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On Convergence of Heuristics Based on

Douglas-Rachford Splitting and ADMM to

Minimize Convex Functions over Nonconvex Sets
Shuvomoy Das Gupta

Abstract—Recently, heuristics based on the Douglas-Rachford
splitting algorithm and the alternating direction method of
multipliers (ADMM) have found empirical success in minimizing
convex functions over nonconvex sets, but not much has been
done to improve the theoretical understanding of them. In this
paper, we investigate convergence of these heuristics. First, we
characterize optimal solutions of minimization problems involv-
ing convex cost functions over nonconvex constraint sets. We show
that these optimal solutions are related to the fixed point set of
the underlying nonconvex Douglas-Rachford operator. Next, we
establish sufficient conditions under which the Douglas-Rachford
splitting heuristic either converges to a point or its cluster points
form a nonempty compact connected set. In the case where the
heuristic converges to a point, we establish sufficient conditions
for that point to be an optimal solution. Then, we discuss how the
ADMM heuristic can be constructed from the Douglas-Rachford
splitting algorithm. We show that, unlike in the convex case, the
algorithms in our nonconvex setup are not equivalent to each
other and have a rather involved relationship between them.
Finally, we comment on convergence of the ADMM heuristic
and compare it with the Douglas-Rachford splitting heuristic.

Index Terms—Alternating direction method of multipliers
(ADMM), Douglas-Rachford splitting, optimization algorithms,
nonconvex optimization problems.

I. INTRODUCTION

In this paper, we study convergence of heuristics based on

the Douglas-Rachford splitting algorithm and the alternating

direction method of multipliers (ADMM) for minimization

of convex functions over nonconvex sets. Such optimization

problems can be described as

minimize f (x)
subject to x ∈ C,

(OPT)

where x ∈ Rn is the decision variable. The constraint set

C ⊆ Rn is nonempty and compact (closed and bounded),

but it is not necessarily convex. The cost function f : Rn →
R∪{+∞} is CPC. This means that f is (i) convex, (ii) proper,

i.e., its domain dom f = {x ∈ Rn | f(x) <∞} is nonempty,

and (iii) closed (or lower-semicontinuous), i.e., its epigraph

epi f = {(x, ξ) ∈ Rn ×R | f(x) ≤ ξ} is a closed set. The

constraint set C is assumed to be closed so that projection

onto C is well-defined, and it is assumed to be bounded to

avoid the possibility of an unbounded optimal solution.
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We consider the following heuristic based on the Douglas-

Rachford splitting algorithm [1, §27.2] to solve (OPT):

xn+1 = proxγf (zn)

yn+1 = Π̃C (2xn+1 − zn)

zn+1 = zn + yn+1 − xn+1,

(NC-DRS)

where n ∈ N is an iteration counter, Π̃C(x) is a Euclidean

projection of x onto C (as C is not necessarily convex, there

can be multiple projections onto it from a point outside C),

and

proxγf (x) = argminy∈domf

(
f(y) +

1

2γ
‖y − x‖2

)

is the proximal operator of f at x with parameter γ > 0.

We also investigate the following heuristic based on ADMM

(also known as NC-ADMM [2, §3.1]) to solve (OPT):

xn+1 = proxγf (yn − zn)

yn+1 = Π̃C (xn+1 + zn)

zn+1 = zn − yn+1 + xn+1,

(NC-ADMM)

where n ∈ N is an iteration counter, and γ > 0. Note that both

heuristics consist of the same subroutines, but different inputs

are fed into them. So, any software package that implements

one of the heuristics can be easily modified to implement the

other.

If the set C is convex, then the iterates xn, yn in both

(NC-DRS) and (NC-ADMM) converge to an optimal solution

for any initial point [1, Corollary 27.4], [3]. The convergence

conditions for the nonconvex case, studied in this paper, are

far more complicated.

Motivation. This paper is motivated by the recent success

of ADMM in solving nonconvex problems. ADMM, which

is a special case of the Douglas-Rachford splitting algorithm

in a convex setup, was originally designed to solve convex

optimization problems [3]. However, since the idea of im-

plementing this algorithm as a general purpose heuristics to

solve nonconvex optimization problems was introduced in [3],

(NC-ADMM) has been applied successfully to minimization

of convex functions over nonconvex sets [2], [4], [5], [6],

and it has been implemented recently in the Python package

NCVX—an extension of CVXPY—to formulate and solve

problems of the form (OPT) [7]. In these works, the nonconvex

projection step of (NC-ADMM), if computationally too costly,

is replaced with a tractable “approximate” projection onto the
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nonconvex set, e.g., rounding for Boolean variables; yet it

finds approximate solutions to a wide variety of nonconvex

problems effectively. In spite of the empirical success, not

much has been done to improve the theoretical understanding

of such heuristics. Some recent progress has been made on un-

derstanding convergence of ADMM for specialized nonconvex

setups, such as (i) minimizing a nonconvex function over an

affine set [8], and (ii) minimizing the sum of a smooth function

with a bounded Hessian and a nonsmooth function with an

easy to compute proximal mapping [9]. However, these works

are not applicable to (NC-DRS) and (NC-ADMM), which has

motivated us to investigate the convergence properties of these

heuristics.

Contributions. Our contributions in this paper are as follows.

First, we characterize global minimizers of (OPT) and show

that they are related to the fixed point set of the underly-

ing Douglas-Rachford operator constructed from (NC-DRS).

Then, we establish conditions under which (NC-DRS) either

converges to a point (not necessarily an optimal solution) or

its cluster points form a nonempty compact connected set. In

the case where the heuristic converges to a point, we provide

sufficient conditions for that point to be an optimal solution.

Then, we investigate the relationship between (NC-DRS) and

(NC-ADMM). For a convex optimization problem, ADMM

is the Douglas-Rachford algorithm splitting applied to the

dual problem [10], but their relationship is more involved in

our nonconvex setup. Applying the Douglas-Rachford splitting

algorithm to the convex dual of (OPT) results in a relaxed

version of (NC-ADMM), where the projection is onto the

convex hull of C. We show that this relaxed algorithm finds a

minimizer of f over the convex hull of C, and by restricting

its projection step onto the original constraint set C, we arrive

at (NC-ADMM). The construction procedure also explains

why, when compared with exact solvers, (NC-ADMM) often

achieves lower objective values in many numerical experi-

ments performed in [2], [4], [5], [6]. We comment on the

convergence properties of (NC-ADMM) and compare it with

(NC-DRS). To the best of our knowledge, we are not aware

of similar results in the existing literature.

Notation and notions. We denote the sets of real numbers

and natural numbers by R and N, respectively. Furthermore,

R = R∪ {∞} denotes the extended real line. The set of real

column vectors of length n is denoted by Rn. Depending on

the context, 0 may be a scalar or a column vector of zeros. The

n×n identity matrix is denoted by In. The standard Euclidean

norm is denoted by ‖ · ‖. We use 〈· | ·〉 as the inner product

in the Euclidean space. Let X ,Y be two nonempty subsets of

Rn, and let z ∈ Rn. Then, X +Y = {x+ y | x ∈ X , y ∈ Y},

X − Y = {x − y | x ∈ X , y ∈ Y}, z + X = {z} + X , and

X−z = X−{z}. If one of the sets is empty, then the resultant

addition or subtraction is an empty set, i.e., X+∅ = ∅. Finally,

the indicator function of a nonempty set X ⊆ Rn, denoted

by δX , is defined as

δX (x) =

{

0, if x ∈ X

∞, if x /∈ X .

Using indicator function, (OPT) can be expressed as

minimize f(x) + δC(x).

II. BACKGROUND ON MONOTONE OPERATOR THEORY

In this section, we present some definitions and preliminary

results on monotone operator theory and relate them to our

setup. First, in §II-A, we briefly review the essential operator

theoretic notions and provide examples that relate these con-

cepts to (OPT). In §II-B, we review nonexpansiveness and its

several variants for an operator. These concepts are essential

for characterizing (i) the operators Π̃C and proxγf and (ii)

the fixed point sets of the underlying operators of (NC-DRS)

and (NC-ADMM). Finally, in §II-C, we introduce resolvent

and reflected resolvent of an operator to provide additional

characterizations of Π̃C and proxγf .

A. Operator theoretic notions

A set-valued operator T : Rn
⇒ Rn maps each el-

ement in Rn to a set in Rn; its domain is defined as

domT = {x ∈ Rn | T (x) 6= ∅}, its range is defined as

ranT =
⋃

x∈Rn T (x), and it is completely completely

characterized by its graph: graT = {(x, u) | u ∈ Tx}.
Furthermore, the zero set of T is defined as zer T =
{x | 0 ∈ A (x)}, and the fixed point set of T is defined as

fixT = {x | Tx ∋ x}. The operator 2T − In is called the

reflection of T . Inverse of T , denoted by T−1, is defined

through its graph: graT−1 = {(u, x) | (x, u) ∈ gra T }, so

x ∈ T (u) ⇔ u ∈ T−1(x). For every x, addition of two

operators T1, T2 : Rn
⇒ Rn, denoted by T1 +T2, is defined

as (T1 + T2) (x) = T1 (x) + T2 (x) (subtraction is defined

analogously), and composition of these operators, denoted by

T1T2, is defined as T1T2 (x) = T1 (T2 (x)); note that order

matters for composition. Also, if X ⊆ Rn is a nonempty set,

then T (X ) =
⋃

x∈X T (x).

A set-valued operator T : Rn
⇒ Rn is monotone if, for

every (x, u) , (y, v) ∈ graT , it satisfies 〈x− y | u− v〉 ≥ 0.

A monotone operator T is maximally monotone if gra T is

not properly contained by the graph of any other monotone

operator.

Finally, a single-valued operator T : D → Rn is a special

type of set-valued operator, which maps every x in its domain

D ⊆ Rn to a singleton T (x) in Rn.

Example 1 (projection operator). Recall that Π̃C(x) is a

Euclidean projection of x onto the constraint set C. The

operator Π̃C is single-valued. The set of all projections onto

C, denoted by ΠC , is the set-valued projection operator

onto C, and it is defined as ΠC (x) = argminy∈C‖x − y‖2.

Clearly, Π̃C (x) ⊆ ΠC (x) for every x. Both ΠC and Π̃C are

monotone operators, but not necessarily maximally monotone

[1, Example 20.12]. The projection operator onto a nonempty

closed convex set, however, is maximally monotone [1, Ex-

ample 20.12, Corollary 20.27, and Proposition 4.8].
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Example 2 (subdifferential operator). For every proper

function g : Rn → R, its subdifferential operator is the set-

valued operator ∂g : Rn
⇒ Rn, which is defined as

∂g (x) = {u ∈ Rn | (∀y ∈ Rn) g (y) ≥ g (x) + 〈u | y − x〉} .
(1)

A vector u ∈ ∂g (x) is called a subgradient of g at x. The sub-

differential operator of a proper function is monotone, hence

∂δC is monotone [1, Example 20.3]. On the other hand, the

subdifferential operator of a CPC function is maximally mono-

tone, thus ∂f is maximally monotone [1, Theorem 20.40]. The

following result regarding the subdifferential operator plays a

key role in characterizing global minimizers of (OPT) in §III.

Theorem 1 (Fermat’s rule [1, page 223], [11, §2.3]).

The set of all global minimizers of a proper function g :
Rn → R, denoted by argmin g, is equal to the zero set of

its subdifferential operator ∂g, i.e., argming = zer ∂g =
{x ∈ Rn | 0 ∈ ∂g(x)} .

Proof: Take x ∈ argmin g which is equivalent to the statement

(∀y ∈ Rn) g(y) ≥ g(x) + 〈0 | y − x〉 ⇔ ∂g(x) ∋ 0 ⇔ x ∈
zer ∂g.

While this simple characterization of optimality via the sub-

differential holds for every nonconvex functions, it may not

be particularly useful in practice if we cannot compute the

subdifferential in an algorithmic manner [11, page 4].

We now present a lemma regarding the subdifferential operator

of the sum of two proper functions, which is used later in §III.

Recall that ∂ (g + h) (x) = ∂ (g(x) + h(x)) according to our

notation.

Lemma 1 (subdifferential of sum of proper functions). Let

g : Rn → R and h : Rn → R be proper functions such that

dom g ∩ domh 6= ∅. Then,

(i) the function g + h is proper,

(ii) for every x in Rn, we have ∂g (x)+∂h (x) ⊆ ∂(g+h)(x),
and

(iii) both ∂(g + h) and ∂g + ∂h are monotone operators.

Proof: (i): By definition, dom (g + h) =
{x | g(x) + h(x) <∞} = dom g ∩ domh 6= ∅. Thus,

g + h is proper.

(ii): Take x ∈ Rn, and denote u ∈ ∂g (x) and v ∈
∂h (x). We want to prove that u + v ∈ ∂ (g + h) (x) =
∂ (g(x) + h(x)). Using (1), we have g (y) ≥ g (x) +
〈u | y − x〉 and h (y) ≥ h (x)+ 〈v | y − x〉 for every y ∈ Rn.

Adding the last two inequalities we get (g (y) + h (y)) ≥
(g (x) + h (x)) + 〈u+ v | y − x〉 for every y ∈ Rn, i.e.,

u+ v ∈ ∂ (g (x) + h (x)).

(iii): Denote φ := g+h, which is proper due to (i). Now take

(x, u), (y, v) in gra ∂φ, so we have φ (y) ≥ φ (x)+〈u | y − x〉
and φ(x) ≥ φ(y) + 〈v | x− y〉 using (1); adding these

inequalities we have 0 ≥ 〈u | y − x〉 + 〈v | x− y〉 i.e.,

〈u− v | x− y〉 ≥ 0, so ∂φ = ∂ (g + h) is a monotone

operator by definition. Furthermore, both ∂g and ∂h are

monotone, as the subdifferential operator of a proper function

is monotone [1, Example 20.3]. Using also the fact that sum

of two monotone operators is a monotone operator [1, page

351], we conclude that ∂g + ∂h is monotone.

B. Nonexpansive and firmly nonexpansive operator

Let T : D → Rn be a single-valued operator, where D ⊆ Rn

is nonempty. Then, T is

1) nonexpansive on D if for every x, y ∈ D it satisfies

‖T (x) − T (y)‖ ≤ ‖x− y‖, and

2) firmly nonexpansive on D if for every

x, y ∈ D it satisfies ‖T (x) − T (y) ‖2 +
‖(In − T )(x)− (In − T )(y)‖2 ≤ ‖x− y‖2.

An operator T : D → Rn is firmly nonexpansive on D if

and only if its reflection operator 2T − In is nonexpansive [1,

Proposition 4.2]. Furthermore, a firmly nonexpansive operator

is also nonexpansive [1, page 59].

Example 3 (proximal operator). The proximal operator of

a CPC function is both firmly nonexpansive and nonexpan-

sive [1, Proposition 12.27, Example 23.3], hence proxγf in

(NC-ADMM) and (NC-DRS) is both firmly nonexpansive and

nonexpansive. Furthermore, its reflection 2proxγf − In is

nonexpansive [1, Proposition 4.2].

Example 4 (projection operator). We remind the reader that,

a set is called proximinal if every point has at least one

projection onto it, whereas it is called a Chebyshev set if every

point has exactly one projection onto it. A nonempty subset

in Rn is Chebyshev if and only if it is closed and convex [1,

Remark 3.15], and the projection operator onto such a set is

single-valued and firmly nonexpansive on Rn [1, Proposition

4.8]. However, for the constraint set C in (OPT), which is

possibly nonconvex, the projection operator Π̃C is not, in

general, nonexpansive, hence not firmly nonexpansive. For

example, consider the set {0, 1}; the projections of 0.4 and 0.6
onto this set are 0 and 1, respectively, so |0.6−0.4| = 0.2 < 1,

which violates the definition of nonexpansiveness. In such a

case, 2Π̃C − In is also not nonexpansive, because an operator

is firmly nonexpansive if and only if its reflection operator is

nonexpansive [1, Proposition 4.2].

We now introduce the following definitions to (i) characterize

an operator that is not necessarily nonexpansive (e.g., Π̃C and

2Π̃C − In) and (ii) measure the deviation of such an operator

from being nonexpansive.

Expansiveness of an operator. Let T : D → Rn be a single-

valued operator. The expansiveness of T at x, y in D, denoted

by ε
(T )
xy , is defined as

ε(T )
xy =







‖T (x)− T (y)‖ − ‖x− y‖,

if ‖x− y‖ < ‖T (x)− T (y)‖

0, else.
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where it is nonnegative and symmetric, i.e., ε
(T )
xy = ε

(T )
yx ≥ 0.

It follows that for every x, y in D,

‖T (x)− T (y)‖ ≤ ‖x− y‖+ ε(T )
xy . (2)

Furthermore, define, squared expansiveness of T at x, y in

D as

σ(T )
xy =







√

‖T (x)− T (y)‖2 − ‖x− y‖2,

if ‖x− y‖ < ‖T (x)− T (y)‖

0, else.

Clearly, σ
(T )
xy can be defined through ε

(T )
xy as

σ(T )
xy =

√

ε
(T )
xy

√

‖T (x)− T (y)‖+ ‖x− y‖.

It follows that for every x, y in D,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 +
(
σ(T )
xy

)2
. (3)

Remark 1 (further characterization of nonexpansive oper-

ators). An operator T is nonexpansive on Rn if and only if

ε
(T )
xy = σ

(T )
xy = 0 for every x, y in Rn. On the other hand,

an operator T is not nonexpansive if and only if there exist

x, y in its domain such that ε
(T )
xy is positive. Thus, ε

(T )
xy and

σ
(T )
xy measure the deviation of T from being a nonexpansive

operator at x, y.

C. Resolvent and reflected resolvent of an operator

Let T : Rn
⇒ Rn be a set-valued operator and let

γ > 0. The resolvent of T , denoted by JγT , is defined as

JγT = (In + γT )−1, and its reflected resolvent, denoted by

RγT , is defined as RγT = 2JγT − In. The proximal operator

of a function is intimately connected to the resolvent of that

function’s subdifferential operator as follows.

Lemma 2 (resolvent characterization of proximal oper-

ator). Let g : Rn → R be proper, let x ∈ Rn, and let

γ > 0. Then, both proxγg and Jγ∂g are set-valued, and

proxγg(x) ⊆ Jγ∂g(x). Moreover, if g is CPC, then both

proxγg and Jγ∂g are single-valued, firmly nonexpansive and

continuous on Rn, and proxγg(x) = Jγ∂g(x) .

Proof: When g is proper, the claim follows from [12, Example

10.2]. When, g is CPC, the claim follows from [1, Proposition

12.27], [1, pages 59-60], and [1, Example 23.3].

The following corollary applies Lemma 2 to the constraint set

C in (OPT).

Corollary 1 (resolvent characterization of projection). For

the constraint set C in (OPT), Π̃C (x) ⊆ proxγδC
(x) =

ΠC (x) ⊆ Jγ∂δC (x) for every x ∈ Rn. For a convex set, all

these operators are single-valued, firmly nonexpansive, and

equal to each other.

Proof: Follows directly from Lemma 2 and the definitions of

the proximal operator and the projection operator.

III. CONVERGENCE OF (NC-DRS)

This section is organized as follows. First, in §III-A, we

present some supporting lemmas on convergence of sequences.

Then, in §III-B, we describe three interrelated operators

to develop the machinery for the convergence analysis of

(NC-DRS), and in §III-C, we characterize global minimizers

of (OPT) using these operators. In §III-D, we present our main

convergence result.

A. Supporting lemmas on sequences

In this subsection, we present some supporting lemmas on

sequences to be used later; the first three results concern

convergence of a sequence of scalars, and the fourth result

is about convergence of a sequence of vectors in a compact

set.

First, we briefly review the definitions and basic properties of

limit inferior and limit superior of a sequence. Limit inferior

and limit superior of a scalar sequence (αn)n∈N
are defined

as

lim
n→∞

αn = lim
n→∞

(
inf
m≥n

αm

)
, and

lim
n→∞

αn = lim
n→∞

(
sup
m≥n

αm

)
,

respectively, where they can be extended real-valued. For a

bounded sequence, both limn→∞αn and limn→∞αn exist, and

they are finite. Clearly, limn→∞αn ≤ limn→∞αn. The se-

quence converges if and only if limn→∞αn = limn→∞αn =
limn→∞ αn ∈ R. Furthermore, limit inferior satisfies su-

peradditivity, i.e., for every two sequences of real num-

bers, (αn)n∈N
, (βn)n∈N

we have limn→∞ (αn + βn) ≥
limn→∞αn + limn→∞βn.

Lemma 3 (limit of a nonnegative scalar sequence). Let

(αn)n∈N
be a sequence of nonnegative scalars such that

∑

n∈N
αn is bounded above. Then, limn→∞ αn = 0.

Proof: Directly follows from [13, Proposition 3.2.1] and [13,

Theorem 3.1.4].

Lemma 4 (convergence of a nonnegative scalar sequence

[14, page 44, Lemma 2]). Let (un)n∈N
, (αn)n∈N

, and

(βn)n∈N
be sequences of nonnegative scalars such that for ev-

ery n ∈ N, we have un+1 ≤ (1+αn)un+βn,
∑

n∈N
αn <∞,

and
∑

n∈N
βn < ∞. Then, there is a nonnegative scalar u

such that un converges to u.

Lemma 5 (limit inferior of addition of two sequences

[15, Proposition 2.3]). Let (αn)n∈N
and (βn)n∈N

be two

bounded scalar sequences. If limn→∞ αn = α, then

limn→∞ (αn + βn) = α+ limn→∞ βn.

Now we record a result about convergence of a sequence

of vectors in a compact set. We remind the reader that,

a set is connected if it is not the union of two disjoint

nonempty closed sets. A compact and connected set is called a

continuum. Moreover, a set is called a nontrivial continuum,

if it is a continuum, and it does not reduce to ∅ or a singleton
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[16]. Finally, x is a cluster point of a sequence (xn)n∈N
if

the sequence has a subsequence that converges to x.

Lemma 6 (convergence of a sequence of vectors in a

compact set [16, Theorem 4.2]). Let (xn)n∈N
be a sequence

of vectors in a compact set S ⊆ Rn such that ‖xn+1 − xn‖
converges to zero. Then, either (xn)n∈N

converges to a point

in S, or its set of cluster points is a nontrivial continuum in

S.

B. Nonconvex Douglas-Rachford, Cayley and Peaceman-

Rachford operators

To facilitate our convergence analysis, we define the following

operators for (OPT).

• The nonconvex Douglas-Rachford operator with pa-

rameter γ > 0, denoted by T̃ , is defined as

T̃ = Π̃C

(
2proxγf − In

)
+ In − proxγf . (4)

• The nonconvex Cayley operator of T̃ (also known as the

reflection operator of T̃ ) with parameter γ > 0, denoted

by R̃, is defined as

R̃ = 2T̃ − In. (5)

• The nonconvex Peaceman-Rachford operator with pa-

rameter γ > 0, denoted by S̃, is defined as

S̃ = (2Π̃C − In)(2proxγf − In). (6)

Remark 2 (nonconvex Peaceman-Rachford operator S̃ is not

nonexpansive). Note that S̃ is a composition of 2Π̃C−In and

2proxγf − In, where the latter is nonexpansive (see Example

3), but the former is not nonexpansive in general (see Example

4). Hence S̃ is not a nonexpansive operator in general.

These operators allow us to write (NC-DRS) in the following

compact form:

zn+1 = T̃ zn =
1

2
R̃zn +

1

2
zn. (Compact-NC-DRS)

The following lemma will be used later to characterize global

minimizers of (OPT).

Lemma 7 (characterization of nonconvex Peaceman-Rach-

ford operator). For (OPT), let S̃ be the nonconvex Peaceman-

Rachford operator with parameter γ > 0 defined in (6). Then,

S̃ (x) ⊆ Rγ∂δCRγ∂f (x) for every x ∈ Rn.

Proof: As f is CPC, we have

Rγ∂f = 2proxγf − In, (7)

using Lemma 2 and the definition of the reflected resolvent in

§II-C. Now for every x ∈ Rn,
(
2Π̃C − In

)
(x) = 2Π̃C (x)− x

a)

⊆ 2ΠC (x)− x

b)

⊆ 2JγδC(x)− x

=
(
2JγδC − In

)
x

c)
= RγδC (x) , (8)

where a) follows from Π̃C (x) ⊆ ΠC (x) for every x in Rn

(Example 1), b) follows from Corollary 1, and c) follows from

the definition of reflected resolvent in §II-C. Thus, for every

x ∈ Rn,

S̃ (x) =
(
2Π̃C − In

)(
2proxγf − In

)
(x)

a)
=

(
2Π̃C − In

)
Rγ∂f (x)

b)

⊆ Rγ∂δCRγ∂f (x) ,

where a) and b) use (7) and (8), respectively.

Proposition 1 (relationship between T̃ , R̃, and S̃). For

(OPT), let T̃ , R̃, and S̃ be the operators with parameter γ > 0
defined in (4), (5), and (6), respectively. Then,

(i) the operators R̃ and S̃ are equal, i.e., R̃ (x) = S̃ (x) for

every x ∈ Rn, and

(ii) the fixed point sets of T̃ , R̃, and S̃ are equal, i.e., fix R̃ =
fix S̃ = fix T̃ .

Proof: (i): For every x ∈ Rn,

T̃ (x) =
(
Π̃C

(
2proxγf − In

)
+ In − proxγf

)
(x)

= Π̃C

(
2proxγf − In

)
(x) + x− proxγf (x)

= Π̃C

(
2proxγf (x)− x

)
+ x− proxγf (x) . (9)

Furthermore, for every x ∈ Rn,

R̃ (x) =
(
2T̃ − In

)
(x)

= 2T̃ (x)− x

a)
= 2Π̃C

(
2proxγf (x)− x

)
+ 2x− 2proxγf (x)− x

= 2Π̃C

(
2proxγf (x)− x

)
+ x− 2proxγf (x) , (10)

where a) uses (9). Hence, for every x ∈ Rn

S̃ (x) =
(
2Π̃C − In

)(
2proxγf − In

)
(x)

=
(
2Π̃C − In

) (
2proxγf (x) − x

)

︸ ︷︷ ︸

=y (let)

= 2Π̃C (y)− y

= 2Π̃C

(
2proxγf (x)− x

)
− 2proxγf (x) + x

a)
= R̃x,

where a) uses (10).

(ii): In (i), R̃ = S̃ implying fix R̃ = fix S̃. Now x ∈
fix T̃ ⇔ T̃ (x) = x ⇔ 2T̃ (x) = 2x ⇔ 2T̃ (x) − x = x ⇔(

2T̃ − In

)

(x) = x⇔ x = fix R̃. So fix T̃ = fix R̃ = fix S̃.

Remark 3 (nonconvex Cayley operator R̃ is not nonex-

pansive). From Remark 2 and Proposition 1, it follows that

R̃ is not a nonexpansive operator in general. This plays

an important role in our convergence analysis; in particular,

the sufficient conditions for convergence of (NC-DRS) are

dictated by the squared expansiveness of R̃ over the iterates

of (NC-DRS).
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C. Characterization of global minimizers

Minimizers of (OPT) are characterized via the nonconvex

Douglas-Rachford operator as follows.

Theorem 2 (global minimizers of (OPT)). For (OPT), let T̃
be the nonconvex Douglas-Rachford operator with parameter

γ > 0 defined in (4). Then,

(i) sum of the functions f + δC is proper, ∂f (x) + ∂δC (x) ⊆
∂ (f + δC) (x) for every x ∈ Rn, and both ∂f + ∂δC and

∂ (f + δC) are monotone operators,

(ii) zer
(
∂f + ∂δC

)
= proxγf

(
fix(Rγ∂δCRγ∂f )

)
, and

(iii) if fix T̃ 6= ∅, then proxγf

(
fix T̃

)
⊆ argmin (f + δC).

Proof: (i): The indicator function of a closed set is closed

[1, Example 1.25], and the indicator function of a nonempty

set is proper [12, pages 6-7]. Hence, δC is closed and proper.

Also, we have dom f ∩ dom δC 6= ∅, otherwise (OPT) is

infeasible. So, using Lemma 1, the function f + δC is proper,

∂f (x)+∂δC (x) ⊆ ∂ (f + δC) (x) for every x ∈ Rn, and both

∂f + ∂δC and ∂ (f + δC) are monotone operators.

(ii): This proof is based on [1, Proposition 25.1 (ii)]. For every

γ > 0, we have

x ∈ zer
(
∂f + ∂δC

)

⇔(∃y ∈ Rn) x− y ∈ γ∂δC(x) and y − x ∈ γ∂f(x)

⇔ (∃y ∈ Rn) 2x− y ∈ (In + γ∂δC)(x) and

y ∈ (In + γ∂f)(x)

⇔ (∃y ∈ Rn) (In + γ∂δC)
−1

︸ ︷︷ ︸

=Jγ∂δC

(2x− y) ∋ x and

(In + γ∂f)−1

︸ ︷︷ ︸

=Jγ∂f

(y) ∋ x

a)
⇔ (∃y ∈ Rn) x ∈ Jγ∂δC(2x− y) and x = Jγ∂f (y),

b)
⇔ (∃y ∈ Rn) x ∈ Jγ∂δCRγ∂f (y) and x = Jγ∂f (y) (11)

where a) uses the facts that Jγ∂f is a single-valued operator

(from Lemma 2), and Jγ∂δC is a set-valued operator (from

Corollary 1), and b) uses the observation that x = Jγ∂f (y)
can be expressed as

x = Jγ∂f(y) ⇔ 2x− y =
(
2Jγ∂f − In

)
y = Rγ∂f (y).

Also, using the last expression, we can write the first term of

(11) as

Jγ∂δCRγ∂f (y) ∋ x

⇔2Jγ∂δCRγ∂f(y)− y ∋ 2x− y = Rγ∂f (y)

⇔y ∈ 2Jγ∂δCRγ∂f (y)−Rγ∂f (y)

=
(
2Jγ∂δC − In

)(
Rγ∂f (y)

)

= Rγ∂δCRγ∂f (y)

⇔y ∈ fix
(
Rγ∂δCRγ∂f

)
. (12)

Using (11), (12), and Jγ∂f = proxγf (from Lemma 2) we

have

x ∈ zer
(
∂f + ∂δC

)

⇔ (∃y ∈ Rn) y ∈ fix
(
Rγ∂δCRγ∂f

)
and x = proxγf(y)

⇔x ∈ proxγf

(
fix(Rγ∂δCRγ∂f )

)
.

Thus, zer
(
∂f + ∂δC

)
= proxγf

(
fix(Rγ∂δCRγ∂f )

)
.

(iii): We have

x ∈ zer (∂f + ∂δC)

⇔0 ∈ ∂f (x) + ∂δC (x)
a)

⊆ ∂ (f + δC) (x)

⇒x ∈ zer ∂ (f + δC) ,

where a) uses ∂f (x) + ∂δC (x) ⊆ ∂ (f + δC) (x) proven in

(i). So, zer (∂f + ∂δC) ⊆ zer (∂ (f + δC)). Combining the

last statement with zer (∂ (f + δC)) = argmin (f + δC) (from

Theorem 1) and (ii), we have

zer
(
∂f + ∂δC

)

=proxγf

(

fix
(
Rγ∂δCRγ∂f

))

(13)

⊆ argmin
(
f + δC

)
. (14)

Recall from Lemma 2 that proxγf is a single-valued operator.

Thus,

proxγf

(
fix S̃

)
=

⋃

x∈fix S̃

proxγf (x)

=
⋃

x:x=S̃(x)

proxγf (x)

a)

⊆
⋃

x:x∈Rγ∂δC
Rγ∂f (x)

proxγf (x)

=
⋃

x:x∈fixRγ∂δC
Rγ∂f

proxγf (x)

= proxγf

(
fixRγ∂δCRγ∂f

)
,

where a) uses S̃ (x) ⊆ Rγ∂δCRγ∂f (x) for every x ∈ Rn

(from Lemma 7). But, fix S̃ = fix T̃ from Proposition 1. So,

proxγf

(
fix S̃

)
= proxγf

(
fix T̃

)

⊆ proxγf

(
fixRγ∂δCRγ∂f

)
.

Combining the last equation with (14), we have

proxγf

(
fix T̃

)
⊆ proxγf

(
fixRγ∂δCRγ∂f

)

⊆ argmin
(
f + δC

)
.

Remark 4 (nonemptiness of zer
(
∂f + ∂δC

)
). A neces-

sary condition for nonemptiness of fix T̃ is nonemptiness of

zer
(
∂f+∂δC

)
. This necessary condition zer

(
∂f+∂δC

)
6= ∅

is stronger than the existence of a minimizer, because, even

in a convex setup, zer
(
∂f + ∂δC

)
6= zer (∂ (f + δC)), in

general [1, Remark 16.7]. Nevertheless, we will assume that

zer
(
∂f + ∂δC

)
6= ∅ for the rest of our development, as this

seems to be a standard assumption even in convex optimization

literature [17].
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D. Main convergence result

We remind the reader that the nonconvex Cayley operator R̃ is

not nonexpansive in general (Remark 3). To characterize the

deviation of R̃ from being a nonexpansive operator, recalling

§II-B, we use expansiveness and squared expansiveness of R̃ at

each x, y in Rn, denoted by εxy and σxy , respectively; here we

have dropped the superscript (R̃) to reduce notational burden.

So, from (2) and (3), for every x, y in Rn,

‖R̃(x) − R̃(y)‖ ≤ ‖x− y‖+ εxy, and (15)

‖R̃(x) − R̃(y)‖2 ≤ ‖x− y‖2 + σ2
xy. (16)

Also, the closed ball with center x ∈ Rn and finite radius

r > 0, denoted by B(x; r), is defined as B(x; r) = {y |
‖x−y‖ ≤ r}; a closed ball in Rn with finite radius is compact

[1, §2.4]. Now we present our main convergence result.

Theorem 3 (main convergence result). For (OPT), let

(zn)n∈N be the sequence of vectors generated by (NC-DRS).

Suppose that, for the chosen initial point z0, there exists

a z ∈ fix T̃ , such that
∑∞

n=0 σ
2
znz

is bounded above, and

‖z0 − z‖2 is finite. Define r :=
√

‖z0 − z‖2 + 1
2

∑∞

n=0 σ
2
znz

.

Then, one of the following holds:

(i) the sequence (zn)n∈N converges to a point z⋆ ∈ B(z; r).
In this case, suppose also that limn→∞ σ2

znz⋆ = 0. Then,

proxγf (z
⋆) is an optimal solution of (OPT), and the

sequence (xn)n∈N generated by (NC-DRS) converges to

proxγf(z
⋆).

(ii) the set of cluster points of (zn)n∈N forms a nontrivial

continuum in B(z; r).

Proof: Step 1. First, we show that the sequence (zn)n∈N stays

in the compact set B(z; r). For every n ∈ N,

‖zn+1 − z‖2
a)
= ‖zn +

1

2

(
R̃zn − zn

)
− z‖2

= ‖
1

2

(
zn − z

)
+

1

2

(
R̃zn − z

)
‖2

b)
=

1

2
‖zn − z‖2 +

1

2
‖R̃zn − z‖2

−
1

4
‖(zn − z)− (R̃zn − z)‖2

c)
=

1

2
‖zn − z‖2 +

1

2
‖R̃zn − R̃z‖2

−
1

4
‖zn − R̃zn‖

2

d)

≤
1

2
‖zn − z‖2 +

1

2
‖zn − z‖2

+
1

2
σ2
znz

−
1

4
‖zn − R̃zn‖

2

≤ ‖zn − z‖2 −
1

4
‖zn − R̃zn‖

2 +
1

2
σ2
znz

(17)

e)

≤ ‖zn − z‖2 +
1

2
σ2
znz

, (18)

where a) uses (Compact-NC-DRS), b) uses the identity ‖αx+
(1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2 for

every x, y ∈ Rn and every α ∈ R [1, Corollary 2.14], c)

uses z ∈ fix T̃ , and fix T̃ = fix R̃ (from Proposition 1(ii)),

d) uses (16), and e) is obtained by removing the nonpositive

term − 1
4‖zn − R̃zn‖2. From (18), we have

‖zn − z‖2 ≤ ‖zn−1 − z‖2 +
1

2
σ2
zn−1z

≤ ‖zn−2 − z‖2 +
1

2
σ2
zn−2z

+
1

2
σ2
zn−1z

≤ ‖z0 − z‖2 +
1

2

n−1∑

i=0

σ2
ziz

≤ ‖z0 − z‖2 +
1

2

∞∑

i=0

σ2
ziz
, (19)

where the final term is bounded, because
∑∞

i=0 σ
2
ziz

is

bounded above. Hence, the sequence (zn)n∈N stays in the

compact set B(z; r).

Step 2. Next, we show that limn→∞ ‖R̃zn − zn‖ = 0. From

(17),

1

4
‖R̃zn − zn‖

2 ≤
(
‖zn − z‖2 − ‖zn+1 − z‖2

)
+

1

2
σ2
znz

⇒
1

4

m∑

n=0

‖R̃zn − zn‖
2 ≤

m∑

n=0

(
‖zn − z‖2 − ‖zn+1 − z‖2

)

+
1

2

m∑

n=0

σ2
znz

a)
=

(
‖z0 − z‖2 − ‖zm+1 − z‖2

)

+
1

2

m∑

n=0

σ2
znz

b)

≤ ‖z0 − z‖2 +
1

2

m∑

n=0

σ2
znz

,

where a) uses the telescopic sum, and b) is obtained by

removing the negative term ‖zm+1−z‖2. If m→ ∞, then the

right hand side of the last inequality is bounded above, because
∑∞

n=0 σ
2
znz

is bounded above. Thus,
∑∞

n=0 ‖R̃zn − zn‖2 is

bounded above, and using Lemma 3, we have limn→∞ ‖R̃zn−
zn‖

2 = 0, i.e., limn→∞ ‖R̃zn − zn‖ = 0.

Step 3. We show that sequence (zn)n∈N either converges to a

point or its set of cluster points forms a nontrivial continuum.

In step 2, we have shown that, limn→∞ ‖R̃zn − zn‖ = 0.
On the other hand, ‖R̃zn − zn‖ = 2‖zn+1 − zn‖ from

(Compact-NC-DRS), so limn→∞ ‖zn+1 − zn‖ = 0. Thus, the

sequence (zn)n∈N
stays in a compact set B(z; r) and satisfies

limn→∞ ‖zn+1−zn‖ = 0. So, due to Lemma 6, the sequence

(zn)n∈N either converges to a point z⋆ ∈ B(z; r) or the set

of cluster points of (zn)n∈N forms a nontrivial continuum in

B(z; r). This proves the first part of claim (i) and claim (ii).

Step 4. Now we prove the second part of claim (i). Under

the additional condition limn→∞ σ2
znz⋆ = 0, we show that

zn − R̃zn → 0, zn → z⋆ implies z⋆ ∈ fix T̃ , proxγf (z
⋆)

is an optimal solution of (OPT), and xn → proxγf (z
⋆). For

every n ∈ N,

‖z⋆ − R̃z⋆‖2
a)
= ‖zn − R̃z⋆‖2 − ‖zn − z⋆‖2
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− 2〈zn − z⋆ | z⋆ − R̃z⋆〉

= ‖
(
zn − R̃zn

)
+
(
R̃zn − R̃z⋆

)
‖2

− ‖zn − z⋆‖2 − 2〈zn − z⋆ | z⋆ − R̃z⋆〉

= ‖zn − R̃zn‖
2 + ‖R̃zn − R̃z⋆‖2

+ 2〈zn − R̃zn | R̃zn − R̃z⋆〉

− ‖zn − z⋆‖2 − 2〈zn − z⋆ | z⋆ − R̃z⋆〉

b)

≤ ‖zn − R̃zn‖
2 +

✘
✘
✘
✘
✘

‖zn − z⋆‖2 + σ2
znz⋆

+ 2〈zn − R̃zn | R̃zn − R̃z⋆〉 −
✘
✘
✘
✘
✘

‖zn − z⋆‖2

− 2〈zn − z⋆ | z⋆ − R̃z⋆〉

= ‖zn − R̃zn‖
2 + 2〈zn − R̃zn | R̃zn − R̃z⋆〉

− 2〈zn − z⋆ | z⋆ − R̃z⋆〉+ σ2
znz⋆ , (20)

where, a) uses the identity

‖zn − R̃z⋆‖2 = ‖(zn − z⋆) + (z⋆ − R̃z⋆)‖2

= ‖zn − z⋆‖2 + ‖z⋆ − R̃z⋆‖2

+ 2
〈

zn − z⋆ | z⋆ − R̃z⋆
〉

,

and b) uses (16). We now compute the limit (or the limit

inferior) for each of the terms on the right-hand side of (20).

As zn − R̃zn → 0 and zn → z⋆, subtracting them we have

R̃zn → z⋆, hence R̃zn − R̃z⋆ → z⋆ − R̃z⋆. Combining the

last statement with zn−R̃zn → 0, we have 〈zn−R̃zn | R̃zn−
R̃z⋆〉 → 0. Also, zn−z⋆ → 0 implies 〈zn−z⋆ | z⋆−R̃z⋆〉 →
0. Additionally, limn→∞ σ2

znz⋆ = 0. So, using Lemma 5, limit

inferior of the right hand side (20) goes to zero. Hence, we

conclude that z⋆ − R̃z⋆ = 0, i.e., z⋆ ∈ fix R̃. But, fix R̃ =
fix T̃ from Proposition 1(ii). So, z⋆ ∈ fix T̃ . We now recall

from Lemma 2 that proxγf is continuous everywhere on Rn.

So, using the definition of continuity, zn → z⋆ ∈ fix T̃ implies

xn+1 = proxγf(zn) → proxγf(z
⋆) ∈ proxγf(fix T̃ ). But,

proxγf(fix T̃ ) ⊆ argmin(f + δC) from Theorem 2(iii). Thus

we have arrived at the second part of claim (i).

1) Notes on Theorem 3. We make the following notes on

Theorem 3.

•Nonemptiness of fix T̃ . Note that Theorem 3 assumes that

fix T̃ is nonempty. This is a standard assumption in monotone

operator theory even in a convex setup [1, §5.2].

•Relation to a convex setup. In our convergence analysis,

the constraint set is nonempty and compact, but not necessarily

convex. However, our convergence analysis is also applicable

to a convex setup. Let C be convex. Then, both (2Π̃C − In)
and (2proxγf − In) are nonexpansive operators, hence, their

composition S̃ = (2Π̃C−In)(2proxγf−In) is a nonexpansive

operator. In such a convex setup, R̃ is a nonexpansive operator,

because S̃ = R̃ from Proposition 1 (where the relationship is

established irrespective of convexity). Then, recalling Remark

1, expansiveness of R̃ is zero everywhere, i.e., σxy = εxy =
0 at every x, y in Rn. As a result, the iteration scheme

(Compact-NC-DRS) corresponds to an averaged iteration of

a nonexpansive operator R̃, which guarantees convergence of

the sequence to a fixed point of R̃ for any initial point [18].

Also, the additional condition in the second part of claim (i)

are automatically satisfied. This guarantees the convergence of

(NC-DRS) to an optimal solution for any initial point if we

assume that C is convex.

•Comments on the conditions. Once we move from a convex

setup to a nonconvex setup, R̃ is not nonexpansive anymore

(recall Remark 3). Roughly speaking, convergence in such a

case requires that the total squared expansiveness of R̃ stays

bounded for the iterates with respect to at least one fixed point

of the nonconvex Douglas-Rachford operator. More precisely,
∑∞

n=0 σ
2
znz

needs to be bounded, where the sum represents the

total deviation of R̃ from being a nonexpansive operator over

the sequence {(zn, z)}n∈N
. If the stated condition is satisfied,

then (zn)n∈N is bounded in B(z; r) and ‖zn+1 − zn‖ → 0,

but it does not necessarily guarantee convergence to a point

due to the lack of nonexpansiveness of R̃, and this is why the

cluster points of (zn)n∈N may form a nontrivial continuum in

B(z; r).

Suppose now that (zn)n∈N converges to a point z⋆. Whether

z⋆ is related to an optimal solution of (OPT) would depend

on limn→∞ σ2
znz⋆ . If it is zero, then proxγf (z

⋆) is an

optimal solution, and the iterate xn in (NC-DRS) converges to

this optimal solution. Roughly speaking, limn→∞ σ2
znz⋆ = 0

means that over {(zn, z⋆)}n∈N
, R̃ acts as a nonexpansive

operator in the lower limit.

IV. CONSTRUCTION AND CONVERGENCE OF (NC-ADMM)

In this section, we discuss how (NC-ADMM) can be con-

structed from the Douglas-Rachford splitting algorithm and

comment on how the construction influences the convergence

properties of the former. First, in §IV-A we present some

preliminary results to be used later. Then, in §IV-B we

describe how (NC-ADMM) is constructed from the Douglas-

Rachford splitting algorithm. Finally, in §IV-C we comment

on convergence of (NC-ADMM), and we compare it with

(NC-DRS).

A. Preliminaries

First, we describe the Douglas-Rachford splitting algorithm for

minimizing sum of two CPC functions; we will use it in the

first step of constructing (NC-ADMM). Then, we review the

necessary background on conjugate and biconjugate functions,

and we present two lemmas to be referenced in the second step

of constructing (NC-ADMM).

1) Douglas-Rachford splitting algorithm for minimizing sum

of two CPC functions. Consider the convex optimization

problem

minimize g (x) + h(x), (21)

where both g : Rn → R and h : Rn → R are CPC

functions, and x ∈ Rn is the optimization variable. The

Douglas-Rachford splitting algorithm for this problem is

xn+1 = proxγh (zn)

yn+1 = proxγg (2xn+1 − zn) (Convex-DRS)
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zn+1 = zn + yn+1 − xn+1,

where n is the iteration counter, and γ is a positive parameter.

In this convex setup, both xn and yn converge to an optimal

solution of (21) for any initial point [1, Corollary 27.4].

2) Conjugate and biconjugate of a function. Let g : Rn →
{−∞}∪R. The conjugate of g, denoted by g⋆, is defined as

g⋆ (y) = supx∈Rn (〈x | y〉 − g (x)) , which is closed and con-

vex irrespective of the convexity of g [1, Proposition 13.11].

Also, the conjugate of a CPC function is CPC [19, Theorem

4.3, Theorem 4.5]. Similarly, the biconjugate of g, denoted

by g⋆⋆, is defined as g⋆⋆ (y) = supx∈Rn (〈x | y〉 − g⋆ (x)) .
Additionally, if the function is CPC, then its biconjugate is

equal to the function itself [19, Lemma 4.8]. Finally, the

relationship between the proximal operator of a CPC function

f with the proximal operator of its conjugate is given by

Moreau’s decomposition: proxf (x) + proxf⋆ (x) = x for

every x ∈ Rn. Moreau’s decomposition does not hold for a

nonconvex function.

Next, we present the following lemmas about conjugate func-

tions in the context of (OPT). Here we use the notation g∨,
which denotes the reversal of a function g, and it is defined

as g∨ (x) = g (−x) for every x ∈ Rn.

Lemma 8 (proximal operator of f⋆∨). Let f : Rn → R

be the cost function in (OPT). Then, for every γ > 0 and for

every x ∈ Rn,

proxγf⋆∨ (x) = x+ γ proxγ−1f

(
−γ−1x

)
.

Proof: Recall that f is CPC. For every γ > 0 and for every

x ∈ Rn,

proxγf⋆∨ (x)
a)
= proxγ(f∨)⋆ (x)

b)
= x− γ proxγ−1f∨

(
γ−1x

)

c)
= x+ γ proxγ−1f

(
−γ−1x

)
,

where a) follows from f⋆∨ = f∨⋆ [1, Proposition 13.20(v)], b)
follows from [1, Proposition 23.29(viii)] and the fact that f∨

is CPC, and c) directly follows from [1, Proposition 23.29(v)].

In the following Lemma convex hull of a nonempty set C,

which is the smallest convex set containing C, is denoted by

conv C. Closure of conv C is denoted by convC.

Lemma 9 (conjugate and biconjugate of indicator function

of C). Let C be the constraint set in (OPT). Then,

(i) δ⋆⋆C = δconv C , and

(ii) proxγδ⋆
C

(x) = x− γΠconv C

(
γ−1x

)
.

Proof: (i): From [19, Example 4.2, Example 4.9], we have

δ⋆⋆C = δconvC . The constraint set C is compact, hence

its convex hull conv C is also compact, hence closed [12,

Corollary 2.30]. So, convC = conv C, and we conclude that

δ⋆⋆C = δconv C .

(ii): As the constraint set C is nonempty and compact, its

indicator function δC is closed [1, Example 1.25] and proper

[12, page 7]. Hence, its conjugate δ⋆C , which is called the

support function of the set C, is CPC (closed and convex

due to [1, Proposition 13.11], proper because C is bounded).

As the conjugate of a CPC function is CPC [19, Theorem

4.3, Theorem 4.5], the function δ⋆⋆C is CPC. Using Moreau’s

decomposition for every x ∈ Rn,

proxγδ⋆
C

(x) = x− prox(γδ⋆C)
⋆ (x)

a)
= x− prox

γδ⋆⋆
C

(
γ−1(·)

) (x)

b)
= x− γ proxγ−1δ⋆⋆

C

(
γ−1x

)

c)
= x− γΠconv C

(
γ−1x

)
,

where a) follows from [1, Proposition 13.20(i)], b) follows

from [1, Proposition 23.29(iii)], and c) follows from combin-

ing δ⋆⋆C = δconv C in (i) and Corollary 1.

B. Constructing (NC-ADMM) from Douglas-Rachford split-

ting

This subsection is organized as follows. First, by applying

(Convex-DRS) to the convex dual of (OPT) we construct

a relaxed version of (NC-ADMM), where the projection is

onto conv C rather than C. Then, we show that the relaxed

version (NC-ADMM) minimizes f over conv C. Next, we

discuss construction of (NC-ADMM) from the relaxed variant

by restricting the latter’s projection step onto C. Finally, we

comment on the convergence properties of (NC-ADMM) and

relate it to (NC-DRS).

1) Constructing dual of (OPT). Using indicator function, we

write (OPT) as

minimize f (x) + δC (y)
subject to x− y = 0,

where x, y ∈ Rn are the optimization variables. Denote the

optimal value of the problem above by p⋆. The dual of the

reformulated problem, which is a convex optimization problem

[20, §5.1.6], is

maximize −f⋆∨ (ν)− δ⋆C (ν) ,

where ν ∈ Rn is the optimization variable. Denote the optimal

value of the dual problem by d⋆. Due to weak duality, we have,

d⋆ ≤ p⋆, and, as the primal problem is nonconvex, the duality

gap p⋆−d⋆ is strict in general. For convenience, we write the

dual problem in minimization form:

minimize f⋆∨ (ν) + δ⋆C (ν) , (Dual-OPT)

with optimal value −d⋆ and same set of optimal solutions as

the dual problem. As f is CPC, f⋆∨ is also CPC (follows from

§IV-A2 and [1, Proposition 8.20]). Furthermore, from Lemma

9(ii), δ⋆C is also CPC. Thus we can apply (Convex-DRS) to

(Dual-OPT).
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2) Applying Douglas-Rachford splitting to (Dual-OPT). By

setting g := f⋆∨ and h := δ⋆C in (21), we have the following

Douglas-Rachford splitting algorithm for the dual problem:

ζn+1 = proxγδ⋆
C

(ψn)

ξn+1 = proxγf⋆∨ (2ζn+1 − ψn) (Dual-DRS)

ψn+1 = ψn + ξn+1 − ζn+1.

Using Lemma 9 and Lemma 8, we simplify the first two

iterates of (Dual-DRS) as

ζn+1 = ψn − γΠconv C

(
γ−1ψn

)
, and

ξn+1 = 2ζn+1 − ψn + γ proxγ−1f

(
− γ−1(2ζn+1 − ψn)

)
.

Using these simplified iterates and introducing intermediate

iterates ỹn+1 = Πconv C

(
γ−1ψn

)
and x̃n+1 = proxγ−1f

(
−

γ−1(2ζn+1 − ψn)
)
, we can write (Dual-DRS) as

ỹn+1 = Πconv C

(
γ−1ψn

)

ζn+1 = ψn − γỹn+1

x̃n+1 = proxγ−1f

(
− γ−1(2ζn+1 − ψn)

)

= proxγ−1f

(
− γ−1(ψn − 2γỹn+1)

)

ξn+1 = 2ζn+1 − ψn + γx̃n+1

= ψn − 2γỹn+1 + γx̃n+1

ψn+1 = ψn + ξn+1 − ζn+1

= ψn − γỹn+1 + γx̃n+1.

Note that the iterates ζn and ξn do not have any explicit depen-

dence, hence they can be removed. Furthermore, introduce a

new iterate, zn = 1
γ
ψn − x̃n . Substituting ψn := γ (zn + x̃n)

in the iteration scheme above, we get

ỹn+1 = Πconv C (zn + x̃n)

x̃n+1 = proxγ−1f (− (zn + x̃n − 2ỹn+1))

a)
= proxγ−1f (− (zn+1 − ỹn+1))

zn+1 = zn + x̃n − ỹn+1, (22)

where a) follows from (22).

Finally, we swap the order of of x̃n+1 and zn+1 to obtain the

correct dependency:

ỹn+1 = Πconv C (zn + x̃n)

zn+1 = zn + x̃n − ỹn+1,

x̃n+1 = proxγ−1f (ỹn+1 − zn+1) .

We now substitute x̃n := xn+1, ỹn := yn, and 1
γ
:= γ̃ in the

iterates above to obtain a relaxed version (NC-ADMM):

xn+1 = proxγ̃f (yn − zn)

yn+1 = Πconv C (zn + xn+1) (Relaxed-NC-ADMM)

zn+1 = zn − yn+1 + xn+1,

which is similar to (NC-ADMM), except the projection is onto

conv C rather than onto C.

3) Constructing (NC-ADMM) from (Relaxed-NC-ADMM).

Now we discuss how we can arrive at (NC-ADMM) from

(Relaxed-NC-ADMM). The first step requires the observa-

tion that (Relaxed-NC-ADMM) finds a minimizer of f over

conv C. To see that, construct the dual of (Dual-OPT), which

is

maximize − (f⋆∨)
⋆∨

(x)− δ⋆⋆C (x) , (Double-Dual)

where x ∈ Rn is the optimization variable. As both

(Dual-OPT) and (Double-Dual) are convex optimization prob-

lems, strong duality usually holds (under constraint qualifica-

tions), where both problems have the same optimal value −d⋆.

Now, (f⋆∨)
⋆∨ a)

= (f∨⋆)
⋆∨

=
(
(f∨)

⋆⋆)∨ b)
= f∨∨ c)

= f,where a)
follows from f⋆∨ = f∨⋆ for CPC function f [1, Proposition

13.20(v)], b) follows from the fact that the biconjugate of

a CPC function is equal to the function itself [19, Lemma

4.8], and c) follows from the fact that applying reversal

operation twice on a function returns the original function.

Furthermore, δ⋆⋆C = δconv C from Lemma 9(i). Hence, the dual

of (Double-Dual), written as a minimization problem, is

minimize f (x)
subject to x ∈ conv C,

where x ∈ Rn is the optimization variable with optimal

value d⋆. So, under strong duality between (Dual-OPT) and

(Double-Dual), (Relaxed-NC-ADMM) finds a minimizer of f
over the set conv C, which appears in the projection step

of (Relaxed-NC-ADMM). So, to solve the original prob-

lem (OPT) where we seek a minimizer of f over C, an

intuitive modification to (Relaxed-NC-ADMM) is replacing

conv C with C (hence Πconv C with Π̃C), which results in

(NC-ADMM). Roughly speaking, (NC-ADMM) is constructed

by first relaxing the constraint set of the original problem to

its convex hull, then applying the Douglas-Rachford splitting

algorithm for the relaxed problem and finally restricting the

resultant algorithm on the original constraint set.

The construction procedure also provides an alternative ex-

planation behind why, when compared with exact solvers,

(NC-ADMM) often achieves lower objective values in many

numerical experiments performed in [2], [4], [5], [6]. In

these works, these lower objective values are attributed to the

superior performance of (NC-ADMM) in solving nonconvex

problems based on empirical evidence. An alternative expla-

nation could be that the heuristic is solving a modified dual

problem, which, in the absence of strong duality, is guaranteed

to yield an objective value that is smaller than or equal to that

of the original problem.

C. Convergence of (NC-ADMM)

Now we comment on convergence properties of (NC-ADMM)

in comparison with (NC-DRS).

•Convergence to an optimal solution. For (NC-DRS), the

fixed point set of Rγ∂δCRγ∂f acts as a bridge between

global minimizers of (OPT) and the fixed point set of the

nonconvex Douglas-Rachford operator (Theorem 2). Though
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(Convex-DRS) is equivalent to (Relaxed-NC-ADMM) under

strong duality, no such equivalence seems to exist between

(NC-DRS) and (NC-ADMM), because there is a strict duality

gap between (OPT) and (Dual-OPT), and Πconv C 6= Π̃C . This

lack of equivalence prevents connecting the fixed point set of

the underlying (NC-ADMM) operator to global minimizers of

(OPT) through the fixed point set of Rγ∂δCRγ∂f .

•Convergence to a point. Furthermore, the lack of equiva-

lence between (NC-DRS) and (NC-ADMM) makes it harder

to comment analogously on convergence of (NC-ADMM) to a

general point (not necessarily an optimal solution) as well. As

shown in the proof of Theorem 3, establishing convergence to

a general point for (NC-DRS) depends on the interrelationship

between the nonconvex Douglas-Rachford operator and the

nonconvex Peaceman-Rachford operator. Unfortunately, such

relationship may break down for (NC-ADMM), because con-

structing such a relationship would require Moreau’s decom-

position to hold for nonconvex functions.

V. FUTURE WORK

Future research directions include conducting numerical ex-

periments to compare the performance of (NC-DRS) with

(NC-ADMM).
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