the same group according the rules of the

original FHS scheme. Since each regular group is of size 2d
nodes and each remaining group must satisfy nremain ≥ 2d+1,

one can easily verify that whenever n ≤ 4d, then there is

no regular group and only 1 remaining group. As a result,

the family-plus scheme collapses back to the original FHS

scheme. On the other hand, when n ≥ 4d+1, then there will

be multiple groups and the family-plus scheme differs from

the FHS scheme.

The file size that can be protected at the MBR point of the

family-plus helper selection scheme was found in [2] to be

M =

(

1{n mod (2d) 6=0} ·

min(k,2d−1)−1
∑

i=0

(

d− i+

⌊
i

2

⌋)

+

d2
⌊
(k − nl)

+

2d

⌋

+

q
∑

i=0

(

d− i+

⌊
i

2

⌋))

β, (17)

where

q = ((k − nl)
+ mod (2d))− 1, and

nl =

{

nremain, if n mod (2d) 6= 0

0, otherwise.

In [2], it was proved that for any (n, k, d) values, (17) is

always no less than (7). That is, the family-plus scheme im-

proves upon the FHS scheme regardless whether n ≤ 4d− 1
or n ≥ 4d.

B. The FFR Codes Based on the Family-Plus Scheme

The FFR codes described above can be modified and used

to construct an explicit exact-repair code that can achieve

the MBR point of the family-plus helper selection scheme.

This is achieved by first applying the same inner code

graph construction of the above FFR codes to each group

of the family-plus helper selection scheme, i.e., the edge

representation of each group consists of the two edge sets

Ē and Ẽ. Then, since the repair of the family-plus scheme

occurs within each group separately, for the outer code, we

enforce Property 1 for each individual group so that we can

maintain the exact-repair property. Finally, we need to ensure

that any subset of k nodes (which could be across multiple

groups) can be used to reconstruct the original file. Therefore,

we have to ensure that the outer code satisfies a modified

version of Property 2.

In the following we briefly describe how to do this

modification with a slight abuse of notation. Recall that

in the family-plus helper selection scheme, only the re-

maining group could possibly have an incomplete family.

Denote the set of incomplete family nodes in the remain-

ing group by N0 and the graph of the remaining group

by Gremain = (Vremain, Eremain). The new property imposed

on the packets becomes Modified Property 2: Index the

vertices in N0 ⊂ Vremain by {u1, u2, · · · , u|N0|}. For any

given subset of the total packets (across all groups) and

any given m satisfying 1 ≤ m ≤ |N0|, define am as the

number of packets in this subset that correspond to the edges

in Eremain = Ēremain ∪ Ẽremain that are incident to vertex

um ∈ N0. Define a0 as the number of the other packets in this

subset, i.e., those packets not corresponding to any edges that

are incident to N0. Define a.count
∆
= a0+

∑|N0|
m=1 min(am, d).

The modified Property 2 enforces that we must be able to

reconstruct the original file of size M if a.count ≥ M.

We can again use the concept of random linear network

coding to prove the existence of a code satisfying Property 1

and the Modified Property 2 in a similar way as in Lemma 1.

The correctness of the proposed FFR codes for family-plus

helper selection schemes can be proved in a similar way as

when proving the correctness for FHS schemes provided in

Section VI. We omit the detailed proofs since they are simple

10

extensions of the proofs provided for the FHS scheme with

only the added notational complexity of handling different

groups of nodes in the family-plus helper selection schemes.

VIII. CONCLUSION

In this paper, we have presented a new class of codes

that we term flexible fractional repetition (FFR) codes. These

codes possess several important properties: (i) they achieve

the MBR point of the FHS scheme and close the loop of the

graph-based necessary and sufficient condition of the benefits

of helper selection derived in [2]; (ii) the proposed FFR

codes are exact-repair codes and for the most part admit

the repair-by-transfer property; and (iii) their construction

utilizes a new code-construction technique that generalizes

the existing FR codes for arbitrary network parameters. One

future direction is to further generalize the proposed FFR

codes for the multiple failures scenario in a way similar to

the existing results in [5], [9].

APPENDIX A

PROOF OF LEMMA 1

d
|N−c|

d
|N−c|

d
|N−c|

s t

Level 1 Level 2 Level 3

(n−|N0|)(d−|N0|)
2

ui vi

Fig. 5. The graph of the proof of Lemma 1.

To prove this lemma, we model the problem using a finite

directed acyclic graph and then we invoke the results from

random linear network coding [6]. The graph has a single

source vertex s that is incident to |Ē| = |IJ[1]| + |IJ[2]| =

(n−|N0|)(d−|N0|)
2 +d|N0| other vertices with edges of capacity

1. We call these vertices level 1 vertices. Among these level 1

vertices, we focus on a subset of d|N0| vertices and partition

it into |N0| disjoint groups and each group consists of d
arbitrarily chosen distinct vertices. The intuition is that each

group of them is associated with a vertex in N0. See Fig. 5

for illustration.

Now, in addition to the source s and the level 1 vertices,

we add |N0| · |N−c| new node pairs (ui, vi) for all 1 ≤
i ≤ |N0| · |N−c|. Each (ui, vi) is connected by an edge of

capacity 1. We call the ui nodes, level 2 vertices and the

vi nodes level 3 vertices. We partition the new node pairs

(edges) into |N0| groups and each group consists of |N−c|
edges. We then associate each group of |N−c| edges to one

group of d level 1 vertices created previously. See Fig. 5

for illustration. Finally, for the level 1, level 2, and level 3

vertices belonging to the same group (there are |N0| groups

in total), we connect all the level 1 vertices in this group and

all the level 2 vertices in this group by an edge with infinite

capacity.

We now describe the relationship of the newly constructed

graph in Fig. 5 to the graph representation of the FFR code.

For easier reference, we use the graph in Fig. 5 to refer to the

newly constructed graph; and use the graph in Fig. 4 to refer

to the graph representation of the FFR codes. There are |N0|
groups in the graph of Fig. 5 and each group corresponds to

one node in N0 of the graph of Fig. 4. We notice that there

are |Ē| = (n−|N0|)(d−|N0|)
2 +d|N0| number of level 1 vertices

in the graph of Fig. 5 and |Ē| = (n−|N0|)(d−|N0|)
2 + d|N0|

number of edges in Ē of the graph of Fig. 4. As a result, we

map each level 1 vertex bijectively to an edge in Ē in a way

that each group of the level-1 vertices in Fig. 5 (totally |N0|
groups) corresponds to the d edges in Ē that are connected

to the same node in N0 of Fig. 4.

There are |N0| · |N−c| number of level 3 vertices in the

graph of Fig. 5 and there are |N0| · |N−c| number of Ẽ edges

in the graph of Fig. 4. As a result, we map each level 3 vertex

bijectively to an edge in Ẽ in a way that each group of the

level-3 vertices in Fig. 5 (totally |N0| groups) corresponds to

the |N−c| edges in Ẽ that are connected to the corresponding

node in N0 of Fig. 4.

We now focus on how to encode over the graph of Fig. 5

and then use the above mapping to convert it to a coding

scheme over the graph of Fig. 4. Assume that source s has a

file of M packets. We perform random linear network coding

(RLNC) [6] on the graph of Fig. 5 assuming a sufficiently

large finite field GF(q) is used. Specifically, for any level-1

vertex u, the corresponding (s, u) is a random mixture of all

M packets. For each (ui, vi) edge connecting a level-2 vertex

ui and a level-3 vertex vi, it carries a linear combination of

11

all coded (s, u) edges that are incident6 to (ui, vi). After the

encoding over Fig. 5 is fixed, we can immediately construct

the corresponding encoding scheme over Fig. 4 based on the

aforementioned mapping. For example, for a level-2 vertex

u and a level-3 vertex v, if edge (u, v) belongs to the i0-th

group in Fig. 5 and v is the j0-th level 3 vertex in this group,

then, we assign the coded packets on the edge (u, v) to the

edge e ∈ Ẽ (in the graph of Fig. 4) that connects the i0-th

node in N0 and the j0-th node in N−c.

In the following, we will prove that with a sufficiently

large GF(q) the above code construction (from the RLNC-

based code in the graph of Fig. 5 to the FFR codes in the

graph of Fig. 4) satisfies Properties 1 and 2 with close-to-one

probability.

We first prove that our construction satisfies Property 1

with probability one. To that end, we notice that any coded

packet P̃(i0,j0) corresponding to some (i0, j0) ∈ IJ
[3] in the

graph of Fig. 4 is now mapped from a (u, v) edge in Fig. 5

where u is a level 2 vertex; v is a level 3 vertex; (u, v)
belongs to the i0-th group in Fig. 5; and v is the j0-th level 3

vertex in this group. By the graph construction in Fig. 5, such

a coded packet is a linear combination of the coded packets

in Fig. 5 from source s to vertex ũ where the ũ vertices are

the level-1 vertices corresponding to the i0-th group. Since

those packets along (s, ũ) are the P(j1,i0) packets for all j1
satisfying (j1, i0) ∈ IJ

[2] in the graph of Fig. 4, we have thus

proved Property 1: Specifically, any coded packet P̃(i0,j0)

corresponding to some (i0, j0) ∈ IJ
[3] is a linear combination

of the packets P(j1,i0) for all j1 satisfying (j1, i0) ∈ IJ
[2].

To prove that the above construction satisfies Property 2

with close-to-one probability, for any edge set subset of edges

in the graph of Fig. 4 with the corresponding a.count value

satisfying a.count ≥ M, we place a sink node t in the

graph of Fig. 5 that connects to the corresponding set of level

1/level 3 vertices in Fig. 5 using edges of infinite capacity.

See Fig. 5 for illustration of one such t. One can quickly

verify that the min-cut-value from the source s to the sink t
in the graph of Fig. 5 is indeed the a.count value computed

from the given subset of edges in the graph of Fig. 4. As a

result, with a sufficiently large finite field GF(q), sink t in

Fig. 5 can successfully reconstruct the original file with close-

to-one probability. Since the sink t accesses only level 1 and

level 3 vertices, the P(i,j) packets in the graph of Fig. 4 that

correspond to the level 1 vertices in the graph of Fig. 5 and

the P̃(i,j) packets in the graph of Fig. 4 that correspond to the

level 3 vertices in the graph of Fig. 5 jointly can reconstruct

the original file of size M. Property 2 is thus also satisfied.

Since, there are at most
(
|E|
M

)
different ways of choosing the

6Technically, we should say all (s, u) edges that are upstream of (ui, vi).
However, since the edges connecting level-1 and level-2 vertices are of
infinite capacity, we use the word incident in a loose sense.

sink t,7 a very loose outer bound of the success probability

is

Pr(The RLNC construction satisfies Lemma 1) ≥ 1−

(
|E|
M

)

q
.

(18)

By the above arguments, the proof of Lemma 1 is com-

plete.

APPENDIX B

PROOF OF CLAIM 2

In order to prove Claim 2, we will need the following fact.

Claim 3: Suppose there exists a node a ∈ S−c and a node

b ∈ Nc\Sc. Define a new set of nodes S′ ∆
= (S ∪ {b})\a.

That is, we remove node a from S but add a new node b in

S that satisfies b ∈ Nc. Then

e(S) = e(S′). (19)

That is, running the subroutine COUNT on both S and S′

will lead to the same final output value.

Proof: We consider COUNT for the set S′ and we denote

nodes in S′ that belong to Ni by S′
i

∆
= S′ ∩ Ni. To avoid

confusion when S′ is used as input to the subroutine COUNT,

we call the new graphs during the counting steps of COUNT

by G′
i = (V ′

i , E
′
i), the new vertices by v′i, and the new xi by

x′
i. Since the subroutine COUNT can be based on any sorting

order of nodes in S (and in S′) as long as those nodes in N−c

come last, we assume that the nodes in S are sorted in a way

that node a is the very first node in S−c. For convenience,

we say that node a is the i0-th node in S and we assume

that all the first (i0 − 1)-th nodes are not in S−c and all

the nodes following the (i0 − 1)-th node are in S−c. That

is, i0 = |S| − |S−c| + 1 = k + 1 − |S−c|. We now use the

same sorting order of S and apply it to S′. Specifically, the

i-th node of S is the same as the i-th node in S′ except for

the case of i = i0. The i0-th node of S′ is set to be node

b. One can easily check that the sorting orders of S and S′

both satisfy the required condition in Step 1 of the subroutine

COUNT.

We will run COUNT on both S and (S∪{b})\a in parallel

and compare the resulting e(S) and e((S ∪ {b})\a).
It is clear that in rounds 1 to (i0 − 1), the subroutine

COUNT behaves identically when applied to the two different

sets S and S′ = (S∪{b})\a since their first (i0−1) vertices

are identical. We now consider the i0-th round and argue that

the total number of edges in E′
i0

incident to v′i0 is equal to

the total number of edges incident to vi0 in Ei0 . Recall that

b and a have the same helper sets since they are from the

7Since ultimately we are only interested in reconstructing the file from
any k nodes, we actually only need to consider

(

n

k

)

ways of choosing the
sink t, which can further improve the probability lower bound.

12

same complete family. Specifically, the edges in E incident

to vi0 = a ∈ S−c that have been counted in the first (i0 − 1)
rounds are of the form (u, a) for all u ∈ {v1, v2, · · · , vi0−1}∩
(S0 ∪ S1 ∪ · · · ∪ Sc−1). Also note that in the original graph

G, there are exactly d edges incident to node a ∈ S−c (some

of them are in Ē and some of them in Ẽ). Therefore, in Ei0

(after removing those previously counted edges), there are

(d− |{v1, v2, · · · , vi0−1} ∩ (S0 ∪ S1 ∪ · · · ∪ Sc−1)|) number

of edges that are incident to vi0 .

Similarly, the edges in E′
i0

incident to v′i0 = b ∈ S′
c that

have been counted previously are of the form (u, b) for all

u ∈ {v1, v2, · · · , vi0−1}∩(S0∪S1∪· · ·∪Sc−1) since v′i = vi
for 1 ≤ i ≤ i0 − 1 and S′

x = Sx for 0 ≤ x ≤ c − 1. Also

note that, in the original graph G′, there are exactly d edges

incident to node b ∈ S′
c (all of them are in Ē′). Therefore, in

E′
i0

(after removing those previously counted edges), there

are (d−|{v1, v2, · · · , vi0−1}∩(S0∪S1∪· · ·∪Sc−1)|) number

of edges that are incident to v′i0 = b.

We now argue that all the edges in Ei0 that are incident

to a will contribute to the computation of xi0 . The reason

is that node a is the first vertex in S−c. Therefore, when in

the i0-th counting round, no edge of the form (u, v) where

u ∈ N0\S0 and v ∈ N−c has ever been counted in the

previous (i0 − 1) rounds. Also, since we choose b ∈ Nc\S
to begin with, when running COUNT on S, for all u ∈ N0\S0

at least one edge, edge (u, b), is not counted during the first

(i0− 1) rounds. As a result, for any u ∈ N0\S0, in the i0-th

round, at least |{(u, v) : v ∈ N−c}|+ 1 = |N−c| + 1 edges

incident to u are still in Ei0 (not removed in the previous

(i0 − 1) rounds). This thus implies that the second term of

(10) will be non-zero. Therefore, at the i0-th iteration of

Step 3 of COUNT, all the edges in Ei0 incident to vi0 = a
are counted. The xi0 value computed in (10) thus becomes

xi0 = d− |{v1, v2, · · · , vi0−1} ∩ (S0 ∪ S1 ∪ · · · ∪ Sc−1)|.

The previous paragraph focuses on the i0-th round when

running the subroutine COUNT on S. We now consider the

i0-th round when running COUNT on S′. We argue that all

the edges in E′
i0

that are incident to b will contribute to

the computation of x′
i0

. The reason is that node b ∈ S′
c.

Therefore, all edges incident to b belong to Ē′. As a result,

all the edges in E′
i0

that are incident to b will contribute to

the computation of x′
i0

through the first term in (10). We thus

have x′
i0

= d−|{v1, v2, · · · , vi0−1}∩(S0∪S1∪· · ·∪Sc−1)|.
Since xi0 = x′

i0
, we thus have e(S) = e(S′) after the first

i0 counting rounds.

We now consider rounds (i0+1) to k. We observe that by

our construction v′i = vi ∈ S′
−c ⊂ S−c for i0 + 1 ≤ i ≤ k.

Moreover, since vi0 = a ∈ S−c and v′i0 = b ∈ S′
c, both

vertices a and b are initially not connected to any vertices

in S−c and S′
−c respectively (those vi and v′i with i0 + 1 ≤

i ≤ k) since vertices of the same family are not connected.

Therefore, replacing the i0-th node vi0 = a by v′i0 = b will

not change the value of the first term in (10) when computing

xi for the i-th round where i0 + 1 ≤ i ≤ k.

We now consider the second term of (10). For any u ∈ S0,

any edge incident to u has been counted in the first (i0 − 1)
rounds since we assume that when we are running COUNT

on the S set, we examine the nodes in S−c in the very last.

Therefore, there is no edge of the form (vi, u) in Ei (resp.

(v′i, u) ∈ E′
i) with u ∈ S0 since those edges have been

removed previously. Therefore, the summation over u ∈ N0

can be replaced by u ∈ N0\S0 during the i0-th round to the

k-th round. On the other hand, for any u ∈ N0\S0, if there

is an edge connecting (a, u) ∈ Ẽ, then by our construction

there is an edge (b, u) ∈ Ē. Therefore, in the i0-th round, the

same number of edges incident to u is removed regardless

whether we are using S as the input to the subroutine COUNT

or we are using S′ as the input to the subroutine COUNT. As

a result, in the beginning of the (i0 + 1)-th round, for any

u ∈ N0, we have the following equality

|{(u, j) ∈ Ei : j ∈ N}| = |{(u, j) ∈ E′
i : j ∈ N}| (20)

when i = i0 + 1. Moreover, for any u ∈ N0\S0, we remove

one and only one edge (u, vi) in the i-th round, regardless

whether we are counting over S or over S′. Since vi = v′i
for all i = i0 + 1 to k, we have (20) for all i = i0 + 1 to

k as well. The above arguments thus prove that the second

term of (10) does not change regardless whether we count

over S or S′. As a result, x′
i = xi for i0 + 1 ≤ i ≤ k. Since

e(S) = e(S′) for all k rounds of the counting process, we

have thus proved (19).

We now turn our attention back to proving Claim 2. For

any node set S, by iteratively using Claim 3, we can construct

another node set S′ such that e(S) = e(S′) while either

(Case i) S′
−c = ∅; or (Case ii) S′

−c 6= ∅ and S′
c = Nc. As a

result, we can assume without loss of generality that we have

either (Case i) S−c = ∅; or (Case ii) S−c 6= ∅ and Sc = Nc

to begin with.

We first consider the former case. Let r̃ be any vector in

R such that its r̃i = vi for 1 ≤ i ≤ k, i.e., r̃i equals the node

index of the vertex vi. We will run the subroutine COUNT

sequentially for i = 1 to k and compare the increment of

e(S) in each round, denoted by xi in (10), to the i-th term

(d− zi(r̃)) in the summation of the right-hand side of (12).

Consider the i-th round of counting for some 1 ≤ i ≤ k, and

assume that the corresponding vertex vi belongs to the y-th

family, i.e., vi ∈ Ny . Since S−c = ∅ in this case, we have

vi /∈ S−c and the second term in (10) is always 0. Therefore,

the procedure COUNT is indeed counting the number of edges

in Ē that are incident to S without the special conditional

counting mechanism in the second term of (10). Therefore,

13

we have

xi = |{(vi, j) ∈ Ei ∩ Ē : j ∈ N}|

= d− |{vj /∈ Ny : vj ∈ S, 1 ≤ j ≤ i− 1}|, (21)

where d is the number of Ē edges in the original graph G that

are incident to vi and |{vj /∈ Ny : vj ∈ S, 1 ≤ j ≤ i− 1}| is

the number of edges removed during the first (i−1) counting

rounds. On the other hand, we have

vj ∈ Dy ⇔ vj ∈ Dy\N−c ⇔ vj ∈ N\(Ny ∪N−c) (22)

where the first equality follows from that S−c = ∅ implies

vj /∈ N−c; the second equality follows from the FHS

construction that Dy\N−c = N\(N−c ∪Ny) for any family

index y 6= −c. By the definition of function zi(·), our

construction of r̃ thus always has |{vj /∈ Ny : vj ∈ S, 1 ≤
j ≤ i − 1}| = zi(r̃). As a result, xi = (d− zi(r̃)) for i = 1
to k and our explicitly constructed vector r̃ satisfies (12).

We now turn our attention to the second case when S−c 6=
∅ and Sc = Nc. Recall that there are k nodes in the set S.

Let r be any vector in R such that its ri = vi for 1 ≤
i ≤ k. Define j∗ as the value that simultaneously satisfies (i)

k−|S−c| ≤ j∗ ≤ k and (ii) there are exactly d entries in the

first j∗ coordinates of r that are in N\N0. If no value satisfies

the above two conditions simultaneously, set j∗ = k+1. We

now construct another vector r̃ from r as follows: Replace

the values of the (j∗+1)-th coordinate to the k-th coordinate

of r by n, the node index of the last node in N0 and denote

the final vector by r̃.

We will now prove that the above explicit construction of

r̃ satisfies the desired property in (12). The proof is divided

into two cases:

Case 1: There exists such a j∗ satisfying (i) and (ii). We

will run the subroutine COUNT again and compare xi to the

i-th term (d− zi(r̃)).
We then observe the following facts:

1) In COUNT, from i = 1 to (k − |S−c|). For any i in

this range, we must have FI(vi) 6= −c, i.e., the family

index of node vi is not −c, since we run the subroutine

COUNT using a specific ordering of the nodes in S,

which examines the nodes in S−c in the very last. As a

result, the second term of (10) is always zero. Therefore

(21) still holds. By the definition of function zi(·), our

construction of r̃, and the fact that 1 ≤ i ≤ k − |S−c|
(implying no vj ∈ S−c for all 1 ≤ j ≤ i − 1), we get

xi = d− zi(r̃) for all 1 ≤ i ≤ k − |S−c|.
2) We now consider the case of i = k − |S−c| + 1 to j∗

of Step 3. For any i in this range, we have vi ∈ S−c.

We now argue that |{(u, j) ∈ Ei : j ∈ N}| > |N−c|
for all edges (u, vi) ∈ Ei ∩ Ẽ satisfying u ∈ N0. The

reason is that (u, vi) ∈ Ei implies that node u is not

counted in the previous (i − 1) rounds, i.e., u 6= vi′

for all 1 ≤ i′ ≤ i − 1. Therefore, an edge of (u, v) is

removed if and only if there is a v = vj for some vj
that is not in N0. Since there are exactly d vertices in

{v1, v2, . . . , vj∗} that are not in N0, it means that the

first (i − 1) counting rounds where 1 ≤ i ≤ j∗ can

remove at most (d−1) edges incident to such a node u.

Since node u has (d+ |N−c|) number of incident edges

in the original graph G, we know that the inequality

|{(u, j) ∈ Ei : j ∈ N}| > |N−c| must hold in the i-th
round. As a result, the second term of (10) is non-zero

when i = k − |S−c|+ 1 to j∗ and we can thus rewrite

xi = |{(vi, j) ∈ Ei : j ∈ N}|

= d− |{vj /∈ Nc ∪N−c : vj ∈ S, 1 ≤ j ≤ i− 1}|.

By the definition of function zi(·) and our construction

of r̃, we get xi = d−zi(r̃) for all k−|S−c|+1 ≤ i ≤ j∗.

3) We now consider the (j∗ + 1)-th to the k-th round of

Step 3. We claim that

xi = d− |S1 ∪ S2 ∪ · · · ∪ Sc| (23)

for those j∗ + 1 ≤ i ≤ k. The reason behind this is the

following. Since j∗+1 ≤ i ≤ k, we have vi ∈ S−c. For

any u ∈ N0\S0 (those u ∈ S0 have been considered

in the first (k − |S−c|) rounds), there are (d + |N−c|)
number edges incident to u in the original graph G. On

the other hand, since i ≥ j∗+1 and by our construction,

there are d entries in the first j∗ coordinates of r̃ that are

are not in N0, we must have removed at least d edges

incident to u during the first (i − 1) counting rounds

as discussed in the previous paragraph. Therefore, the

number of incident edges in Ei that are incident to u ∈
N0\S0 must be ≤ |N−c|. The second term of (10) is

thus zero. As a result, the xi computed for vi will only

include those edges in Ei ∩ Ē incident to it. Since any

vi ∈ S−c only has (d− |N0|) number of edges in Ē to

begin with, we have that

xi = (d− |N0|)− |S1 ∪ S2 ∪ · · · ∪ Sc−1|

where |S1∪S2∪· · ·∪Sc−1| is the number of edges in Ē
that have been removed during the first (i− 1) rounds.

Since Sc = Nc in the scenario we are considering and

since |Nc| = |N0| = n mod (n−d) in the FHS scheme,

we can consequently rewrite xi as

xi = d− |S1 ∪ S2 ∪ · · · ∪ Sc|

for (j∗+1) ≤ i ≤ k. Recall that in the newly constructed

r̃, the values of the (j∗ + 1)-th coordinate to the k-th

coordinate are n, which belongs to N0. Thus, by the

14

definition of function zi(·), we can see that each of these

coordinates only contributes

zi(r̃) = |{r̃j ∈ N\(N−c ∪N0) : 1 ≤ j ≤ i− 1}|

= |{r̃j ∈ N\(N−c ∪N0) : 1 ≤ j ≤ j∗}| (24)

= |S1 ∪ S2 ∪ · · · ∪ Sc|

where (24) follows from the fact that in the construction

of r̃, the (j∗ + 1)-th to the k-th coordinates of r̃ are

always of value n ∈ N0. Hence, we get xi = d− zi(r̃)
for (j∗ + 1) ≤ i ≤ k.

We have proved for this case that xi = d−zi(r̃) for i = 1
to k. Therefore, we get (12).

Case 2: No such j∗ exists. This means that one of the fol-

lowing two sub-cases is true. Case 2.1: even when choosing

the largest j∗ = k, we have strictly less than d entries that

are not in N0. Case 2.2: Even when choosing the smallest

j∗ = k− |S−c|, we have strictly more than d entries that are

not in N0.

Case 2.1 can be proved by the same arguments used in

the previous proof of Case 1 (when proving the scenario

of k − |S−c| + 1 ≤ i ≤ j∗), which implies that we have

xi = d − zi(r̃) for all 1 ≤ i ≤ k. The proof of this case is

complete.

Case 2.2 is actually an impossible case. The reason is that

for any 1 ≤ i ≤ k − |S−c|, there are exactly |S1| + |S2| +
· · ·+ |Sc| nodes vi that are not in N0, and we also have

c∑

m=1

|Sm| ≤
c∑

m=1

|Nm| = d,

where the equality follows from our FHS construction. This,

together with the observation that the first (k − |S−c|)
coordinates of r are transcribed from the distinct nodes in

S1 ∪S2 ∪ · · · ∪Sc, implies that we cannot have strictly more

than d entries that are not in N0 in the first (k − |S−c|)
coordinates of r. Case 2.2 is thus an impossible case.

By the above arguments, the proof of Claim 2 is complete.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[2] I. Ahmad and C.-C. Wang, “When can intelligent helper node selection
improve the performance of distributed storage networks?” IEEE

Trans. Inf. Theory, vol. 64, no. 3, pp. 2142–2171, 2018.
[3] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,

“Asymptotic interference alignment for optimal repair of mds codes
in distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp.
2974–2987, 2013.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE

Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.
[5] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for

repair in distributed storage systems,” in Proc. 48th Annual Allerton

Conf. on Comm., Contr., and Computing., Monticello, IL, Sep. 2010,
pp. 1510–1517.

[6] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[7] J. C. Koo and J. T. Gill, “Scalable constructions of fractional repetition
codes in distributed storage systems,” in Proc. 49th Annu. Allerton

Conf. Communication, Control, and Computing, Monticello, IL, Sep.
2011, pp. 1366–1373.

[8] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE

Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, 2003.
[9] O. Olmez and A. Ramamoorthy, “Replication based storage systems

with local repair,” in International Symposium on Network Coding

(NetCod), Calgary, AB, Jun. 2013, pp. 1–6.
[10] ——, “Fractional repetition codes with flexible repair from combina-

torial designs,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp. 1565–1591,
2016.

[11] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran,
“Dress codes for the storage cloud: Simple randomized constructions,”
in Information Theory Proceedings (ISIT), 2011 IEEE International

Symposium on, Jul. 2011, pp. 2338–2342.
[12] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-

regenerating codes for distributed storage at the msr and mbr points
via a product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57,
no. 8, pp. 5227–5239, 2011.

[13] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Ex-
plicit construction of optimal exact regenerating codes for distributed
storage,” in Proc. 47th Annu. Allerton Conf. Communication, Control,

and Computing, Monticello, IL, Sep. 2009, pp. 1366–1373.
[14] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,

“Distributed storage codes with repair-by-transfer and nonachievability
of interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.

Theory, vol. 58, no. 3, pp. 1837–1852, 2012.
[15] ——, “Interference alignment in regenerating codes for distributed

storage: Necessity and code constructions,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2134–2158, 2012.

[16] N. Silberstein and T. Etzion, “Optimal fractional repetition codes based
on graphs and designs,” IEEE Trans. Inf. Theory, vol. 61, no. 8, pp.
4164–4180, 2015.

[17] Y. Wu, “Existence and construction of capacity-achieving network
codes for distributed storage,” IEEE J. Select. Areas Commun., vol. 28,
no. 2, pp. 277–288, 2010.

[18] ——, “A construction of systematic mds codes with minimum repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3738–3741,
2011.

[19] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in Proc. IEEE Int. Symp.

Information Theory (ISIT), Seoul, South Korea, Jul. 2009, pp. 2276–
2280.

[20] B. Zhu, K. Shum, H. Li, and H. Hou, “General fractional repetition
codes for distributed storage systems,” IEEE Communications Letters,
vol. 18, no. 4, pp. 660–663, 2014.

15

	I Introduction
	II Related Work on Fractional Repetition Codes
	III Flashback of ahmad2018can and Notation
	III-A The Family Helper Selection Scheme

	IV Two Examples That Demonstrate the Construction of FFR Codes
	IV-A Example 1: Not All FR Codes Are Equal
	IV-B Example 2: Sometimes No FR Code Is Good Enough

	V The Flexible Fractional Repetition Codes
	V-A The MBR Point of the FHS Scheme
	V-B The Construction of FFR Codes

	VI Analysis of FFR Codes
	VI-A The Repair Operations
	VI-B The Reconstruction Operations

	VII The Extension of The FFR Codes
	VII-A The Family-Plus Helper Selection Scheme
	VII-B The FFR Codes Based on the Family-Plus Scheme

	VIII conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Claim 2
	References

