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Influence of Load Models on Equilibria, Stability

and Algebraic Manifolds of Power System

Differential-Algebraic System
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Abstract—Load models have a great impact on voltage
behaviors as well as power system transient dynamics. Extensive
work has been done on this topic, proposing appropriate load
models and capturing better load behaviors during transient.
This paper presents a comprehensive study to investigate the
geometric and topological changes induced by different load
models for the traditional power system differential-algebraic
equations. Specifically, we attempt to reveal the deformation
of equilibria, stability regions, and algebraic manifolds during
a continuous evolution of load model. Several findings are
presented in the paper, some of which countering traditional
recognitions and intuitions. A major discovery is that the load
model with a large proportion of constant impedance and a
small proportion of constant power exhibits much more complex
features than the load model with the reversed proportions
of impedance and power. The increase of complexity is thor-
oughly recorded and investigated by the changes of geometric
properties and mutations of topological invariants in the sense
of equilibria, stability regions, and algebraic manifolds for the
DAE system. However, most of the changes seem to occur on
unstable components of algebraic manifolds or near the singular
boundary surfaces, suggesting a limited variation of dynamical
behaviors on the stable component.

Index Terms—Load model, differential-algebraic equations,
equilibrium, stability region, algebraic manifold

I. INTRODUCTION

Load behaviors have a profound impact on power system

dynamical performance. Inaccurate load models can intro-

duce significant errors in stability analysis [1], fail to capture

important phenomena, e.g. fault-induced delayed voltage

recovery [2], [3], and even lead to power systems operated

in modes where collapse and separation may occur [4].

Power system engineers and researchers have been con-

tinuously improving the accuracy of load models in the past

several decades [5]–[8]. These efforts along with advanced

parameter estimation techniques significantly reduce the gap

between the actual measured load behaviors and the numer-

ically simulated behaviors based on the model. Introducing

subtler load models can potentially better approximate the

measured load behaviors. With today’s computing capabil-

ities, there seems to be no reason to avoid an accurate

load model, if possible, in transient stability simulations.

The state-of-the-art load model is the composite load model

developed by the Western Electricity Coordinating Council,

which includes static components, four motors and an elec-

tronic component [7]. Further improvements are ongoing in

the field [8].

Although multiple load models are available, most of

them favor numerical simulations in a qualitative way. When

applied to the analytical transient stability analysis such as

direct methods, they would face several difficulties in either

derivation or analysis, for example, formulating an appropri-

ate transient energy function [9] and handling of differential-

algebraic equations (DAEs) instead of ordinary differential

equations (ODEs) [10]. This is the reason that most analytical

methods were developed on classical power system model

whose loads are represented by constant impedance [11],

[12]. Further generalizations are possible but not always

easy [9], [13]. It has been reported that static load models

with properly identified parameters are adequate for transient

stability analysis, since the transient stability is mainly about

the real power behavior of the load while the static load

models can capture the real power behavior with a fairly

acceptable accuracy [14].

An earlier attempt in [15] studied the influence of load

models on a power system DAE model using a simple system

with a single machine, an infinite bus and one load. To study

more complex behaviors, higher dimensional state spaces

need to be investigated. Thus, this paper studies 5-Bus, 9-

Bus, and 14-Bus test cases in the center-of-inertia framework,

and presents extensive investigations on equilibria, stabil-

ity regions and algebraic manifolds of differential-algebraic

equations. Several new interesting phenomena are revealed,

visualized and analyzed when loads are represented by a

combination of constant power and constant impedance. At

a fixed loading level, when loads transition gradually from

the constant power model to the constant impedance model,

1) the number of power flow solutions drastically in-

creases, but not monotonically;

2) there is always a single stable equilibrium point (SEP)

on the stable component of the algebraic manifold;

3) neither a type-1 unstable equilibrium point (UEP) on

the stable component of the algebraic manifold should

admit low voltage at only one bus, nor a solution with

low voltage at only one bus should be type-1 UEP;

4) along with the gradual disappearance of singular sur-

face, the stability region expands during the load tran-

sition, determined initially by the singularity bound-
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ary and eventually by the stable manifolds of type-1

UEP(s).

5) the algebraic manifold is enlarged during the load

transition, connected to its modulo 2π replica, and

eventually occupies the entire angle subspace;

6) the topological invariants of the algebraic manifold

mutate, from a sphere to a quotient space of a few

tori;

7) the change of topology for the algebraic manifold only

occurs on the unstable components.

The rest of the paper is organized as follows: Section II in-

troduces the power system differential-algebraic equations for

transient stability analysis. Section III, IV and V respectively

present numerical investigations of equilibria, stability region

and algebraic manifold of the IEEE 9-bus system considering

loads gradually transitioning from constant power model to

constant impedance model. Section VI draws conclusions and

envisions the future work.

II. POWER SYSTEM DIFFERENTIAL-ALGEBRAIC MODEL

FOR TRANSIENT STABILITY ANALYSIS

This section presents the modeling of power systems used

for this study which can consider different load models. We

first introduce the power system model represented by DAEs

using the center-of-inertia (COI) framework. Then, we model

the load as a combination of constant power load and constant

impedance. With an introduced parameter to linearly combine

these two load models, we design a continuous transition

from one to the other. To identify multiple equilibrium points

for these DAEs, an equivalent power flow problem in the COI

framework is formualted. Finally, we show how to determine

the type of the identified equilibrium points.

A. Classical Model in COI Framework

Consider a general N -bus power grid with Ng generator

buses, including PV and slack buses, and Nd PQ buses.

Appearently, N = Ng + Nd. We adopt the classical DAE

power injection model [16] for the transient stability analysis

throughout this paper. A general form is presented by

ẋ = f(x, y) (1a)

0 = g(x, y) (1b)

where x ∈ R
2Ng is the differential state vector; y ∈ R

2N

is the algebraic state vector; f : R2N → R
2Ng ; g : R2N →

R
2N .

For each generator bus1, a pair of differential equations

captures the angular dynamics of the machine.

ω̇i =
ωs

2Hi

(Pm,i − Pe,i)−Di(ωi − ωs) (2a)

δ̇i = ωi − ωs (2b)

where subscript i = 1, 2, . . . , Ng is the index of generator

bus; ωi is the rotor angular velocity; δi is the rotor angle;

1The generator bus in this dynamical model is the generator internal bus.
The generator terminal bus is, thereby, a PQ bus.

ωs is the constant synchronous speed; Hi is the inertia

constant; Pm,i is the constant mechanical power injected into

the generator; Pe,i is the electrical power delivered from the

generator which is defined shortly below; Di is the damping

coefficient.

Each generator bus also induces two algebraic equations.

Pe,i =Vi

N
∑

k=1

Vk

(

Gi,k cos(δi − δk)

+Bi,k sin(δi − δk)
)

(3a)

Vi =Vm,i (3b)

where Gi,k is the (i, k)’s entry of bus conductance matrix;

Bi,k is the (i, k)’s entry of bus susceptance matrix; Vm,i is

the constant bus voltage magnitude.

We substitute (3a) into (2a) to eliminate Pe,i, reducing the

DAE system to R
2N+Ng . One can also substitute (3b) in all

other equations to further reduce the DAE system. However,

later in the paper we will need these voltage equations to

search for other equilibria. Hence, we leave them explicit in

our DAE system.

For each PQ bus, only two power balance equations need

to be specified.

0 =Pd,j + Vj

N
∑

k=1

Vk

(

Gj,k cos(δj − δk)

+Bj,k sin(δj − δk)
)

(4a)

0 =Qd,j + Vj

N
∑

k=1

Vk

(

Gj,k sin(δj − δk)

−Bj,k cos(δj − δk)
)

(4b)

where subscript j = Ng + 1, Ng + 2, . . . , N is the index of

PQ bus; Pd,j and Qd,j are respectively the active and reactive

power loads.

Therefore, the overall DAE system includes (2a), (2b),

(3b), (4a), and (4b).

In this paper, we adopt the COI angle framework2. Define

the COI angular velocity and angle.

ωCOI :=
1

M

Ng
∑

i=1

Miωi (5a)

δCOI :=
1

M

Ng
∑

i=1

Miδi (5b)

where Mi = 2Hi/ωs and M =
∑

Mi.

Let’s consider

ω̂i := ωi − ωCOI (6a)

δ̂i := δi − δCOI (6b)

δ̂j := δj − δCOI (6c)

2Other angle reference choices include a particular infinite bus or an
arbitrary PV bus.



Substitute (6) into (2), (3) and (4) we get

˙̂ωi =ω̇i −
1

M

Ng
∑

n=1

Mnω̇n (7a)

˙̂
δi =ω̂i (7b)

Vi =Vm,i (7c)

0 =Pd,j + Vj

N
∑

k=1

Vk

(

Gj,k cos(δ̂j − δ̂k)

+Bj,k sin(δ̂j − δ̂k)
)

(7d)

0 =Qd,j + Vj

N
∑

k=1

Vk

(

Gj,k sin(δ̂j − δ̂k)

−Bj,k cos(δ̂j − δ̂k)
)

(7e)

Eqt. (7) is the DAE system for which we will investigate

the transient dynamics. Note that
∑

Miω̂i = 0, suggesting

that (7) still has one degree of degeneracy which comes from

(7b). We will deal with this issue shortly below when using

an equivalent power flow problem to find the equilibria.

B. Load Modeling

Equation. (4) presents the power balance relation at each

PQ bus3. A typical load model is the constant power model,

assuming that power injections Pd,j and Qd,j at each PQ bus

are constants. This model is very useful for static voltage

stability analysis and induces the traditional power flow

problem. During the transient, however, voltages at PQ buses

fluctuate, which can alter the power consumption from their

designated values. To better capture the change of power

consumption, the “ZIP” model is formulated in the following

way.

Pd,j = P0,j + Ip,jVj +Gd,jV
2
j (8a)

Qd,j = Q0,j + Id,jVj +Bd,jV
2
j (8b)

where P0,j and Q0,j are the constant active and reactive

power; Ip,j and Id,j are the constant active and reactive

current; Gd,j is the load conductance; Bd,j is the load

susceptance.

In this paper, we ignore the constant current part in (8), i.e.

Ip,j = Iq,j = 0, to acquire a uni-directional change of load

model from the constant power to the constant impedance.

Consider

Pd,j + jQd,j = α(P0,j + jQ0,j) + (1− α)V 2
j /Zd,j (9)

where α ∈ [0, 1]; Zd,j is the constant impedance.

We can track the change of transient dynamics by con-

tinuously changing α from 1 to 0, which gradually convert

the constant power model to the constant impedance model.

P0,j + jQ0,j is fixed to be the designated load power

consumption. When solving the traditional power flow high

3We choose the flow convention that injecting power is the positive
direction.

voltage solution V0,j associated with P0,j+ jQ0,j , we obtain

the corresponding impedance by

Zd,j = V 2
0,j/(P0,j + jQ0,j) (10)

This setting ensures that the high voltage solution is

unchanged during the change of load model.

C. Equivalent Power Flow Problem for COI Framework

To evaluate the transient dynamics of the system (5), we

need to obtain its equilibrium points. Setting
˙̂
δi to zero in (7b)

implies that the relative angular velocity ω̂i vanishes, which

further suggests that the true angular velocity ωi converges

to the COI angular velocity ωCOI that does not necessarily

comply with the synchronous speed ωs. In this case, δ̇i in

(2b) does not vanish. Hence, all the generator angles keep

changing, while their relative differences stabilize. Therefore,

to solve the relative angle differences we subtract all COI

angles from the first COI angle. Specifically, we define

ω̃i :=ω̂i − ω̂1 = ωi − ω1 (11a)

δ̃i :=δ̂i − δ̂1 = δi − δ1 (11b)

δ̃j :=δ̂j − δ̂1 = δj − δ1 (11c)

Assuming that Di = Dj for every pair i and j, the

algebraic equations we are going to solve with respect to

δ̃i are

0 =
ωs

2Hi

(Pm,i − Pe,i)−
ωs

2H1
(Pm,1 − Pe,1) (12a)

0 =Vm,i − Vi (12b)

0 =Pd,j + Vj

N
∑

k=1

Vk

(

Gj,k cos(δ̃j − δ̃k)

+Bj,k sin(δ̃j − δ̃k)
)

(12c)

0 =Qd,j + Vj

N
∑

k=1

Vk

(

Gj,k sin(δ̃j − δ̃k)

−Bj,k cos(δ̃j − δ̃k)
)

(12d)

Equation. (12) is the equivalent power flow problem that

provides the equilibrium points to the DAE system (7). It

is similar to the traditional power flow problem except that

every active power balance equation at generator bus sub-

tracts from the active power balance equation at a particular

generator bus.

D. Determining Stability and Type of Equilibrium

Suppose (x0, y0) is an equilibrium point to the DAE

system (1). Let’s consider the Jacobian matrix Jx for the

dynamic states x. Suppose ∂g
∂y

|(x0,y0) is nonsingular, then

Jx :=

[

∂f

∂x
−

∂f

∂y

(

∂g

∂y

)

−1
∂g

∂x

]

(x0,y0)

(13)

Gathering the eigenvalues of Jx in Λ = {λ1, . . . , λ2Ng
}.

The point (x0, y0) is said to be type-k if there exists exactly k



entries of Λ whose real parts are positive. If Jx is hyperbolic

and type-0, then we say (x0, y0) is an SEP.

Note that (7) has one degree of degeneracy, the Jacobian

matrix Jx of dynamic states will always have a zero eigen-

value. Ignoring this zero eigenvalue, the type and stability of

an equilibrium point can still be determined by the rest of

the eigenvalues.

E. Model Modification and Computational Procedure

As discussed in the above subsection, the types of equilib-

ria are evaluated from the differential part of the DAE system

(7). Therefore, the static power flow problem is not sufficient

to determine the equilibria and their types. In this paper, we

add generator classical model to each PV bus of the power

flow problem, set the generator internal voltage bus as the

new PV bus, and revise the generator terminal bus to PQ

bus. The modified system is then a DAE system with more

nodes and components. For example, the 9-bus system turns

out to be a 12-bus system after modification since it includes

three generator internal buses. We still call this system the

9-bus system since readers would be more familiar with the

standard power flow system. The tested systems presented

in this paper are all selected from the standard power flow

systems, namely, 5-bus case [17], [18], 9-bus case, and 14-

bus case [19], with modifications on the dynamical parts. The

dynamical parameters are selected from the Appendices of

[20], and are included in Appendix I of this paper.

The computational procedure is given below.

1) Choose a static power flow problem. Solve the high

voltage solution by a standard solver.

2) Add generator internal bus to each generator bus of the

static power flow problem. Compute the internal bus

voltage based on the previously solved high voltage

solution. Revise the generator terminal bus to PQ bus.

3) Compute the equivalent load impedance at the high

voltage solution. Choose the load model with given

proportions of constant power and constant impedance.

4) Based on the new DAE model, solve the corresponding

equivalent power flow problem (12) for many equilib-

rium points.

5) Evaluate the types and properties of these equilibrium

points by (13).

III. EQUILIBRIA WITH DIFFERENT LOAD MODELS

This section applies an efficient method [21], [22] to

solve (12) for multiple equilibra of the DAE model (7). We

gradually change the load model from constant power to

constant impedance and observe the change of equilibra.

A. Number of Equilibria

The numbers of equilibria at different load models are

summarized in Fig. 1. Note that we apply (9) as our

load model for different proportions of constant power and

impedance associated with α. One observation is that a small

proportion of power with a large proportion of impedance

load induces much more equilibria than a large proportion
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(c) 14-Bus Case

Fig. 1: Numbers of Equilibria with Different Load Models
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Fig. 2: Non-monotone Change of Solutions in 14-Bus Case

of power with a small proportion of impedance load. This

may be counter-intuitive because the constant impedance

load is considered simpler than the constant power load.

But as the constant power is gradually replaced by the

constant impedance, it is equivalent to reducing the node

power injection while increasing the shunt impedance. When

the node power injection declines, it actually can intersect

with more PV (QV) curves (surfaces), thus resulting in more



equilibria.

The second observation is that, as the load model ap-

proaches the constant impedance model, the number of equi-

libria increases much faster. This phenomenon may also be

explained by the reason that many PV (QV) curves (surfaces)

occur at a low node power injection level. It suggests that

a small change of load model can result in many equilibria

appearing or disappearing at a small constant power injection

level. For example, in Fig. 1(c), when the constant impedance

increases from 80% to 90%, the number of equilibria doubles.

It may raise a reasonable concern about the validity of

transient stability analysis based on some heuristically or

conceptually assigned load models. However, this concern

can be partially resolved by the observations in the next

subsection when we further investigate the types of equilibria

on the stable component of algebraic manifold.

Fig. 1(b) and Fig. 2(a) show that the number of equilibria

does not necessarily increase monotonically as the proportion

of constant power decreases. In Fig. 1(b), the number of

equilibira declines around the pure constant impedance load

model. In Fig. 2(a), the number of equilibia temporarily

reduces at 18.81% impedance proportion, and returns as the

impedance proportion increases to 23%. Fig. 2(b) depicts

the process of this temporary equilibria reduction. As the

impedance proportion increases from 18% to 18.80612%,

a pair of equilibria collides on the real plane, and be-

comes a complex-valued solution pair. This collision happens

between a type-1 equilibrium and a type-2 equilibrium.

Fig. 2(c), on the other hand, shows the acquisition of another

equilibria pair which is not the same colliding equilibria

pair in Fig. 2(b). As the impedance proportion increases

from 22.98% to 23.01%, a pair of complex-valued solutions

collides and becomes a real-valued equilibria pair from

which one is type-0 and the other is type-1. At a particular

proportion value between 23.01% and 23.05%, the type-1

equilibrium turns into type-0.

B. Types of Equilibria

After enumerating equilibrium points for different load

models, we evaluate their types displaying in Fig. 3. A

DAE system (7) can be regarded as a confined dynamical

system whose dynamical flows are restricted on the algebraic

manifold defined by the algebraic equations of the DAE

system. The type of an equilibrium point is determined by its

differential part in (13). Therefore, multiple SEPs can exist

on different components of the algebraic manifold. However,

even some equilibria are classified as stable (type-0) in the

analysis, the physical system may not be able to work at

them. The algebraic part of a DAE system is usually derived

from reducing fast dynamics, or other simplifications. Hence,

an SEP in the DAE model may not be “stable” in the physical

sense. At this point, equilibria on the stable component of

the algebraic manifold are of most interest because they are

usually consistent with the types in the real situation.

One observation from Fig. 3 is that every tested case in

each load model only exhibits one SEP (which is the high-
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Fig. 3: Equilibria Types for Different Load Models

voltage solution) on the stable component of the algebraic

manifold. Ref. [23] discussed the uniqueness of load flow

solution for radial distribution network, however, it is still

an open question whether the SEP is unique or not on the

stable component of algebraic manifold for a general power

grid DAE system. Moreover, although the total number of

equilibria can change drastically as shown in Fig. 1, the

number of equilibria on the stable component of algebraic

manifold remains small for all tested cases in this paper.

This observation may partially relieve the concern raised

in the previous subsection: the change of load model can

substantially alter the number of equilibria, but only very

limited equilibria are modified on the stable component of

algebraic manifold. More investigations are needed.



A more interesting finding is that the equilibria on the

stable component of algebraic manifold become complicated

with different types when the proportion of constant power

reduces to a particular value, which is usually less than 20%.

Fig. 3(b) and Fig. 3(d) present the increase of complexity

for the equilibria. This phenomenon is somehow counter-

intuitive because the constant power load is thought to be

more complicated than the constant impedance load. Our

analysis shows the opposite, at least in the sense that a

small proportion of constant power with a large proportion of

constant impedance will result in more complex dynamical

behaviors.

TABLE I: Selected Equilibria from 9-Bus Case

Bus V1 V2 V3 V4 V5

Equilibrium 1 0.3519 0.7600 0.7565 0.0696 0.1584

Equilibrium 2 0.5889 0.8282 0.7490 0.4042 0.0037

Bus V6 V7 V8 V9 Type

Equilibrium 1 0.6060 0.5874 0.5939 0.1488 1

Equilibrium 2 0.5948 0.6505 0.7081 0.4883 0

Another interesting discovery may also counter people’s

intuition: neither a type-1 equilibrium point (on the stable

component of the algebraic manifold) should admit only one

low bus voltage, nor a solution with only one low bus voltage

should be type-1. For example, in Table I, we present two

selected equilibria from the 9-bus case at 97% proportion of

impedance load. The first equilibrium is type-1 on the stable

component of algebraic manifold. The voltage magnitudes

on bus 4, 5 and 9 are all below 0.2 p.u. While the second

equilibrium is type-0 on the unstable component of algebraic

manifold. It only has one voltage magnitude at bus 5 below

0.2 p.u. Other tested cases also exhibit a similar phenomenon.

This observation suggests that an initial guess with only one

low voltage magnitude cannot necessarily lead the Newton’s

method4 to find a type-1 equilibrium point. It also suggests

that an equilibrium with only one low voltage magnitude can

also be another type.

IV. STABILITY REGIONS WITH DIFFERENT LOAD

MODELS

Section III shows that power system DAEs can have multi-

ple SEPs on different components of the algebraic manifold.

This section will investigate the load model influence on

the stability region (or the stability boundary which is the

boundary surface of region of attraction) with respect to the

high-voltage SEP. Unlike the power system ODE dynamical

models whose stability boundaries are composed of the stable

manifolds of certain type-1 UEPs, the unstable manifolds of

which converge to the SEP, the stability boundaries of power

system DAE dynamical models consist of two components:

the first component is the same as the ODE model, while

the second one is a set of points whose trajectories reach

singular surfaces [15], [24]–[26].

4Any method that requires a starting point may fail to identify a type-1
equilibrium point from the mentioned initial guess.

Fig. 4 shows the cross-sections of the stability regions on

the zero-speed plane5 for the 9-bus case with different load

models. These intersections can be regarded as particular

slices of the corresponding stability regions of the power

system DAE models in the δ − ω space. For simplicity, we

refer this intersection to “stability region” in the following

discussions. In Fig. 4, green solid circles are equilibria on the

stable component, red curves represent stability boundaries

identified by Algorithm 1, and blue stars represent the

projection of singular surfaces on the relative angle plane.

As shown in Fig. 4(a)-4(c), when the proportion of

impedance load increases from 0% to 80%, the stability

region of the 9-bus case expands gradually. During this

process, there is only one equilibrium, which is stable, and

the stability boundary is exactly the same as the singularity

boundary.

When the proportion of impedance load reaches 90%, the

singularity boundaries break up into multiple segments in

the plot, and a type-1 UEP appears around (δ21, δ31) =
(2.4, 0.2), whose stable manifolds contribute to a small

portion of the stability boundaries around this UEP, as shown

in Fig. 4(d) and 4(e). Note that the stability boundary near

(−3,−1) does not overlap with any singularity boundaries

because the stability region shown in the plot is just an angle

slice that does not necessarily comply with the angle slice

of the singularity boundary. The dash dot line in Fig. 4(e)

represents an unstable trajectory initialized at (δ21, δ31) =
(−2.08, 0.19), i.e. a point outside stability region but inside

the singularity region. As a comparison, the black trajectory

initialized at (δ21, δ31) = (−2.48, 0.07), i.e. a point in the

stability region but close to the boundary, first crosses the

SEP and travels near the type-1 UEP. But it converges to the

SEP eventually.

When the load is represented by a pure impedance, the

singularity boundary completely disappears and the stability

boundary is fully determined by stable manifolds of the two

type-1 UEPs, as shown in Fig. 4(f).

Another interesting finding is that except for the case with

100% impedance load model, the majority of the stability

boundary is determined by the singular surface. When the

proportion of constant power reduces from 100% to less

than 5%, the singular surface expands in the relative angle

subspace and disappears eventually. In the meantime, the

expanded area tends to include more UEPs, which contribute

to a portion of the stability boundary.

V. ALGEBRAIC MANIFOLDS WITH DIFFERENT LOAD

MODELS

Our analysis started with equilibria in Section III, and

extended to stability regions on the stable component of

algebraic manifold in Section IV. Now in this section we

directly investigate the algebraic manifold to acquire a global

view of how the load model influences the DAE system. The

5Note that in our COI framework, the stable equilibrium does not need
to be at the rated speed. It only converges to the speed of COI.
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Algorithm 1 Numerical identification of the stability bound-

ary

1: In the δ21−δ31 plane, set up M unit vectors with angles

respectively taking 0, 360/M , ..., 360(M − 1)/M , say

n1, ..., nM . M = 180 is used in this paper.

2: Set r to be a small step, e.g. 0.1 used in this paper. Along

the direction determined by each of the unit vectors, say

nj , let (δ210, δ310) = rnj and conduct steps 3-6 below.

3: Use (δ̃1, ω̃1, δ̃2, ω̃2, δ̃3, ω̃3) = (0, 0, δ210, 0, δ310, 0) as the

initial state to numerically solve DAEs in (7) over a

period of time (5 seconds in this paper) for δ21(t) and

δ31(t).
4: If r < ǫ (ǫ = 0.001 in this paper) record (δ210, δ310) as

an estimate of the stability boundary in direction nj and

then go to step 2 for next direction.

5: If max(δ21)−min(δ21) > 2π or max(δ31)−min(δ31) >
2π, let r = r/2, (δ210, δ310) = (δ210, δ310)− rnj and go

to step 3.

6: Let (δ210, δ310) = (δ210, δ310) + rnj and go to step 3.

algebraic manifold is defined by the algebraic set of (7c),

(7d), and (7e). We only focus on the 9-bus case because it is

complicated enough to demonstrate interesting phenomena,

while not computationally extensive.

Fig. 5 depicts algebraic manifolds under different load

models. Specifically, the X-axis represents the generator

angle δ̃2 which equals to the angle difference δ21 := δ2−δ1 as

described by (11b). The Y -axis similarly represents δ̃3 = δ31.

The Z-axis is chosen to be the voltage magnitude on bus-9.

The algebraic manifolds are shown in pink surfaces on which

the blue curves represent the singularity boundary surfaces.

The yellow diamonds are the equilibria that we analyzed in

Section III.

From Fig. 5(a) to Fig. 5(f) one can observe that the

algebraic manifold enlarges as the proportion of impedance

load increases. This is consistent with the finding that con-

stant power model induces smaller stability region than the

constant impedance model [27]. Since the X and Y axes

represent angles, they should repeat themselves by any 2nπ.

When the impedance model dominates the load model, the

algebraic manifold connects to its 2nπ replica, as shown in

Fig. 5(f). It suggests that the DAE system dynamics may

stabilize after several angular cycles of 2π.

A new finding is that a large proportion of impedance in

the load really complicates the geometry of the algebraic

manifold, and substantially alters the topology of the mani-

fold as well. For example, with constant power load model,

the algebraic manifold depicted in Fig. 5(a) is homeomorphic

to a sphere. When the impedance load increases to 20% in

Fig. 5(b), a small depression area appears. It induces negative

curvatures and creates its own singularity boundary which

is shown as the small blue circle in the plot. When the

impedance proportion increases further to 40%, the small

depression area becomes a concave bubble inside the outer
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Fig. 6: 9-Bus Case Algebraic Manifolds: Inner Bubbles

manifold and introduces more equilibria on it, shown in

Fig. 5(c) (global view) and Fig. 6(a) (local view). As we

increase the load impedance to 60%, two inner bubbles

reach the other side of the outer surface, punctuating the

manifold to create two tunnels shown in Fig. 5(d) (global

view) and Fig. 6(b) (local view). Now the manifold is no

longer homeomorphic to a sphere, but homeomorphic to

two tori glued together. Increasing the impedance proportion

further enlarges the tunnels and creates more complicated

structures as shown in Fig. 5(e) and 5(f).

In this particular example, however, both the geometric and

the topological changes occur on the unstable components

of algebraic manifold. Whether the stable component can

exhibit a similar change requires further investigations.

VI. CONCLUSION

Load models are recognized being influential on voltage

behaviors and transient dynamics. Numerous works have

been done on this topic to build appropriate load models

and to better capture static and dynamical behaviors.

In this paper, we specifically focused on the geometric

and topological changes of the solution sets for a power

system DAE model with different load models. A few

findings were recorded and analyzed when the load model

continuously transitions from the constant power model to

the constant impedance model. One major counter-intuitive

discovery is that a load model with a large proportion of

constant impedance and a small proportion of constant power

introduces much more complex geometric and topological

structures than a load model with a small proportion of

constant impedance and a large proportion of constant power.

Specifically, the number of equilibria increases dramatically

when the constant power is largely replaced by the constant

impedance. However, this increase of equilibrium quantity



is not necessarily monotone. We also emphasized that the

appearance of type-1 UEP is not necessarily associated to

a single node experiencing ultra-low voltage magnitude.

The stability region, as expected, starts from a small re-

gion determined by the singular surface, expands when the

proportion of constant impedance increases, and is finally

constrained by the stable manifolds of type-1 UEPs. In this

case, the algebraic manifold is connected to all its modulo

2π replica. The fundamental group of the algebraic manifold

is, however, more complicated when the load is dominated

by the impedance.

These findings certainly provide deep insights to the

fundamental geometric and topological structures of power

system dynamics associated with different load models.

Future investigations will include, not limited to, how to

identify changes of equilibria only on the stable component of

algebraic manifold; what changes of other load models can

exert on power system dynamical models; how to identify

the appropriate distance from the SEP to the nearest stability

boundary point in the power system DAE model.

ACKNOWLEDGEMENT

The authors gratefully acknowledge Prof. Bernard Lesieu-

tre, Prof. Chris Demarco, Prof. Franz-Eric Wolter, and Prof.

Marija Ilic for many helpful discussions. We also thank Prof.

Eytan Modiano and Prof. Le Xie for their great supports.

REFERENCES

[1] W.-J. Lee, M.-S. Chen, and L. B. Williams, “Load model for stability
studies,” IEEE Transactions on Industry Applications, vol. IA-23,
no. 1, pp. 159–165, 1987.

[2] D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin,
R. Bravo, and S. Yang, “Load modeling in power system studies: Wecc
progress update,” in 2008 IEEE Power and Energy Society General

Meeting - Conversion and Delivery of Electrical Energy in the 21st
Century, pp. 1–8, July 2008.

[3] D. Kosterev and J. Undrill, “Load modeling in wecc.” DOE-NERC
FIDVR Workshop, 2009.

[4] CIGRE Task Force 38.02.05, “Load modeling and dynamics.” Electra,
1990.

[5] IEEE Task Force on Load Representation for Dynamic Performance,
“Load representation for dynamic performance analysis,” IEEE Trans.

on Power Syst., vol. 8, pp. 472–482, May 1993.

[6] IEEE Task Force on Load Representation for Dynamic Performance,
“Standard load models for power flow and dynamic performance
simulation,” IEEE Trans. on Power Syst., vol. 10, pp. 1302–1313,
Aug 1995.

[7] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao,
“Load modelinga review,” IEEE Transactions on Smart Grid, vol. 9,
pp. 5986–5999, Nov 2018.

[8] Q. Huang, R. Huang, B. J. Palmer, Y. Liu, S. Jin, R. Diao, Y. Chen,
and Y. Zhang, “A reference implementation of wecc composite load
model in matlab and gridpack.” arXiv preprint 1708.00939.

[9] Y. Min and L. Chen, “A transient energy function for power systems
including the induction motor model,” Science in China Series E:

Technological Sciences, vol. 50, no. 5, pp. 575–584, 2007.

[10] K. R. Padiyar, Structure Preserving Energy Functions in Power Sys-
tems: Theory and Applications. CRC Press, 2017.

[11] M. A. Pai, Power System Stability: Analysis by the Direct Method of
Lyapunov. North-Holland Publishing Company, 1981.

[12] H.-d. Chiang, Direct Methods for Stability Analysis of Electric Power

Systems: Theoretical Foundation, BCU Methodologies, and Applica-

tions. John Wiley & Sons, 2011.

[13] I. A. Hiskens and R. J. Davy, “Lyapunov function analysis of power
systems with dynamic loads,” in Proceedings of 35th IEEE Conference

on Decision and Control, vol. 4, pp. 3870–3875 vol.4, Dec 1996.
[14] Y. Li, H. . Chiang, B. . Choi, Y. . Chen, D. . Huang, and M. G.

Lauby, “Representative static load models for transient stability anal-
ysis: development and examination,” IET Generation, Transmission

Distribution, vol. 1, pp. 422–431, May 2007.
[15] H. Wu, R. Guo, Z. Han, and D. Gan, “Geometrical structure of

constraint manifold in power system differential-algebraic model,” in
2006 International Conference on Power System Technology, pp. 1–7,
Oct 2006.

[16] P. W. Sauer, M. A. Pai, and J. H. Chow, Power System Dynamics
and Stability: With Synchrophasor Measurement and Power System

Toolbox. John Wiley & Sons, 2017.
[17] F. Salam, L. Ni, S. Guo, and X. Sun, “Parallel processing for the load

flow of power systems: the approach and applications,” in Decision

and Control, 1989., Proceedings of the 28th IEEE Conference on,
pp. 2173–2178, IEEE, 1989.

[18] F. Salam, L. Ni, X. Sun, and S. Guo, “Parallel processing for the steady
state solutions of large-scale non-linear models of power systems,”
in Circuits and Systems, 1989., IEEE International Symposium on,
pp. 1851–1854, IEEE, 1989.

[19] R. D. Christie, “Power systems test case archive.” University of
Washington, Seattle, 1999.

[20] P. M. Anderson and A. A. Fouad, Power system control and stability.
John Wiley & Sons, 2008.

[21] D. Wu and B. Wang, “Holomorphic embedding based continuation
method for identifying multiple power flow solutions,” IEEE Access,
2019.

[22] B. Lesieutre and D. Wu, “An efficient method to locate all the load
flow solutions-revisited,” in 2015 53rd Annual Allerton Conference

on Communication, Control, and Computing (Allerton), pp. 381–388,
IEEE, 2015.

[23] H.-D. Chiang and M. E. Baran, “On the existence and uniqueness
of load flow solution for radial distribution power networks,” IEEE

Transactions on Circuits and Systems, vol. 37, no. 3, pp. 410–416,
1990.

[24] V. Venkatasubramanian, H. Schättler, and J. Zaborszky, “Stability
regions for differential-algebraic systems,” in Systems, Models and

Feedback: Theory and Applications, pp. 385–402, Springer, 1992.
[25] V. Venkatasubramanian, H. Schattler, and J. Zaborsky, “Dynamics of

large constrained nonlinear systems-a taxonomy theory [power system
stability],” Proceedings of the IEEE, vol. 83, no. 11, pp. 1530–1561,
1995.

[26] H.-D. Chinag and L. F. C. Alberto, Stability Regions of Nonlinear

Dynamical Systems: Theory, Estimation, and Applications. Cambridge
University Press, 2015.

[27] E. Sorrentino, O. Salazar, and D. Chvez, “Effect of generator models
and load models on the results of the transient stability analysis
of a power system,” in 2009 44th International Universities Power

Engineering Conference (UPEC), pp. 1–5, Sep. 2009.

APPENDIX A

9-BUS SYSTEM PARAMETERS

The dynamical parameters are selected from the Appen-

dices of [20] and have been converted to the same base power

at 100 MVA.

TABLE II: 5-Bus Case Dynamical Data

Bus Rated Power X
′

d
r T

′

do
H

1 100 MVA 0.2200 0.0035 5.900 4.9850

5 147.1 MVA 0.2033 0.0023 4.300 4.3100



TABLE III: 9-Bus Case Dynamical Data

Bus Rated Power X
′

d
r T

′

do
H

1 233 MVA 0.1391 0.0007 5.1400 9.5996

2 270 MVA 0.0948 0.0006 4.8000 11.1510

3 270 MVA 0.0948 0.0006 4.8000 11.1510

TABLE IV: 14-Bus Case Dynamical Data

Bus Rated Power X′

d
r T ′

do
H

1 330 MVA 0.0961 0.0005 6.0000 9.900

2 147.1 MVA 0.2033 0.0023 4.3000 4.3100

3 192 MVA 0.1641 0.0019 5.0000 5.9520

6 100 MVA 0.2200 0.0035 5.9000 4.9850

8 100.1 MVA 0.3137 0.0049 6.5500 3.1201
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