1906.05847v1 [cs.FL] 13 Jun 2019

arxXiv

Opportunistic Synthesis in Reactive Games under Information
Asymmetry

Abhishek N. Kulkarni and Jie Fu

Abstract— Reactive synthesis is a class of methods to con-
struct a provably-correct control system, referred to as a robot,
with respect to a temporal logic specification in the presence of
a dynamic and uncontrollable environment. This is achieved by
modeling the interaction between the robot and its environment
as a two-player zero-sum game. However, existing reactive
synthesis methods assume both players to have complete in-
formation, which is not the case in many strategic interactions.
In this paper, we use a variant of hypergames to model the
interaction between the robot and its environment; which has
incomplete information about the specification of the robot.
This model allows us to identify a subset of game states from
where the robot can leverage the asymmetrical information
to achieve a better outcome, which is not possible if both
players have symmetrical and complete information. We then
introduce a novel method of opportunistic synthesis by defining
a Markov Decision Process (MDP) using the hypergame under
temporal logic specifications. When the environment plays some
stochastic strategy in its perceived sure-winning and sure-losing
regions of the game, we show that by following the opportunistic
strategy, the robot is ensured to only improve the outcome
of the game—measured by satisfaction of sub-specifications—
whenever an opportunity becomes available. We demonstrate
the correctness and optimality of this method using a robot
motion planning example in the presence of an adversary.

I. INTRODUCTION

Reactive synthesis (RS) is used to synthesize a strategy
(controller) that is provably-correct with respect to a given
Linear Temporal Logic (LTL) specification. Pneuli and Ros-
ner [1] showed that such an interaction between a controlled
agent, called the robot, and its dynamic and uncontrollable
environment can be represented as a two-player turn-based
zero sum game. Consequently, finding a correct strategy
satisfying the specification is equivalent to finding a winning
strategy for the robot in the corresponding zero-sum game. In
recent years, RS has found applications in several areas such
as autonomous vehicles [2], [3], aircraft mission planning [4],
defense [5] etc.

However, the strategies computed using RS are known
to be conservative [6], [7]. This conservativeness may be
attributed to the zero-sum assumption used to model the
interaction. Implicitly, this assumption implies that the envi-
ronment knows the exact specification of the robot and plays

This material is based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Agreement No. HR00111990015.

Abhishek N. Kulkarni is with Robotics Engineering Program,
Worcester Polytechnic Institute, Worcester, MA 01604, USA
ankulkarni@wpi.edu

Jie Fu is with the faculty of the Department of Electrical and Computer
Engineering, with affiliation to Robotics Engineering Program, Worcester
Polytechnic Institute, Worcester, MA 01604, USA jfu2@wpi.edu

Zero-Sum Game
Assume:

Environment’s

Perception is

Y=¢

Reactive Synthesis

Transition System
TS

Robot Specification
[

Reactive
Game Solver

Winning Strategy
m

Transition System
TS
Robot Specification

Opportunistic

Strategy

- i3

Assume: Robot Game Solver

Hypergame Opportunistic
knows ¥

Environment

Misperception
V*¢

Opportunistic Synthesis

Fig. 1. Comparison between Reactive Synthesis and (Proposed) Oppor-
tunistic Synthesis. The task of the robot is the LTL specification ¢. The
environment misperceives the task of robot as the LTL specification ¥ # ¢.
The (proposed) hypergame formulation assumes that robot is aware of the
information asymmetry.

a perfect counter-strategy. However, in many of the applica-
tions of RS such as autonomous vehicles, the environment,
consisting of other vehicles, may not be adversarial. On the
other hand, in defense applications where the environment is
adversarial, the enemy may not have complete information
regarding the task of the robot.

In this paper, we propose a method called opportunistic
synthesis to address the conservativeness of RS and lever-
age the information asymmetry between the robot and its
adversarial environment, i.e. when one of the two players
in the game has more or better information than the other
[8]. Assuming that the environment does not know the
complete task specification of the robot, we are interested
in addressing the following question — If the robot is aware
of the information asymmetry, then how can it capitalize
on the adversary’s imperfect counter-strategy to enhance its
winning strategy? The key contributions of this paper are

« Hypergame Model: We model the interaction between
the robot and its environment as a second-level hy-
pergame [9], in contrast to a zero-sum game. This
model represents the ability of the robot to reason
about how the environment will behave given that it has
incomplete information. By leveraging the knowledge
about environment’s behavior, we show that the robot
can synthesize an opportunistic strategy that dominatesﬂ
the one computed using RS given complete and sym-

'A strategy is dominant over another if, regardless of what any other
players do, the strategy earns a player a larger payoff than the other strategy.

metrical information.

o Characterization: The solution of RS partitions the
game state-space into winning and losing regions for
the robot [10]. However, we show that under the as-
sumptions of this paper about information asymmetry,
the state-space is partitioned into five regions. By as-
suming that the environment plays stochastic strategy
in regions where it perceives itself to be winning or
losing, we show how to construct an MDP to represent
the hypergame for synthesizing opportunistic strategy
for the robot.

A. Literature

To the best of our knowledge, this is the first paper
investigating the hypergame model to synthesize provably-
correct strategies given temporal logic specifications. Hyper-
games [9] are used to model the interactions where one or
more players are playing different games because of their
misperception of other players’ capabilities and/or objectives.
Hypergame theory allows the agent to improve its strategy
by reasoning about multiple games being played by different
players [11]. In the literature, this theory has been applied
to model strategic interactions such as military conflicts
[12], [13], information security and cyber-physical systems
security [5]. Similar to the hypergame formulation in this
paper, Imamverdiyev [14] models the interaction between
an attacker and a defender in an information security game
using a second-level hypergame. The model is motivated
by the information asymmetry that often exists in such a
game. He proposes an algorithm to compute equilibrium in
a second-level normal form hypergame model. However, the
result do not generalize to games with payoffs in terms of
evaluation of temporal logic formulas. Kovach [15] is the
first to introduce a framework that integrates the temporal
logic and hypergame theory. He formalizes the concepts
of trust, mistrust and deception in his thesis. However, his
work focuses on defining the mathematical framework and
verification rather than the strategy synthesis, which is the
focus of this paper.

The games with information asymmetry are a subset of
games with incomplete information, with the assumption that
at least one player has the correct information [16]. The syn-
thesis for incomplete information has been rigorously defined
and proved to be EXPTIME-complete for LTL by Kupferman
and Vardi [17]. They show that incomplete information does
not affect the complexity of synthesis problem. Niu et. al
[18] study the problem of security of cyber-physical systems.
They note that zero-sum games are a good tool for the worst-
case analysis, but the games with information asymmetry
better represent the strategic interactions between the attacker
and defender. They approach the minimum violation syn-
thesis problem under LTL specifications by modeling the
interaction as a concurrent Stakelberg game, which captures
the information asymmetry. We take a different approach
than Niu et. al by accounting for the robot’s ability to
reason about the information asymmetry, while treating the
interaction as a turn-based game.

In Al literature, opportunistic planning is used in a dif-
ferent context. Cashmore et. al [19] treat opportunities as
optional goals in the game, but with high payoffs. Their
approach starts by planning for the must-satisfy goals of the
game and adjusts the plan when an opportunity to satisfy
an optional goal becomes available. However, they do not
consider any adversarial interaction between the robot and
its environment or the ability of robot to reason about
environment’s perception of it’s goals. On the contrary, the
opportunistic synthesis, as proposed in this paper, assumes
the environment to be adversarial, but with incomplete in-
formation about its objectives. It identifies the states from
where an opportunity to get higher payoff will be available
and maximizes the likelihood to reach one of these states.

II. REACTIVE SYNTHESIS

Notations: Let ¥ be a finite alphabet. A sequence of
symbols w = wowy ... w, with w; € £,i=0,1,...,n is called
a finite word and X* is the set of finite words that can be
generated with alphabet £. We denote X% the set of @-regular
words obtained by concatenating the elements in X infinitely
many times. Given a set X, let D(X) be the set of probability
distributions over X. The indicator function is defined to be
1x(y) =1 if y € X and O otherwise.

Let R,E denote the robot (a controlled agent) and its
adversary (an uncontrolled environment agent), respectively.
Let the tasks of the robot be specified using a subclass of LTL
formulas, called syntactically co-safe LTL formulas [20]. The
syntax of LTL formulas are given as follows.

Definition 1 (LTL). Let AP be a set of atomic propositions,
the Linear Temporal Logic (LTL) has the following syntax

o:=T|L[plo|=0|oA@:| O | olhep | @

where T, L are universally true and false, respectively, p €
AP is an atomic proposition, O),U and ¢ denote the temporal
modal operators for next, until and eventually.

A co-safe LTL formula contains only the temporal opera-
tor O, U, and ¢ and can be written in positive normal form.
A co-safe LTL formula can equivalently represented by a
Deterministic Finite Automaton (DFA) defined as

Definition 2 (DFA). A Deterministic Finite Automaton is
defined as a 5-tuple,

A: <Q7Z)6’qO7F>’

where Q is the set of states, AP is the set of atomic
propositions, ¥ = 247 is the set of input symbols, § : O x X —
Q is a deterministic transition function, g is the initial state
and F' C Q is the set of accepting states.

A word w € X* is accepted if and only if §(go,w) € F.
An infinite word w € X% satisfying an LTL formula ¢
contains a good prefix wowy...w, that is accepted in the
DFA corresponding to ¢. Given a co-safe LTL formula, the
DFA accepting finite good prefixes for ¢ can be obtained
using tools such as spot [21].

We will assume that all DFAs referred to in this paper
are complete, i.e. for every state g € Q and for every input

symbol a € X the transition function 6(q,a) is defined. An
incomplete DFA can be made complete by introducing a sink
state and directing all undefined transitions into the sink state.
The interaction between the robot and its adversary is
captured in a two-player turn-based transition system,

Definition 3 (Transition System (TS)). The Transition Sys-
tem (TS) is a 6-tuple

TS =(S,Act,T,so,AP,L)

where § = Sgp USE is the set of states partitioned on the
basis of the turn of R and E, Act = Actg UActg is the set of
actions for R and E respectively. The function T : S X Act — S
represents the deterministic transition function. The AP is a
set of atomic propositions and L : § — 247 is the labeling
function.

Definition 4 (Reactive Game). A reactive game between the
robot and its adversary defined by a transition system 7S
and a specification automaton A representing the language
of @ is the product transition system given by,

g((P) = <G3ACt7AagOaF(p>

where G =S x Q, go = (50,0(qo,L(s9)) and A: G X Act — G
is the transition function such that given the states g = (s,q)
and ¢’ = (s',4'), A(g,a) = ¢’ if and only if T(s,a) =" and
0(q,L(s")) = ¢'. The set Fy =S x F is a set of accepting
states.

A run in the game G(¢@) is an infinite sequence of states
P = gog1 --.. Given a run p, the set of states that occur in the
run p is denoted by Occ(p)={g€G|3i>0,g,=g}. Arun
is said to be winning for R if it satisfies Occ(p) N Fy # 0.
If a run is not wining for R, it is winning for E. A state
g € G is said to be winning if the robot can enforce a win
from g. Otherwise, g is said to be losing. The exhaustive set
of winning states for the robot is called winning region of
the robot and is denoted by Wing. The winning regions for
robot and its adversary are mutually exclusive. The winning
region for the robot is computed using the Zielonka attractor
algorithm [22] as follows: Given a set of final states Fy,

1) Let Attrg = Fj.

2) Attri) = Attry U{g € (S x Q) | Ja € Act. A(g,a) €

Attry)}U{g € (Sg x Q) | Va € Act. A(g,a) € Attr}

3) Repeat (2) until Attri, | = Attr,. Let Attr, = Attr”.

4) Let Attr(F) = Attr*.

We denote the set Attr(F) as the attractor set. The rank of
a state g is the smallest level k at which g € Attry, denoted
as rank(g) = k. The winning region for the robot in the game
G (@) is the set of states in attractor Attr(Fy).

A specification ¢ is said to be realizable for robot over the
transition system 7S if and only if the winning region for
the robot, Wing, contains the initial state gg € G. Otherwise,
the specification is said to be unrealizable.

Given a game G(¢), a stochastic, memoryless strategy for
the robot is a function 7 : Wing N (Sg x Q) — D(Actg). A
strategy is said to be almost-sure-winning if every run p,
produced as a result of robot using strategy 7 and adversary

using any feasible strategy o, is a winning run with probabil-
ity one. Given a state g € Wing N (Sg x Q), the almost-sure-
winning strategy 7 for the robot can be given as follows: For
each g € Wing N (Sg x Q), let safer(g) = {a € Actg | A(g,a) €
Wing}. Let progressp(g) = {a | rank(A(g,a)) < rank(g)}.
Let m(g,a) > 0 for at least one action in progressg(g) and
the support of m(g) be a non-empty subset of safeg(g).
The proof can be found in [23] The almost-sure-winning
strategy © of the adversary is a memoryless maximally
permissive strategy [24] and can be defined as follows. Let
safeg(g) = {a € Actg | A(g,a) € Wing} and the support of
o(g) is a non-empty subset of safeg(g). By definition, an
almost-sure winning stochastic strategy for either R or E is
not unique.

Under the assumption of complete observation and com-
plete information, it follows that there exists no strategy for
either the robot or its adversary to reach a winning state from
a losing state. However, when the adversary has incomplete
knowledge about the task specification of the robot, we
have a reactive game with asymmetrical information. In such
games, we show that the robot can synthesize opportunistic
strategies that exploit the information asymmetry to enforce
a win in an otherwise unrealizable game; had there been no
information asymmetry.

III. REACTIVE GAME UNDER INFORMATION
ASYMMETRY

A. Hypergame

Consider an interaction between the robot and its adver-
sary where the robot has the LTL specification ¢ while its
adversary believes that the robot is trying to satisfy a different
specification y # ¢.

Assumption 1. Let ¢, ¢, be two LTL formulas such that

P=01 NP2,
V=0

The above assumption means that the adversary knows
partial task specification of the robot. The interaction be-
tween two players, where at least one of the player has
incorrect perception of the true specification of the opponent,
can be represented as a hypergame [9], [25].

Definition 5 (Hypergame). A first-level hypergame between
two players is represented as a 2-tuple

Hl = <gR7gE> = <TS’{¢aW}>

where Gg = G(¢@) is the reactive game from the robot’s
perspective while Gg = G(y) is the game from the adver-
sary’s perspective. The tuple (7S,{@,y}) is an equivalent
representation that highlights that both the games Gg and Gg
are defined over same transition system 7S but each player
has a different perception of robot’s specification.

When the robot is aware of the existing misperception, i.e.
the adversary’s belief about the robot’s specification y, we
have a second-level hypergame.

Definition 6 (Second-Level Hypergame). The second-level
hypergame between two players; the robot and its adversary,
where only the robot is aware of the misperceived game is
represented as

HZZ <Hl7gE>

where the robot computes the strategy by solving the hyper-
game H! and the adversary computes strategy by solving the
reactive game Gg = G(V).

Given the second-level hypergame as defined above, we
are interested in the following question

Question 1. Assume that the specification ¢ is unrealizable
in the reactive game G(@) with complete information. Then
is it possible that when information asymmetry exists, as
captured by the hypergame H?, the robot can satisfy the
specification @ = @1 \ @2 with a high likelihood? If not, then
under what conditions can the robot satisfy at least a part
of specification, ¢ (common knowledge) or @, (only known
to robot)?

To answer the above question, we first define a transition
system that captures the information asymmetry compactly
and facilitates game-theoretic analysis and strategic planning.

Definition 7 (Hypergame Transition System). Let 4; =
(Q1,%,81,910,F1) and Ay = (02,X, 82,420, F2) be the speci-
fication automata for LTL formulas ¢, ¢,. Then, the hyper-
game transition system in its explicit form is a 5-tuple,

H = (H,Act, A, ho, F)

where H = 8§ x Q1 x O is the set of states and hg € H is the
initial state. Given a state & = (s,¢1,¢2) and action a € Act,
the transition function A : H x Act — H is given by A(h,a) =
W = (s',q).qb) where §' = T(s,a), g} = 31(q1,L(s)) and
6/2 = 52(6]2,L(S/)). The set F = (SX F1 X Q2)U(Sx Q1 X F»)
is the set of final states.

The choice of F as the accepting state set is motivated
by the fact that it contains the final state sets F| =S x F} X
02, F2 =Sx Q1 xF, and Fjp = S x F| X F, of the games
G(¢1), G(2) and G(@; A ¢2). This facilitates the computa-
tion and analysis of winning regions of the game G(¢) and
the sub-games G(¢;),G(¢,) over the same transition system.

The outcome of hypergame in this transition system is
the run p = hohyhy.... By construction, the run is winning
for robot over specification ¢ (resp. @1, ¢2) if and only if
Occ(p)NFip # 0 (resp. Occ(p)NFy #0, Occ(p) NF, # 0).

B. The Partition of States

Given the hypergame transition system 7{, we are inter-
ested in identifying the states from where the robot has a
strategy to satisfy ¢, ¢, and/or ¢@. Therefore, we compute
the three winning regions for robot in the reactive games
over specifications @1, @, and @.

1) Wing(;) = Attr(F;) is the set of winning states in
the game G(¢y).

2) Wing(@,) = Attr(F,) is the set of winning states in
the game G(¢,).

3) Wing(p) = Attr(F2) is the set of winning states in
the game G(@).

We have the following relations between winning regions
in three games.

Lemma 1. Given ¢ = @ A @, it holds that Wing(¢) C
WinR((p,-), for i=1,2.

Proof. Let my be the winning strategy for the robot with
respect to task ¢. For any state & € Wing(¢), the robot,
by exercising 7y, can enforce a run to visit Fi2. Because
Fio C F;, for i = 1,2, then this run satisfies ¢;, for i =1,2.
By definition of winning region, it holds that 2 € Wing(¢;),
i=1,2, witnessed by strategy 7. Q.E.D.

On the contrary, Wing(¢;) 2 Wing (). Thus, if the adver-
sary can ensure to win game G(¢;), then even though it does
not know ¢, it can prevent the robot from satisfying any
specification @; A ¢, where ¢ is an arbitrary LTL formula.

Next, we define a win-labeling function W : H — {W,L}?
that labels each state 7 € H with an ordered 3-tuple denoting
whether the state % is winning (W) or losing (L) for the robot
in the games G(@;), G(¢2), and G(@). For example, if a state
h is winning for the robot in the game G(¢;) and the game
G(p,), but losing in the game G(¢), then its win-label is
W(h) = {w.w,L} [l

Note that the win-labeling function can assign to every
state h € H, a unique label from 23 = 8 possible labels. We
analyze each possible label separately to understand which
of the objectives @, @, or ¢ should the robot try to satisfy.

a) Case I: W(h) = (L,L,L): The state h is losing for
robot in the games G(¢;),G(¢2) and G(¢). That is, the
adversary has a winning strategy ¢ that will ensure that the
robot can never satisfy ¢;. Therefore, in this case, the robot
can try to satisfy only ¢, but will never be able to satisfy
Q.

b) Case II: W(h) = (L,W,L): The state is losing for
robot in the games G(¢;) and G(¢@), but winning in game
over (. That is, the adversary has a winning strategy Ow
that will ensure that robot can never satisfy ¢;. Therefore,
in this case, the robot must satisfy only ¢, and not ¢.

¢) Case III: W(h) = (W,L,L): The state is losing for
robot in the games G(¢,) and G(¢@), but winning in game
over @;. That is, the adversary believes that it has lost the
game and can be assumed to play a random strategy, o. In
this case, the robot may try to satisfy ¢, while staying within
the winning region of game G(¢;).

d) Case IV: W(h) = (W,W,L): The state is winning
for robot in the games G(¢;) and G(¢), but losing in game
G(@). That is, the adversary believes that it has lost the game.
This state presents an interesting decision problem where
robot must decide whether to try satisfying ¢ or satisfy just
one of the specifications, ¢; or ¢,.

2If @ = @, A @, then for a state i € H to be winning in the game over @,
it must be winning over in both the sub-games over ¢; and ¢, [26, Lma
1].

e) Case V: W(h) = (W,W,W): This is a trivial case,
which is the conventional reactive game. The robot can
exercise the winning strategy for G(¢) regardless of the
strategy and perception of the adversary.

f) Cases VI-VIII: W(h) = (L,L,W), (L,W,W), or
(W,L,W): These cases are not possible, because the robot
must be winning in ¢; and ¢, to be winning in @ (See
Lemma [T] and [26]).

C. Synthesizing opportunistic and reactive strategies

Recall that the winning regions Wing(-) we computed in
previous subsection ensures a win in the respective reactive
games. The winning strategies based on these winning re-
gions do not exploit the information asymmetry. Hence, to
identify the opportunities generated due to the information
asymmetry, we make certain assumption about the strategy of
the adversary. The assumptions, when the adversary believes
that the current state is losing for itself, i.e. the win-label of
the state is of the form W(h) = (W,-,-) where - means it can
either be L or W, are as follows.

Assumption 2. For a state 7 € H with the win-label W(h) =
(W,-,-) the adversary plays a stochastic strategy oy : H —
D(ACIE).

Assumption 3. For a state 7 € H with the win-label W(h) =
(L,-,-), the adversary plays an almost-sure winning strategy
ow : H— D(Actg) in the game G(¢;).

Remark. In this work, we assume that the adversary’s losing
and winning strategies, oy, Oy, are known to the robot. This
assumption may be relaxed if the robot can learn the strategy
using model-based reinforcement learning [27] or strategy
inference [28]. This extension will be considered in our
future work.

To develop opportunistic strategy for the robot, we assume
that the robot receives a payoff r; € R if it satisfies
¢; and payoff rn € Ry if it satisfies ¢,. Its payoff for
satisfying ¢ is r € R with the constraint r > r| +r, for the
decision problem to make sense. The adversary receives the
payoff —r; if the robot satisfies ¢ and payoff r; otherwise.
Note that when r; = rp, then the robot is considered to be
indifferent to satisfying either ¢; or ¢,. Otherwise, if r; > r,
then @, is strictly preferred over ¢, and vice versa.

Definition 8 (Hypergame for Opportunistic Synthesis).
Given the hypergame transition system H = (H,Act,A, hy, F)
and the strategy 6 = (ow,0r) used by the adversary given
its perceived winning and losing states, the opportunistic
planning reduces to an MDP, defined by

HO = <HR,AClR @] {StOp},P, h07R>,

where Hg = Sk X Q1 X O is a set of states where the robot
makes a move, and the probabilistic transition function P and
the payoff function R are defined based on the win-label of
a state h € Hg as follows,
e W(h) e (L,L,L):
— Enabled Actions: All feasible actions are enabled.
The special action stop is not enabled.

— Transition probability function is given by

=)Y L@
ag €Actg
. W(l’l) € (W,L,L):

— Enabled Actions: Only actions that have zero prob-
ability of reaching a state with win-label (L,L,L)
are enabled. In other words, the robot is forced to
stay within the winning region for Wing(F) and at
least satisfy ¢;. The special action stop is enabled.

— Transition probability function is given by

Y. Ly (A(h (ag,ag)))or(h,ar)

ag €Actg

P(H | h,ag) h,(ar,ag)))ow (h,ar)

P(H' | hyag) =

For action stop, the game transitions to a sink state
sink; with probability one, P(sink; | h,stop) = 1.

— Payoff function: The payoff for reaching the sink

state sink; is defined as R(sink;) =rj.
e W(h) € (L,W,L):

— All states are labeled as absorbing, ie. P(H |
h,ag) = 0. This is because the adversary will play
its winning strategy oy in the game G(¢;) and the
robot will never satisfy ¢;.

— Payoff function: The payoff for reaching the state
h is defined as R(h) = r,.

e W(h) e (W,W,W):

— In this partition, the robot must switch to its win-
ning strategy in the game G(@).

— Payoff function: The payoff for reaching the state
h is defined as R(h) =

e W(h) € (W,W,L):

— Enabled actions: Any action that does not lead into
partition (L,L,L) is enabled. The special action
stop is also enabled.

— For the action stop, the robot transitions to a sink
state sink. The payoff for reaching the sink state
sink is defined as R(sink) = max(r,r2).

— Transition probability function is

=), lyy(a

ap €Actg

P(H | h,ag) h,(ar,ag)))ow(h,ak)

The optimal opportunistic strategy 7 for the robot is the
one that solves

T
mja;lxIE lZR(ht)

t=1

where T is the first time when a sink state is reached. The
rationale behind defining sink states is to provide the robot
with a mechanism to decide whether it wants to explore the
state space to find an opportunity or settle for a sub-optimal
payoff by satisfying a sub-specification. We define the set of
states {h | W(h) € {(L,W,L),(W,W,W)}}U{sinky,sink} as
absorbing in the hypergame MDP.

Lemma 2. By following the optimal strategy in the MDP
HO, the total payoff is finite.

Fig. 2. A 5x5 gridworld with R2D2 at the cell (0,2) and IDroid at (4,2).
The objective of R2D2 to visit the cell (0,3) labeled A is known to both
players. The objective of R2D2 to visit the cell (4,4) labeled B is not known
to IDroid. The black cells represent the obstacles.

Proof. We prove this case by case: When the initial
state ho is labeled (L,L,L), then by following the op-
timal strategy, the robot can reach a state with la-
bels in {(W,W,L),(W,L,L),(L,W,L),(W,W,W)} or stay
in (L,L,L). In the case of staying in (L,L,L), the
robot receives a payoff of zero. The total payoff
is bounded. When it reaches a state with labels in
{(W,w,L),(W,L,L),(L,W,L),(W,W,W)}, the robot is en-
sured to at least win one of the games as its feasible
actions are restricted to ensure staying in the winning regions
it is currently in. Then, in cases when the label is in
{(W,W,L),(W,L,L)}, it will either settle down to win one of
the games by taking the action stop or reach a state with label
in {(L,W,L),(W,W,W)}, which are absorbing and have finite
payoffs. Thus, the total payoff is bounded and the planning
to maximize the total payoff without discounting is well-
defined. Q.E.D.

IV. CASE STUDY

We illustrate our approach using a gridworld example as
shown in Fig. |2| with two robots - R2D2 and Imperial Droid
(IDroid). R2D2 is the controllable robot, whereas IDroid is
adversarial. The objective of R2D2 is to visit two regions,
A (green) and B (blue), while avoiding obstacles O (black),
whereas the objective of IDroid is to prevent R2D2 from
completing its task. We consider the case where IDroid
misperceives that R2D2’s task is to visit only region A.
Therefore, using the LTL notation, the specification of R2D2
is ¢ = (=0 U A)A(—O U B), whereas the misperception
of IDroid about R2D2’s task is ¥ = —O U A. This defines
the information asymmetry in the interaction. Furthermore,
we restrict the actions of R2D2 and IDroid for illustration
purposes as follows, (we will use the symbol R to denote
R2D2 and E to denote IDroid to maintain consistency with
the notation of the paper)

Actg = {N, S, E, W, NE, NW, SE, SW}
Actg = {N, S, E, W, STAY}

~(XV0)

X
start — T
0
O=%
Fig. 3. The automaton for -0 U X, where X € {A,B}.

Partition | Number of States
(W, W, W) 1831
W, W, L) 181
(W, L, L) 479
(L, W, L) 515
(L,L,L) 194
W, L, W) 0
(L, W, W) 0
(L, L, W) 0

TABLE I

PARTITION OF GAME STATE-SPACE DUE TO INFORMATION ASYMMETRY.

Given 20 obstacle-free cells of gridworld in Fig. 2[and the
action-set, we construct the transition system (Definition E])
with 20 x 20 x 2 = 800 states. The automaton equivalent to
-0 U X for X = A,B is shown in the Fig.[3] We prune
unsafe actions that drive the robot to the obstacle and thus
exclude the transitions labeled O and the state 2 in computing
the transition system. Therefore, the hypergame transition
system has 800 x 2 x 2 = 3200 states, where we keep track
of both sub-specification using two automata. Consequently,
each sub-game, G(¢@;) and G(¢,), has 800 x 2 x 1 = 1600
final states and the game G(¢) has 800 final states. The
attractor computation for each of the three games gener-
ates the winning regions with sizes: |Wing(¢;)| = 2491,
[Wing(@,)| = 2527, and |Wing(¢)| = 1831.

Given the three winning regions, we first validate that the
state-space is indeed paritioned in five regions as discussed
in Section For every state in the hypergame transition
system, we assign a win-label to it by determining the
winning regions in which the state appears. The result is
tabulated in |} We observe that the state-space is partitioned
into exactly five regions.

Remark. It is not necessary that the states will always be
partitioned into exactly five regions. For instance, consider
an adversary with only “STAY” action, then the state-space
will be partitioned into exactly 2 regions.

Using the five partitions, we construct the hypergame
MDP as defined in Definition [8] As expected, the MDP has
1600 states, where R2D2 makes a decision. We define the
stochastic strategies for IDroid as follows: for every state
with win-label of (L,-,-), we assume Oy to be a uniform
distribution over all safe actions; i.e. the actions that lead to
another state with a win-label of type (L, -,), with probability
one. We define oy, by assigning a random distribution over all
feasible actions from a state within partitions (W,-,-). Given

Act Next State Partition Prob Value
(0, 3), 4, 2),0),0,1) W, L, L) 0.03 | 288.99

N (0, 3), 3,2),0),0, 1) W, L, L) 0.36 | 290.20
((0,3),,1,0,0,1) [(W,W,W) | 061 [288.99
(1, 2), 4, 1),0),0, 1) (W, W, L) 0.25 0

E (((1,2), (3,2),0, 1, 1) (W, L, L) 0.73 | 297.41
((1,2), 4,2),0),1, 1) (W, W, L) 0.02 0
((1,3),(3,2),0),1, 1) (W,L,L) 0.38 | 259.42

NE | (((1,3), 4, 2),0),1, 1) (W, W, L) 0.18 | 285.03
(((1,3), 4, D,0, 1, 1) (W, W, L) 0.44 | 299.25

TABLE II

A DECISION TABLE FOR STATE (((0,2),(4,2),0),1,1) WITH VALUE 285.03
AND STRATEGY TO CHOOSE ACTION “N”.

the hypergame MDP states and the adversary strategy o, the
transition probabilities are determined based on win-label of
the state and the corresponding expression for P(h' | h,a)
provided in Definition [} We compute the value function
and opportunistic strategy using the standard value iteration
algorithm [29].

Next, we illustrate the decision process in the hypergame
MDP. Let the initial configuration be such that R2D2 is
at the cell (0,2), and IDroid is at (4,2) as shown in
Fig. [2| Therefore, the initial state in the hypergame MDP
is ho = (((0,2),(4,2),0),1,1). We define the payoff for
reaching goal A as r; =200 and that for reaching goal B
as rp = 100. With this initial configuration we simulate the
interaction between R2D2 and IDroid, where R2D2 uses the
opportunistic strategy 7 and IDroid uses the strategy c. We
run the simulation for 100 times. We will use one of the runs
obtained from simulation, as given below

1) State: (((0,2),(4,2),0),1,1), win-label: (W,L,L)

2) State: (((0,3),(3,2),0),0,1), win-label: (W,L,L)

3) State: (((1,2),(2,2),0),0,1), win-label: (W,W,W)

To get some insight into the decision process, observe
the Table which shows the enabled actions, possible
next states and their respective partitions, the probability of
reaching those states and the value of those states. Based on
the value iteration, the value of initial state is 285.03, while
the optimal strategy is to select action “N”, which has a high
likelihood to reach a (W,W,W) state. Note that by choosing
action “E”, if the robot reaches a state with value O, then
it chooses to settle for sub-optimal payoff of r; =200 by
satisfying only ¢;. Hence, the action “N” is preferred over
“E”. A similar argument can be given for the action “NE”.

We now point out the key advantage of the opportunistic
synthesis over reactive synthesis. Observe that the initial
state is losing in the game G(¢) for R2D2. Therefore,
if R2D2 uses reactive synthesis approach, it will give up
instantaneously and get no payoff. On the contrary, with op-
portunistic synthesis, R2D2 could leverage the misperception
of IDroid to start from a losing state in G(¢) and reach a
winning state in the game.

We also highlight that the construction of hypergame MDP
is such that R2D2 behaves rationally and tries to maximize
the payoff before settling down with a sub-optimal payoff.
Given the initial state in partition (W,L,L), it could have

chosen the stop action and switched to the winning strategy
in G(¢;) to get a payoff of | =200. Instead, it preferred to
explore for an opportunity to get the payoff of r=r; +r =
300.

We conclude this section by counting the number of states
with opportunities. This is done by counting the number of
MDP states with non-zero value. Recall that we label the
sink states in the MDP as absorbing with a fixed payoff.
Therefore, they always have fixed value of one. We find that
there are a total of 1245 absorbing states and 312 states
with opportunities. This implies that there are 43 states with
no opportunities. In other words, not all losing states in the
reactive game G(¢@) have opportunities.

V. DISCUSSION AND CONCLUSION

In this paper, we have introduced a novel strategy synthesis
approach—opportunistic synthesis—to solve reactive games
under information asymmetry. By modeling the mispercep-
tion in the interaction between the robot and its adversarial
environment as a hypergame and the corresponding decision
problem as a hypergame MDP, we identify opportunities by
maximizing the expected value to reach a winning state in the
reactive game from a losing state. This primarily results in a
larger number of states from which the robot can satisfy its
specification, ¢@. As a bonus, the approach also allows us to
compute the states from which the robot has an opportunity
to satisfy a partial specification, ¢ or @;.

From a computational point of view, the opportunistic
synthesis has the same (time and space) complexity as that
of the reactive synthesis. The number of computations in
our approach is related to that of reactive synthesis by only
a constant scaling factor; because we require three attractor
computations and a value iteration instead of a single at-
tractor computation. Note that the definition of hypergame
transition system in Definition [/| dispenses with constructing
different game structures for computing winning regions of
the sub-games.

We have presented the preliminary results of our investi-
gation, in what we believe to be the first work, in the use of
hypergame model to study a reactive game with information
asymmetry. To restrict the hypergame model to second-level,
we have introduced two assumptions that, the adversary has
partial information regarding robot’s specification and the
robot knows adversary’s losing strategy ©p and winning
strategy ow. The relaxation of these assumptions opens up
two directions for future research. The first one investigates
opportunistic synthesis when adversary perceives the robot’s
objective as ¥ # @, i.e. the language of ¥ may be a subset,
superset or disjoint with the language of ¢. The second
direction investigates the use of policy inference techniques
for the robot to learn the adversary’s strategies o7 and Oy .

REFERENCES

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
1989, pp. 179-190.

[2] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robotics & Automation Magazine,
vol. 18, pp. 65-74, 2011.

[3]
[4]

[5]

[7]

[8

[t

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Synthesis of Control
Protocols for Autonomous Systems,” Unmanned Systems, 2013.

L. R. Humphrey, E. M. Wolff, and U. Topcu, “Formal specification
and synthesis of mission plans for unmanned aerial vehicles,” in 2014
AAAI Spring Symposium Series, 2014.

M. Wu, H. Zeng, C. Wang, and H. Yu, “Safety Guards: Runtime En-
forcement for Safety-Critical Cyber-Physical Systems,” vol. 6, 2017,
pp. 1-6.

R. Bloem, R. Ehlers, S. Jacobs, and R. Konighofer, “How to handle
assumptions in synthesis,” in SYNT, 2014.

S. Hagihara, A. Ueno, T. Tomita, M. Shimakawa, and N. Yonezaki,
“Simple synthesis of reactive systems with tolerance for unexpected
environmental behavior,” in Proceedings of the 4th FME Workshop on
Formal Methods in Software Engineering. ACM, 2016, pp. 15-21.

J. Kim and Y. K. Che, “Asymmetric information about rivals’ types
in standard auctions,” Games and Economic Behavior, vol. 46, no. 2,
pp. 383-397, 2004.

P. Bennett, “Toward a theory of hypergames,” Omega, vol. 5, no. 6,
pp. 749-751, jan 1977.

Z. Manna and A. Pnueli, “A hierarchy of temporal properties (invited
paper, 1989).” ACM Press, 1990, pp. 377-410.

P. Bennett and M. Dando, “The arms race as a hypergame: A study
of routes towards a safer world,” Futures, vol. 14, no. 4, pp. 293-306,
1982.

P. G. Bennett and M. R. Dando, “Complex strategic analysis: A
hypergame study of the fall of france,” Journal of the Operational
Research Society, vol. 30, no. 1, pp. 23-32, 1979.

L. Thomas, N. M. Fraser, and K. W. Hipel, “Conflict Analysis: Models
and Resolutions.” The Journal of the Operational Research Society,
2006.

Y. Imamverdiyev, “A hypergame model for information security,”
International Journal of Information Security Science, vol. 3, no. 1,
pp. 148-155, 2014.

Nicholas Kovach, “A Temporal Framework for Hypergame analysis of
Cyber Physical Systems in Contested Environments.” Ph.D. Thesis,
2016.

M. Scerala, J. A. Erkoyuncua, and E. Shehaba, “Identifying in-
formation asymmetry challenges in the defence sector,” Procedia
Manufacturing, vol. 19, pp. 127-134, 2018.

O. Kupferman, “Synthesis with incomplete information,” 2000.

L. Niu, J. Fu, and A. Clark, “Minimum Violation Control Synthesis on
Cyber-Physical Systems under Attacks.” IEEE, 2018, pp. 262-269.

M. Cashmore, M. Fox, D. Long, D. Magazzeni, and B. Ridder,
“Opportunistic planning in autonomous underwater missions,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 2,
pp. 519-530, 2018.

O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291-314, 2001.
A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — a framework for LTL and w-automata
manipulation,” in Proceedings of the 14th International Symposium
on Automated Technology for Verification and Analysis (ATVA’16),
ser. Lecture Notes in Computer Science, vol. 9938. Springer, Oct.
2016, pp. 122-129.

W. Zielonka, “Infinite games on finitely coloured graphs with appli-
cations to automata on infinite trees,” Theoretical Computer Science,
vol. 200, no. 1-2, pp. 135-183, 1998.

J. Fu and U. Topcu, “Synthesis of joint control and active sensing
strategies under temporal logic constraints,” IEEE Transactions on
Automatic Control, vol. 61, no. 11, pp. 3464-3476, 2016.

J. Bernet, D. Janin, and I. Walukiewicz, “Permissive strategies: from
parity games to safety games,” RAIRO-Theoretical Informatics and
Applications, vol. 36, no. 3, pp. 261-275, 2002.

B. Gharesifard and J. Cortés, “Evolution of players’ misperceptions
in hypergames under perfect observations,” IEEE Transactions on
Automatic Control, vol. 57, no. 7, pp. 1627-1640, 2012.

A. N. Kulkarni and J. Fu, “A compositional approach to reactive games
under temporal logic specifications,” in 2018 Annual American Control
Conference (ACC). 1EEE, 2018, pp. 2356-2362.

R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, no. Oct, pp. 213-231, 2002.

M. K. Hanawal, H. Liu, H. Zhu, and I. C. Paschalidis, “Learning
policies for markov decision processes from data,” IEEE Transactions
on Automatic Control, pp. 1-1, 2018.

[29] M. L. Puterman and M. L., Markov decision processes :

stochastic dynamic programming, 1994.

discrete

	I Introduction
	I-A Literature

	II Reactive Synthesis
	III Reactive Game under Information Asymmetry
	III-A Hypergame
	III-B The Partition of States
	III-C Synthesizing opportunistic and reactive strategies

	IV Case Study
	V Discussion and Conclusion
	References

