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Abstract—We revisit the Whittle index policy
for scheduling web crawlers for ephemeral content
proposed in Avrachenkov and Borkar, IEEE Trans.
Control of Network Systems 5(1), 2016, and develop
a reinforcement learning scheme for it based on
LSPE(0). The scheme leverages the known structural
properties of the Whittle index policy.

I. INTRODUCTION

Reinforcement learning for approximate dy-
namic programming has been a popular approach
to approximate policy evaluation or computation
for Markov decision processes with large state
spaces. A data driven iterative scheme based on
real or simulated data, it offers the possibility of
working around, to a significant extent, the so
called curse of dimensionality which these prob-
lems suffer from. A further and very significant
reduction in complexity is possible if one exploits
the explicitly known structural properties, if any, of
the problem. Recently there have been a few works
that do so, e.g., exploiting threshold nature of the
policy [11], [16], parametrized threshold policies
[19], or index policies such as the Whittle policy
for restless bandits [5]. In particular, [5] addressed
the problem of learning the Whittle policy when
Whittle indexability is known, but structure of the
index is not explicitly known. This work addresses
a situation when the latter is known in a parametric
form, but the parameters are unknown, and the
algorithm is required to operate online with stream-
ing real time data. As a test case, we consider the
specific problem of scheduling web crawlers for
ephemeral content analyzed in [2] (see also [3],
[14] for related work). We describe this problem

in the next section and summarize the main results
of [2]. Some preliminary analysis of the problem
is given in section III. This is followed by the
proposed learning scheme in section IV. Section V
presents some supporting numerical experiments.

II. PROBLEM FORMULATION

Consider crawling decisions at discrete times
0, 1, 2, · · ·. The content arrives in continuous time
according to a Poisson process at site i with rate
λi for 1 ≤ i ≤ N . Content at site i more than
Mi time units old is dropped. The interest in the
content at site i less than Mi time units old decays
exponentially with rate ci > 0 [6], [20], [12]. Let
Xi(n) denote the cumulative interest in content
at site i at time n. Consider ζ items arriving at
site i during the time interval [m,n], n > m, at
(random) times {τ(i), 1 ≤ i ≤ ζ}. Then {τ(i)} are
IID uniform on [m,n] conditioned on ζ = (say) k,
and

pi(k) := P (ζ = k) =
(λi(n−m))k

k!
e−λi(n−m).

Define

αi = e−ci ,

Zi(n) :=
∑

{m:n−1≤τi(m)<n}

α
n−τ(m)
i ,

Xi(n) =

n∑
m=n−M+1

αn−mi Zi(m),

ξi(n) = Zi(n)− αMi
i Zi(n−Mi),

ui = ui(λi, αi) := E [ξi(n)]



=
(

1− αMi
i

)∑
k

kpi(k)×∫ n

n−1

αn−si ds

=
(

(1− αi)(1− αMi
i )
) λi
ci
.

Then {Zi(n)} are i.i.d. and

Xi(n+ 1) = αiXi(n) + ξi(n+ 1). (1)

When not crawled, the state is not observed, so
the mean dynamics becomes (with some abuse of
notation)

Xi(n+ 1) = αiXi(n) + ui. (2)

When crawled, Xi(n) is instantaneously reset to
zero at time n+ and

Xi(n+ 1) = ui. (3)

Thus the observed dynamics is effectively the de-
terministic one given by (2)-(3): when you crawl,
you do observe the actual random state at the end
of the interval, but the state is instantly reset to
zero, so that knowledge is no longer relevant. The
objective is to maximize the average interest level

lim inf
n↑∞

1

n

n−1∑
m=0

N∑
i=1

Xi(n)νi(n)

where νi(n) = 1 if location i is crawled at time
n and 0 otherwise, subject to the constraint that
only N0 < N crawlers can be active at any time.
This can be cast as a restless bandit problem that is
Whittle indexable [2]. The Whittle index is given
by [2]

γi(x, λi, αi) :=
1

Ci

[
ζi(x, λi, αi)((1− αi)x

−ui)

+

(
1− αζi(x,λi,αi)

i

1− αi

)
ui

]
(4)

where

ζi(x, λi, αi) :=

⌈
log+

αi

(
ui − (1− αi)x

ui

)⌉
. (5)

Here d· · ·e stands for ‘the least integer exceeding
· · ·’ and we have rendered explicit the dependence

on the unknown arrival rate λi and the unknown
decay rate αi via ui. Let

λ := [λ1, · · · , λN ] ∈ RN ,
α := [α1, · · · , αN ] ∈ (0, 1)N ,

Γ := [λ : α] ∈ RN × (0, 1)N ,

u(Γ) := [u1(λ1, α1), · · · , uN (λN , αN )]T ,

U :=

N∏
i=1

[
ui,

ui
1− αi

]
.

Anticipating the randomized policies we consider
later, denote the reward under the Whittle index
policy by J(Γ) :=

∑N
i=1Es [Xi(n)], where Es[ · ]

denotes the stationary expectation. Let πΓ(dx)
denote the stationary distribution of X(n) =
[X1(n), · · · , XN (n)], n ≥ 0. We shall denote by
∇y the gradient w.r.t. the variable y.

The Whittle policy is as follows: At each time t,
if the state is x(t) = [x1(t), · · · , xN (t)], rank order
{γi(xi(t), λi, αi)} in decreasing order (resolving
any ties arbitrarily) and render the top N0 active,
the rest passive.

III. THE WHITTLE DYNAMICS

For fixed values of x−i := {xj , j 6= i}, the
policy for the ith process is a threshold policy with
threshold

Ti(x−i,Γ) := γ−1
i (·, λi, αi)

(
max
j 6=i

γj(xj , λj , αj)
)
,

with 1 ≤ i ≤ N. This will be monotone increasing
in x−i by virtue of the structural properties estab-
lished in [2]. The policy is captured by the step
function

I{ith process active} = I{νi(n) = 1} =

= I{xi ≥ Ti(x−i,Γ)},

where I{· · ·} is the indicator function. Following
the approach of [16], [19], we approximate this
function by

fi(xi, x−i,Γ) :=
eκi(xi−Ti(x−i,Γ)−0.5)

1 + eκi(xi−Ti(x−i,Γ)−0.5)

where κi > 0. We treat this as the probability of
picking 1, i.e., the active mode. The corresponding
transition probabilities for the ith process are

pi(yi|x,Γ) =



{
fi(xi, x−i,Γ), yi = ui,
1− fi(xi, x−i,Γ), yi = αixi + ui,
0, otherwise.

We shall use pi(yi|x,Γ), pi(yi|x), pi(yi|xi, x−i)
interchangeably depending on the emphasis we
want to put. Note that the actual operative policy
is an index policy which deterministically picks at
each time the N0 sites to crawl. A probabilistic
decision as above would violate the constraint.
Thus the above is purely an approximation for
analytic purposes. This is a common device in
such learning schemes, employed so as to exploit
the ease of optimization over continuous variables.
If the scheme were a simulation-based off-line
exercise, the probabilistic decision could be im-
plemented, but this choice is not there for online
schemes.

The transition probabilities are coupled, so the
overall transition probability of the Markov chain
is

p([y1, · · · , yN ]|[x1, · · · , xN ],Γ) :=

:=

N∏
i=1

pi(yi|xi, x−i,Γ).

We take a parametrized approximation for
Ti(x−i,Γ) as Ti(x−i,Γ) ≈

∑s(i)
j=1 q

i
j(Γ)ψj(x−i).

From now on we use the qij’s as surrogate pa-
rameters for Γ and suppress the Γ-dependence of
qij’s and other entities henceforth. Let Ui(xi) :=
{ui, αixi + ui} and U(x) :=

∏
i Ui(xi). The

Poisson equation for this Markov chain is

V (x1, · · · , xN ) =

N∑
i=1

xi − β

+
∑
y∈U

N∏
i=1

pi(yi|xi, x−i)V (y1, · · · , yN ), (6)

where we have suppressed the dependence on
the unknown parameter vector Γ. Note that under
Whittle policy, the system trajectory is periodic and
traverses only a finite subset of the state space.
For such a case, the well-posedness of the Poisson
equation, i.e., the existence of solution (V (·), β)
with β uniquely characterized as

∑N
i=1Es [Xi(n)]

and V (·) unique up to an additive scalar, is easy
to establish by a ‘vanishing discount’ argument.
Arguing as in Proposition 1 of [10], we have, for

qi = [qi1, · · · , qis], q = [(q1)T : · · · : (qN )T ]T , and
π = πΓ,

∇qβ =

∫
π(dx)

 ∑
y∈U(x)

∇qp(y|x)V (y)


=

∫
π(dx)

( ∑
y∈U(x)

p(y|x)×

∇q log p(y|x)V (y)
)
. (7)

We use this as the basis of our learning scheme
described in the next section. Explicit calculation
leads to

∇q log p(y|x)

=

N∑
i=1

∇qpi(yi|x)

pi(yi|x)

=

N∑
i=1

(
− I{yi = αixi + ui}

pi(αixi + ui)
×

∇q
 e

κi(xi−
∑

j
qijψj(x−i)−0.5)

1 + e
κi(xi−

∑
j
qi
j
ψj(x−i)−0.5)


+
I{yi = ui}
pi(ui|x)

×

∇q
 e

κi(xi−
∑

j
qijψj(x−i)−0.5)

1 + e
κi(xi−

∑
j
qi
j
ψj(x−i)−0.5)

)

=
[
· · · ,

N∑
i=1

κi

((I{yi = αixi + ui}
pi(αixi + ui|x)

− I{yi = ui}
pi(ui|x)

)
×

(ψj(x−i)pi(yi|x)(1− pi(yi|x))) , · · ·
]T
,

(8)

where we have exhibited the partial derivative w.r.t.
qij .

IV. THE LEARNING ALGORITHM

Let V (x) ≈
∑`
m=1 r(m)φm(x) where the

φm’s are pre-selected features (e.g., polynomials).
Let φ(x) := the `-vector [φ1(x), · · · , φ`(x)]T . We
adapt the LSPE(0) algorithm from [23] as follows.



The parameter vector r := [r1, · · · , r`]T is updated
according to : for t ≥ 0,

r(n+ 1) = r(n) +

γB̄−1(n)(Ā(n)r(n) + b̄(n)),

η(n+ 1) = η(n) +
1

n+ 1
×(∑

i

Xi(n)− η(n)

)

B̄(n) = B̄(n− 1) +
1

n+ 1
×

[φ(X(n))φ(X(n))T − B̄(n− 1)],

B̄(−1) = εI,

Ā(n) = Ā(n− 1) +
1

n+ 1
×(

φ(X(n))
(
φ(X(n+ 1))T

− φ(X(n))T
)
− Ā(n− 1)

)
,

b̄(n) = b̄(n− 1) +
1

n+ 1
×(

φ(X(n))

(∑
i

Xi(n)− ηn

)
−b̄(n− 1)

)
,

and finally,

B̄−1(n) =
n

n− 1

(
B̄−1(n− 1) −

B̄−1(n)φ(X(n))φ(X(n))T B̄−1(n− 1)

n− 1 + φ(X(n))T B̄−1(n− 1)φ(n)

)
.

The last iterate is simply the Sherman-Morrison
formula to update the inverse. This is coupled with
the stochastic gradient ascent for {q(n)} based on
(7) as follows:

q(n+ 1) = q(n) +

a(n)∇q log p(X(n+ 1)|X(n))×(∑̀
i=1

ri(n)φi(X(n+ 1))

)
, (9)

where a(n) > 0 satisfy∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

The term ∇q log p(X(n + 1)|X(n)) is given by
(8). In the iterates for η(n), B̄(n), Ā(n), we can
replace the stepsize 1/(n+ 1) by b(n) satisfying∑
n

b(n) =∞,
∑
n

b(n)2 <∞, a(n) = o(b(n)).

An example is: for some c ∈ (0, 1),

a(n) =
c

d n
500e

, b(n) =
c

d n
1000e2/3

.

V. NUMERICAL EXPERIMENTS

We compare the performance of the proposed
learning scheme with the performance of the Whit-
tle index. For the comparison purposes we take the
same numerical example as in [2]. The example has
4 arms and the parameters are given in Table I.

TABLE I. DATA FOR NUMERICAL EXAMPLE

i 1 2 3 4
λi 250 250 250 250
ci 0.7 0.35 0.7 0.21
Mi ∞ ∞ ∞ ∞

The other parameters of the algorithm are as
follows: κi = 2 and γ = 0.05. As approximating
functions, we take:

Ti(x−i) = qi0 + qi1
∑

k 6=i
xk + qi1(

∑
k 6=i

xk)2,

φ = [x1 · · · xN x2
1 x1x2 · · · xN−1xN x2

N ].

While running the initial version of the algo-
rithm we noticed that the algorithm quickly runs
into numerical instability. We have identified two
possible reasons for the instability. The first is that
the value of the thresholds could reach small or
large values, which poses numerical problems in
evaluating the exponents of the logit distribution.
The second issue, which probably comes from the
deterministic nature of the original model, is that
the matrix B̄ becomes close to rank-deficient. To
overcome the first issue, we project the value of
the thresholds on the intervals [ui, ui/(1 − αi)].
Note that according to the model definition, the
state variables cannot go outside the intervals



[ui, ui/(1− αi)], thus this is a legitimate step. To
overcome the second issue, we replaced the matrix
inversion B̄−1 with its Tikhonov regularization
(B̄T B̄ + δI)−1B̄T for a small δ > 0. These
practical adjustments helped solve the numerical
problems.

We have run the algorithm for N = 10000
steps. Note that the choice of κi controls the
average value and dispersion of the number of
engaged arms. With our choice κi = 2, we have
on average one arm sampled and obtain the reward
around 160, which is a value between the rewards
that we could get by sampling constantly either
the best or the second best arm. It is significantly
smaller than what we can get by using Whittle
index with one arm, viz., 283 [2]. On the other
hand, our algorithm hardly uses any information
about the system parameters, whereas the complete
knowledge of the system parameters is needed
when applying the Whittle index as in [2].
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