
ar
X

iv
:2

00
2.

09
05

1v
2

 [
cs

.L
G

]
 3

0
D

ec
 2

02
0

An Elementary Approach to Convergence Guarantees

of Optimization Algorithms for Deep Networks

Vincent Roulet, Zaid Harchaoui

Department of Statistics, University of Washington, Seattle, USA

Abstract

We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on

elementary arguments and computations. The convergence analysis revolves around the analytical and computational

structures of optimization oracles central to the implementation of deep networks in modern machine learning soft-

ware. We provide a systematic way to compute estimates of the smoothness constants that govern the convergence

behavior of first-order optimization algorithms used to train deep networks. Diverse examples related to modern deep

networks are interspersed within the text to illustrate the approach.

1 Introduction

Deep networks have achieved remarkable performance in several application domains such as computer vision, natural

language processing and genomics [15, 20, 7]. The input-output mapping implemented by a deep neural network is

a chain of compositions of modules, where each module is typically a composition of a non-linear mapping, called

an activation function, and an affine mapping. The last module in the chain is usually task-specific in that it relates

to a performance accuracy for a specific task. This module can be expressed either explicitly in analytical form

as in supervised classification or implicitly as a solution of an optimization problem as in dimension reduction or

unsupervised clustering.

The optimization problem arising when training a deep network is often framed as a non-convex optimization

problem, dismissing the structure of the objective yet central to the software implementation. Indeed optimization

algorithms used to train deep networks proceed by making calls to first-order (or second-order) oracles relying on

dynamic programming such as gradient back-propagation [25, 22, 16, 5, 2, 23, 9]. Gradient back-propagation is

now part of modern machine learning software [1, 19]. We highlight here the elementary yet important fact that

the chain-compositional structure of the objective naturally emerges through the smoothness constants governing the

convergence guarantee of a gradient-based optimization algorithm. This provides a reference frame to relate the

network architecture and the convergence rate through the smoothness constants. This also brings to light the benefit

of specific modules popular among practitioners to improve the convergence.

In Sec. 2, we define the parameterized input-output map implemented by a deep network as a chain-composition

of modules and write the corresponding optimization objective consisting in learning the parameters of this map. In

Sec. 3, we detail the implementation of first-order and second-order oracles by dynamic programming; the classical

gradient back-propagation algorithm is recovered as a canonical example. Gauss-Newton steps can also be simply

stated in terms of calls to an automatic-differentiation oracle implemented in modern machine learning software li-

braries. In Sec. 4, we present the computation of the smoothness constants of a chain of computations given its

components and the resulting convergence guarantees for gradient descent. Finally, in Sec. 5, we present the appli-

cation of the approach to derive the smoothness constants for the VGG architecture and illustrate how our approach

can be used to identify the benefits of batch-normalization [24, 13]. In the Appendix, we estimate the smoothness

constants related to the VGG architecture and we investigate batch-normalization in the light of our approach [24, 13].

All the proofs and the notations are also provided in the Appendix.

1

http://arxiv.org/abs/2002.09051v2

x0 φ1

u1

. . .
bt at

ut

φt

. . . φτ

uτ

xτ = fτ (x0, u)
xt−1 xt

f

Figure 1: Deep network architecture.

2 Problem formulation

2.1 Deep network architecture

A feed-forward deep network of depth τ can be described as a transformation of an input x into an output xτ through

the composition of τ blocks, called layers, illustrated in Fig. 1. Each layer is defined by a set of parameters. In general,

(see Sec. 2.3 for a detailed decomposition), these parameters act on the input of the layer through an affine operation

followed by a non-linear operation. Formally, the tth layer can be described as a function of its parameters ut and a

given input xt−1 that outputs xt as

xt = φt(xt−1, ut) = at(bt(xt−1, ut)), (1)

where bt is generally linear in ut and affine in xt−1 and at is non-linear.

Learning a deep network consists in minimizing w.r.t. its parameters an objective involvingn inputs x̄(1), . . . , x̄(n) ∈
R
δ. Formally, the problem is written

min
(u1,...,uτ)∈Rp1×...×Rpτ

h(x(1)τ , . . . , x(n)τ) + r(u1, . . . , uτ)

subject to x
(i)
t = φt(xt−1, u

(i)
t) for t = 1, . . . , τ, i = 1, . . . , n,

x
(i)
0 = x̄(i) for i = 1, . . . , n, (2)

where ut ∈ R
pt is the set of parameters at layer t whose dimension pt can vary among layers and r is a regularization

on the parameters of the network.

We are interested in the influence of the architecture on the optimization complexity of the problem. The architec-

ture translates into a structure of the chain of computations involved in the optimization problem.

Definition 2.1. A chain of τ computations φt : R
dt−1 ×R

pt → R
dt is defined as f : R

d0 ×R

∑τ
t=1 pt → R

∑τ
t=1 dt such

that for x0 ∈ R
d0 and u = (u1; . . . ;uτ) ∈ R

∑τ
t=1 pt we have f(x0, u) = (f1(x0, u); . . . ; fτ (x0, u)) with

ft(x0, u) = φt(ft−1(x0, u), ut) for t = 1, . . . , τ, (3)

and f0(x0, u) = x0. We denote ft,x0(u) = ft(x0, u) and ft,u(x0) = ft(x0, u).

Denote then f0 the chain of computations associated to the layers of a deep network and consider the concatenation

of the transformations of each input as a single transformation, i.e., ft(x̄, u) = (f0
t (x̄

(1), u); . . . ; f0
t (x̄

(n), u)) for

t ∈ {1, . . . , τ}, and x̄ = (x̄(1); . . . ; x̄(n)), the objective in (2) can be written as

min
u∈R

∑τ
t=1 pt

h(fτ (x̄, u)) + r(u), (4)

where fτ : R
nd0 × R

∑τ
t=1 pt → R

ndτ is the output of a chain of τ computations with d0 = δ, r : R

∑τ
t=1 pt → R is

typically a decomposable differentiable function such as r(u) = λ
∑τ

t=1 ‖ut‖22 for λ ≥ 0, and we present examples

of learning objectives f : R
ndτ → R below. Assumptions on differentiability and smoothness of the objective are

detailed in Sec. 4.

2

2.2 Objectives

In the following, we consider the output of the chain of computations on n sample to be given as ŷ = (ŷ(1); . . . ; ŷ(n)) =
(f0
τ (x̄

(1), u); . . . ; f0
τ (x̄

(n), u)) = fτ (x̄, u) for x̄ = (x̄(1); . . . ; x̄(n)).

Supervised learning. For supervised learning, the objective can be decomposed as a finite sum

h(ŷ) =
1

n

n∑

i=1

h(i)(ŷ(i)), (5)

where h(i) are losses on the labels predicted by the chain of computations, i.e., h(i)(ŷ(i)) = L(ŷ(i), y(i)) with y(i) the

label of x̄i, and L is a given loss such as the squared loss or the logistic loss (see Appendix D.1).

Unsupervised learning. In unsupervised learning tasks the labels are unknown. The objective itself is defined

through a minimization problem rather than through an explicit loss function. For example, a convex clustering

objective [11] is written

h(ŷ) = min
y(1),...,y(n)∈Rq

n∑

i=1

1

2
‖y(i) − ŷ(i)‖22 +

∑

i<j

‖y(i) − y(j)‖2.

We consider in Appendix D.2 different clustering objectives. Note that classical ones, such as the one of k-means or

spectral clustering, are inherently non-smooth, i.e., non-continuously differentiable.

2.3 Layer decomposition

The tth layer of a deep network can be described by the following components:

(i) a bi-affine operation such as a matrix multiplication or a convolution, denoted bt : R
dt−1 × R

pt → R
ηt and

decomposed as

bt(xt−1, ut) = βt(xt−1, ut) + βut (ut) + βxt (xt−1) + β0
t , (6)

where βt is bilinear, βut and βxt are linear and β0
t is a constant vector,

(ii) an activation function, such as the element-wise application of a non-linear function, denoted αt : R
ηt → R

ηt ,

(iii) a reduction of dimension, such as a pooling operation, denoted πt : R
ηt → R

dt ,

(iv) a normalization of the output, such as batch-normalization, denoted νt : R
dt → R

dt .

By concatenating the non-affine operations, i.e., defining at = νt ◦ πt ◦ αt, a layer can be written as

φt(xt−1, ut) = at(bt(xt−1, ut)). (7)

Note that some components may not be included, for example some layers do not include normalization. In the

following, we consider the non-linear operation at to be an arbitrary composition of functions, i.e., at = at,kt◦. . .◦at,1.

We present common examples of the components of a deep network.

2.3.1 Linear operations

In the following, we drop the dependency w.r.t. the layer t and denote by a tilde ·̃ the quantities characterizing

the output. We denote by semi-columns the concatenations of matrices by rows, i.e., for A ∈ R
d×n, B ∈ R

q×n,

(A;B) = (A⊤, B⊤)⊤.

3

Fully connected layer. A fully connected layer taking an input of dimension δ is written

z̃ =W⊤z + w0, (8)

where z ∈ R
δ is the input, W ∈ R

δ×δ̃ are the weights of the layer and w0 ∈ R
δ̃ define the intercepts. By vectorizing

the parameters and the inputs, a fully connected layer can be written as

x̃ = β(x, u) + βu(u),

where β(x, u) =W⊤z ∈ R
δ̃, βu(u) = w0,

x = z ∈ R
δ, u = Vec(W ;w0) ∈ R

δ̃(δ+1).

Convolutional layer. A convolutional layer convolves an input (images or signals) of dimension δ denoted z ∈
R
δ with nf affine filters of size sf defined by weights W = (w1, . . . , wnf) ∈ R

sf×nf and intercepts w0 =

(w0
1 , . . . , w

0
nf) ∈ R

nf through np patches. The kth output of the convolution of the input by the j th filter reads

Ξj,k = w⊤
j Πkz + w0

j , (9)

where Πk ∈ R
sf×δ extracts a patch of size sf at a given position of the input z. The output z̃ is then given by the

concatenation z̃k+np(j−1) = Ξj,k. By vectorizing the inputs and the outputs, the convolution operation is defined by a

set of matrices (Πk)
np

k=1 such that

x̃ = β(x, u) + βu(u),

where β(x, u) = (w⊤
j Πkz)j=1,...,nf ;k=1,...,np ∈ R

nfnp , βu(u) = w0 ⊗ 1np ,

x = z ∈ R
δ, u = Vec(W ;w0) ∈ R

(sf+1)nf , W = (w1, . . . , wnf).

2.3.2 Activation functions

We consider element-wise activation functions α : R
η → R

η such that for a given x = (x1, . . . , xη) ∈ R
η,

α(x) = (ᾱ(x1), . . . , ᾱ(xη)), (10)

for a given scalar function ᾱ such as ᾱ(x) = max(x, 0) for the Rectified Linear Unit (ReLU) or ᾱ(x) = (1 +
exp(−x))−1 for the sigmoid function.

2.3.3 Pooling functions

A pooling layer reduces the dimension of the output. For example, an average pooling convolves an input image with

a mean filter. Formally, for an input z ∈ R
δ , the average pooling with a patch size sf for inputs with nf channels and

np coordinates such that δ = nfnp convolves the input with a filter P = 1sf 1
⊤
nf /s

f . The output dimension for each

input is δ̃ = nf ñp and the patches, represented by some (Πk)
ñp
k=1 acting in Eq. (9), are chosen such that it induces a

reduction of dimension, i.e., ñp ≤ np.

2.3.4 Normalization functions

Given a batch of input Z ∈ R
δ×m the batch-normalization outputs Z̃ defined by

(Z̃)ij =
Zij − µi√
ǫ+ σ2

i

, (11)

where µi =
1

m

m∑

j=1

Zij , σ2
i =

1

m

m∑

j=1

(Zij − µi)
2,

with ǫ > 0, such that the vectorized formulation of the batch-normalization reads ν(x) = Vec(Z̃) for x = Vec(Z).

4

2.4 Specific structures

2.4.1 Auto-encoders

An auto-encoder seeks to learn a compact representation of some data x̄ ∈ R
d by passing it through an encoder

network with output dimension d̂ ≪ d then a decoder network with output dimension d with the objective that the

final output is close to the original input. Each network can be represented by a chain of computations. Given n data

points x̄ = (x̄(1) : . . . ; x̄(n)), denoting fe the encoder with parameters ue such that feue : R
d → R

d̂ and fd the decoder

with parameters ud such that fdud : R
d̂ → R

d, the objective is

min
ue,ud

1

n

n∑

i=1

‖x̄(i) − fd(fe(x̄(i), ue), ud)‖22.

The composition of the encoder and the decoder form a chain of computations such that the overall objective can be

written as in (4) as detailed in Appendix 2.3. Formally, denoting f0 : x0, u → fd(fe(x0, ue), ud) for u = (ud;ue)
the resulting chain of computations on a single input and f(x̄, u) = (f0(x̄(1), u); . . . ; f0(x̄(n), u) the concatenation

of the outputs applied to the set of inputs, the objective of an auto-encoder has the form h(f(x̄, u)) with h(x̂) =
1
n

∑n
i=1 ‖x̄i − x̂i‖22.

2.4.2 Dense, highway or residual networks

Dense networks use not only the last input but all previous ones. The output of such networks can be described as

fτ (x0, v) = xτ with xt = φt(x0:t−1, vt), x0:t−1 = (x0; . . . ;xt−1) for t = 1, . . . , τ, (12)

where vt = (ut,0; . . . ut,t−1) are the parameters of the layer dispatched with one set of parameters per previous state

and v = (v1; . . . ; vτ). The dynamics can be described as previously as φt(x0:t−1, vt) = at(bt(x0:t−1, vt)). The

bilinear operation bt is still a matrix multiplication or a convolution as previously presented except that it incorporates

more variables. The non-linear operation at is also the same, i.e., it incorporates an activation function and, potentially,

a pooling operation and a normalization operation.

Dense networks can naturally be translated as a single input-output transformation by defining layers of the form

x0:t = ψt(x0:t−1, vt) = (x0; . . . ;xt−1;φt(x0:t−1, vt)) = (x0:t−1;φt(x0:t−1, vt)) for t = 1, . . . , τ,

and fτ (x0, v) = Eτx0:τ = xτ where Eτ is a linear projector that extracts xτ from x0:τ .

Highway networks are dense networks that consider only the last input and the penultimate one, i.e., they are of

the form (12) except that they propagate only xt−1:t = (xt−1, xt). Namely they are defined by

xt−1:t = ψt(xt−2:t−1, vt) = (xt−1;φt(xt−2:t−1, vt)) for t = 1, . . . , τ,

with vt = (ut,t−2;ut,t−1). Finally, residual networks are highway networks with fixed parameters acting on the

penultimate input. In the simple case where the current and penultimate inputs have the same dimension, they read

xt = at(bt(xt−1, ut) + xt−2) = at(b̃t(xt−2:t−1, ut)) for t = 1, . . . , τ, (13)

with x−1 = 0, where bt and at are of the forms described above. This amounts to define layers ψt on xt−2:t−1 whose

bi-affine operation b̃t(xt−2:t−1, ut) has a non-zero affine term β̃xt on xt−2:t−1 = (xt−2;xt−1), see Appendix D.8.

2.4.3 Implicit functions

We consider implicit functions that take the form

g(α) = argmin
β∈Rb

ζ(α, β)

where ζ is twice differentiable and ζ(α, ·) is strongly convex for any α such that g(α) is uniquely defined . These can

be used either in the objective as seen before with clustering tasks, in that case α = xτ . These can also be used in the

layers such that α = (x, u) and φ(x, u) = argminβ∈Rb ζ(x, u, β).

5

If the minimizer is computed exactly, we can compute the gradient by invoking the implicit function theorem.

Formally, denoting ξ(α, β) = ∇βζ(α, β), the function g(α) is defined by the implicit equation ξ(α, g(α)) = 0 and its

gradient is given by

∇g(α) = −∇αξ(α, g(α))∇βξ(α, g(α))
−1 = −∇2

α,βζ(α, g(α))∇2
β,βζ(α, g(α))

−1

The smoothness constants of this layer for exact minimizations are provided in Appendix D.9.

If the minimizer is computed approximately through an algorithm, its derivative can be computed by using au-

tomatic differentiation through the chain of computations defining the algorithm (see Subsection 3.2 for a detailed

explanation of automatic differentiation). Alternatively, an approximate gradient can be computed by using the above

formula. The resulting approximation error of the gradient is given by the following lemma.

Lemma 2.2. Let ζ : (α, β) → ζ(α, β) ∈ R for α ∈ R
a, β ∈ R

b be s.t. ζ(α, ·) is µζ -strongly convex for any α
and denote ξ(α, β) = ∇βζ(α, β). Denote g(α) = argminβ∈Rb ζ(α, β) and ĝ(α) ≈ argminβ∈Rb ζ(α, β) be an

approximate minimizer. Provided that ζ has a Lζ-Lipschitz gradient and a Hζ-Lipschitz Hessian, the approximation

error of using

∇̂ĝ(α) = −∇αξ(α, ĝ(α))∇βξ(α, ĝ(α))
−1

instead of ∇g(α) is bounded as

‖∇̂ĝ(α)−∇g(α)‖2 ≤ Hζµ
−1
ζ (1 + Lζµ

−1
ζ)‖ĝ(α)− g(α)‖2.

3 Oracle arithmetic complexity

For each class of optimization algorithm considered (gradient descent, Gauss-Newton, Newton), we define the appro-

priate optimization oracle called at each step of the optimization algorithm which can be efficiently computed through

a dynamic programming procedure. For a gradient step, we retrieve the gradient back-propagation algorithm. The

gradient back-propagation algorithm forms then the basis of automatic-differentiation procedures.

3.1 Oracle reformulations

In the following, we use the notations presented in Sec. A for gradients, Hessians and tensors. Briefly, ∇f(x) is used

to denote the gradient of a function f at x, which, if f : R
p → R

d is multivariate, is the transpose of the Jacobian, i.e.,

∇f(x) ∈ R
p×d. For a multivariate function f : R

p → R
d, its second order information at x is represented by a tensor

∇2f(x) ∈ R
p×p×d, and we denote for example ∇2f(x)[y, y, ·] = (y⊤∇2f (1)(x))y; . . . ; y⊤∇2f (n)(x)y) ∈ R

d. For a

function f : R
p → R

d, we define, provided that ∇f(x), ∇f2(x) are defined,

ℓxf (y) = ∇f(x)⊤y, qxf (y) = ∇f(x)⊤y + 1

2
∇2f(x)[y, y, ·], (14)

such that the linear and quadratic approximations of f around x are f(x + y) ≈ f(x) + ℓxf(y) and f(x + y) ≈
f(x) + qxf (y) respectively.

We consider optimization oracles as procedures that compute either the next step of an optimization method or a

decent direction along which the next step of an optimization method is taken. Formally, the optimization oracles for

an objective f are defined by a model mu
f that approximates the objective around the current point u as f(u + v) ≈

f(u) +mu
f (v). The models can be minimized with an additional proximal term that ensures that the minimizer lies in

a region where the model approximates well the objective as

v∗γ = argmin
v∈Rp

mu
f (v) +

1

2γ
‖v‖22, unew = u+ v∗γ .

The parameter γ acts as a stepsize that controls how large should be the step (the smaller the γ, the smaller the v∗γ).

Alternatively the model can be minimized directly providing a descent direction along which the next iterate is taken

as

v∗ = argmin
v∈Rp

mu
f (v) unew = u+ γv∗,

6

where γ is found by a line-search using e.g. an Armijo condition [18].

On a point u ∈ R
p, given a regularization κ, for an objective of the form h ◦ ψ + r : R

p → R,

(i) a gradient oracle is defined as

v∗ = argmin
v∈Rp

ℓuh◦ψ(v) + ℓur (v) +
κ

2
‖v‖22, (15)

(ii) a (regularized) Gauss-Newton oracle is defined as

v∗ = argmin
v∈Rp

q
ψ(u)
h (ℓuψ(v)) + qur (v) +

κ

2
‖v‖22, (16)

(iii) a (regularized) Newton oracle is defined as

v∗ = argmin
v∈Rp

quh◦ψ(v) + qur (v) +
κ

2
‖v‖22. (17)

Proposition 3.1. Let f be a chain of τ computationsφt : R
dt−1×R

pt → R
dt , u = (u1; . . . ;uτ) and x0 ∈ R

d0 . Denote

ψ = fx0,τ and f(x0, u) = (x1; . . . ;xτ). Assume r to be decomposable as r(u) =
∑τ
t=1 rt(ut). Gradient (15),

Gauss-Newton (16) and Newton (17) oracles on h ◦ψ+ r are the solutions v∗ = (v∗1 ; . . . ; v
∗
τ) of problems of the form

min
v1,...,vτ∈R

p1×...×R
pτ

y0,...,yτ∈R
d0×...×R

dτ

τ∑

t=1

1

2
y⊤t Ptyt + p⊤t yt + y⊤t−1Rtvt +

1

2
v⊤t Qtvt + q⊤t vt +

κ

2
‖vt‖22 (18)

subject to yt = Atyt−1 +Btvt for t ∈ {1, . . . , τ},
y0 = 0,

where

At = ∇xt−1φt(xt−1, ut)
⊤, Bt = ∇utφt(xt−1, ut)

⊤,

pτ = ∇h(ψ(u)), pt = 0 for t 6= τ,

qt = ∇rt(ut),
1. for gradient oracles (15),

Pt = 0, Rt = 0, Qt = 0,

2. for Gauss-Newton oracles (16),

Pτ = ∇2h(ψ(u)), Pt = 0 for t 6= τ, Rt = 0, Qt = ∇2rt(ut),

,

3. for Newton oracles (17), defining

λτ = ∇h(ψ(u)), λt−1 = ∇xt−1φt(xt−1, ut)λt for t ∈ {1, . . . , τ},
we have

Pτ = ∇2h(ψ(u)), Pt−1 = ∇2
xt−1xt−1

φt(xt−1, ut)[·, ·, λt] for t ∈ {1, . . . , τ},
Rt = ∇2

xt−1utφt(xt−1, ut)[·, ·, λt], Qt = ∇2rt(ut) +∇2
ututφt(xt−1, ut)[·, ·, λt].

Problems of the form

min
u1,...,uτ∈R

p1×...×R
pτ

x0,...,xτ∈R
d0×...×R

dτ

τ∑

t=1

ht(xt) +

τ∑

t=1

gt(ut) (19)

subject to xt = φt(xt−1, ut) for t ∈ {1, . . . , τ},
x0 = x̂0

7

can be decomposed into nested subproblems defined as the cost-to-go from x̂t at time t by

costt(x̂t) = min
ut+1,...,uτ∈R

pt+1×...×R
pτ

xt,...,xτ∈R
dt×...×R

dτ

τ∑

t′=t

ht′(xt′) +

τ∑

t′=t+1

gt′(ut′)

subject to xt′ = φt′(xt′−1, ut′) for t′ ∈ {t+ 1, . . . , τ},
xt = x̂t,

such that they follow the recursive relation

costt(x̂t) = min
ut+1∈R

pt+1
{ht(x̂t) + gt+1(ut+1) + costt+1(φt+1(xt, ut+1))}. (20)

This principle cannot be used directly on the original problem, since Eq. (20) cannot be solved analytically for generic

problems of the form (19). However, for quadratic problems with linear compositions of the form (18), this principle

can be used to solve problems (18) by dynamic programming [4]. Therefore as a corollary of Prop. 3.1, the complexity

of all optimization steps given in (15), (16), (17) is linear w.r.t. to the length τ of the chain. Precisely, Prop. 3.1 shows

that each optimization step amounts to reducing the complexity of the recursive relation (20) to an analytic problem.

In particular, while the Hessian of the objective scales as
∑τ

t=1 pt, a Newton step has a linear and not cubic

complexity with respect to τ . We present in Appendix B the detailed computation of a Newton step, alternative

derivations were first proposed in the control literature [6]. This involves the inversion of intermediate quadratic

costs at each layer. Gauss-Newton steps can also be solved by dynamic programming and can be more efficiently

implemented using an automatic-differentiation oracles as we explain below.

3.2 Automatic differentiation

3.2.1 Algorithm

As explained in last subsection and shown in Appendix B, a gradient step can naturally be derived as a dynamic

programming procedure applied to the subproblem (18). However, the implementation of the gradient step provides

itself a different kind of oracle on the chain of computations as defined below.

Definition 3.2. Given a chain of computations f : R

∑τ
t=1 pt × R

d0 → R

∑τ
t=1 dt as defined in Def. 2.1, u ∈ R

∑τ
t=1 pt

and x0 ∈ R
d0 , an automatic differentiation oracle is a procedure that gives access to

µ→ ∇fx0,τ (u)µ for any µ ∈ R
dτ .

The subtle difference is that we have access to ∇fx0,τ (u) not as a matrix but as a linear operator. The matrix

∇fx0,τ (u) can also be computed and stored to perform gradient vector products. Yet, this requires a surplus of storage

and of computations that are generally not necessary for our purposes. The only quantities that need to be stored are

given by the forward pass. Then, these quantities can be used to compute any gradient vector product directly.

The definition of an automatic differentiation oracle is composed of two steps:

1. a forward pass that computes fx0,τ (u) and stores the information necessary to compute gradient-vector products.

2. the compilation of a backward pass that computes µ → ∇fx0,τ (u)µ for any µ ∈ R
dτ given the information

collected in the forward pass.

Note that the two aforementioned passes are decorrelated in the sense that the forward pass does not require the

knowledge of the slope µ for which ∇fx0,τ (u)µ is computed.

We present in Algo. 1 and Algo. 2 the classical forward-backward passes used in modern automatic-differentiation

libraries. The implementation of the automatic differentiation oracle as a procedure that computes both the value of

the chain fx0,τ (u) and the linear operator µ→ fx0,τ (u)µ is then presented in Algo. 3 and illustrated in Fig. 2.

Computing the gradient g = ∇(h ◦ fx0,τ)(u) on u ∈ R
p amounts then to

1. computing with Algo. 3, fx0,τ (u), µ→ ∇fx0,τ (u)µ = Autodiff(f, u),

2. computing µ = ∇h(fx0,τ (u)) then g = ∇fx0,τ (u)µ.

8

Algorithm 1 Forward pass

1: Inputs: Chain of computations f defined by (φt)t=1,...,τ , input x as in Def. 2.1, variable u = (u1; . . . ;uτ)
2: Initialize x0 = x
3: for t = 1, . . . , τ do

4: Compute xt = φt(xt−1, ut)
5: Store ∇φt(xt−1, ut)
6: end for

7: Output: xτ ,∇φt(xt−1, ut) for t ∈ {1, . . . , τ}.

Algorithm 2 Backward pass

1: Inputs: Slope µ, intermediate gradients ∇φt(xt−1, ut) for t ∈ {1, . . . , τ}
2: Initialize λτ = µ
3: for t = τ, . . . , 1 do

4: Compute λt−1 = ∇xt−1φt(xt−1, ut)λt
5: Store gt = ∇utφt(xt−1, ut)λt
6: end for

7: Output: (g1, . . . , gτ) = ∇fx0,τ (u)µ

Algorithm 3 Chain of computations with automatic-differentiation oracle (Autodiff)

1: Inputs: Chain of computations f defined by (φt)t=1,...,τ , input x as in Def. 2.1, variable u = (u1; . . . ;uτ)
2: Compute using Algo. 1 (xτ , (∇φt(xt−1, ut)

τ
t=1) = Forward(f, u) which gives fx0,τ (u) = xτ

3: Define µ→ ∇fx0,τ (u)µ as µ→ Backward(µ, (∇φt(xt−1, ut))
τ
t=1) according to Algo. 2.

4: Output: fx0,τ (u), µ→ ∇fx0,τ (u)µ

x

Forward pass

u→ f(x0, u)
u=(u1; . . . ;uτ)

x0 φ1

u1

x1 φ2

u2

x2 . . . φτ

uτ

xτ

∇φ1 ∇φ2 ∇φτ λτ µ

gτ

. . .λ2λ1λ0

g2g1

Backward pass

µ→∇fx0,τ (u)µ=g
g=(g1; . . . ; gτ)

Store gradients

∇φt(xt−1, ut)

Figure 2: Automatic differentiation of a chain of computations.

9

3.2.2 Complexity

Without additional information on the structure of the layers, the space and time complexities of the forward-backward

algorithm is of the order of

SFB ≤
τ∑

t=1

(pt + dt−1)dt,

TFB ≤
τ∑

t=1

T (φt,∇φt) + 2

τ∑

t=1

(dt−1dt + ptdt) ,

respectively, where T (φt,∇φt) is the time complexity of computing φt,∇φt during the backward pass. The units

chosen are for the space complexity the cost of storing one digit and for the time complexity the cost of performing an

addition or a multiplication.

Provided that for all t ∈ {1, . . . τ},

T (φt,∇φt) + 2(dt−1dt + ptdt) ≤ QT (φt), (21)

where T (φt) is the time complexity of computing φt and Q ≥ 0 is a constant, we get that

TFB ≤ QT (f),

where T (f) is the complexity of computing the chain of computations [14]. We retrieve Baur-Strassen’s theorem

which states that the complexity of computing the derivative of a function formulated as a chain of computations is of

the order of the complexity of computing the function itself [3, 10].

For chain of computations of the form (7), this cost can be refined as shown in Appendix B. Specifically, for a

chain of fully-connected layers with element-wise activation function, no normalization or pooling, the cost of the

backward pass is then of the order of O (
∑τ

t=1 2mδt(δt−1 + 1)) elementary operations. For a chain of convolutional

layers with element-wise activation function, no normalization or pooling, the cost of the backward pass is of the order

of O
(∑τ

t=1(2n
p
tn

f
t s
f
t + nptn

f
t + δt)m

)
elementary operations.

3.3 Gauss-Newton by automatic differentiation

The Gauss-Newton step can also be solved by making calls to an automatic differentiation oracle.

Proposition 3.3. Consider the Gauss-Newton oracle (16) on u = (u1; . . . ;uτ) for a convex objective h, a convex

decomposable regularization r(u) =
∑τ

t=1 rt(ut) and a differentiable chain of computations f with outputψ = fx0,τ

on some input x0. We have that

1. the Gauss-Newton oracle amounts to solving

min
µ∈Rdτ

(
q
ψ(u)
h

)⋆
(µ) +

(
qur + κ‖ · ‖22/2

)⋆
(−∇ψ(u)µ), (22)

where for a function f we denote by f⋆ its convex conjugate,

2. the Gauss-Newton oracle is v∗ = ∇
(
qur + κ‖ · ‖22/2

)⋆
(−∇ψ(u)µ∗) where µ∗ is the solution of (22),

3. the dual problem (22) can be solved by 2dτ + 1 calls to an automatic differentiation procedure.

Proposition 3.3 shows that a Gauss-Newton step is only 2dτ + 1 times more expansive than a gradient-step.

Precisely, for a deep network with a supervised objective, we have dτ = nk where n is the number of samples and

k is the number of classes. A gradient step makes then one call to an automatic differentiation procedure to get the

gradient of the batch and the Gauss-Newton method will then make 2nk + 1 more calls. If mini-batch Gauss-Newton

steps are considered then the cost reduces to 2mk + 1 calls to an automatic differentiation oracle, where m is the size

of the mini-batch.

10

4 Optimization complexity

We present smoothness properties with respect to the Euclidean norm ‖ · ‖2, whose operator norm is denoted ‖ · ‖2,2.

In the following, for a function f : R
d → R

n and a set C ⊂ dom f ⊂ R
d, we denote by

mC
f = sup

x∈C
‖f(x)‖2, ℓCf = sup

x,y∈C
x 6=y

‖f(x)− f(y)‖2
‖x− y‖2

, LCf = sup
x,y∈C
x 6=y

‖∇f(x)−∇f(y)‖2,2
‖x− y‖2

,

a bound of h on C, the Lipschitz-continuity parameter of h on C, and the smoothness parameter of h on C (i.e., the

Lipschitz-continuity parameter of its gradient if it exists), all with respect to ‖ · ‖2. Note that if x = Vec(X) for

a given matrix X , ‖x‖2 = ‖X‖F . We denote by mf , ℓf , Lf the same quantities defined on the domain of f , e.g.,

mf = mdom f
f . We denote by Cm,ℓ,L the class of functions f such thatmf = m, ℓf = ℓ, Lf = L. In the following, we

allow the quantities mf , ℓf , Lf to be infinite if for example the function is unbounded or the smoothness constant is

not defined. The procedures presented below output infinite estimates if the combinations of the smoothness properties

do not allow for finite estimates. On the other hand, they provide finite estimates automatically if they are available.

In the following we denote
⊗τ

t=1BRt(R
pt) = {u = (u1; . . . ;uτ) ∈ R

∑τ
t=1 pt : ut ∈ R

pt , ‖ut‖2 ≤ Rt}.

4.1 Convergence rate to a stationary point

We recall the convergence rate to a stationary point of a gradient descent and a stochastic gradient descent on con-

strained problems.

Theorem 4.1 (8, Theorems 1 and 2). Consider problems of the form

(i) min
u∈Rp

{F (u) := h(ψ(u)) + r(u)} , or (ii) min
u∈Rp

{
F (u) :=

1

n

n∑

i=1

hi(ψi(u)) + r(u)

}
,

subject to u ∈ C, subject to u ∈ C,

where C is a closed convex set and F is LCF smooth on C. For problem (ii), consider that we have access to an

unbiased estimate ∇̂F (u) of ∇F (u) with a variance bounded as E(‖∇̂F (u)−∇F (u)‖22) ≤ σ2.

A projected gradient descent applied on problem (i) with step-size γ = (LCF)
−1 converges to an ε-stationary point

in at most

O
(
LCF (F (u0)− F ∗)

ǫ2

)

iterations, where u0 is the initial point and F ∗ = minu∈C F (u).
A stochastic projected gradient descent applied on problem (ii) with step-size γ = (2LCF)

−1 converges in expec-

tation to an (ε+ σ)-stationary point in at most

O
(
LCF (F (u0)− F ∗)

ǫ2

)

iterations, where u0 is the initial point and F ∗ = minu∈C F (u).

Remarks.

1. Since a gradient descent is monotonically decreasing, a gradient descent applied to the unconstrained problem

converges to an ε-stationary point in at most

O
(
LS0

F (F (u0)− F ∗)
ǫ2

)

iterations, where S0 = {u ∈ R
p : F (u) ≤ F (u0)} is the initial sub-level set.

2. Tighter rates of convergence can be obtained for the finite-sum problem (ii) by using variance reduction methods

and by varying mini-batch sizes [17]. They would then depend on the smoothness constants of the objective or

the maximal smoothness of the components on C, i.e., maxi=1,...,n L
C
hi◦ψi+r.

11

The smoothness of the objectives F defined in Theorem 4.1 can be derived from the smoothness properties of their

components.

Proposition 4.2. Consider a closed convex set C ⊂ R
p, ψ ∈ CC

mCψ ,ℓ
C
ψ ,L

C
ψ

, r ∈ CLr and h ∈ Cℓh,Lh with ℓh = +∞ if h

is not Lipschitz-continuous. The smoothness of F = h ◦ ψ + r on C is bounded as

LCF ≤ LCψ ℓ̃
C
h +

(
ℓCψ
)2
Lh + Lr,

where ℓ̃Ch = min{ℓh,minz∈ψ(C) ‖∇h(z)‖2 + Lhℓ
C
ψD

C}, where DC = supx,y∈C ‖x− y‖2.

What remain to characterize are the smoothness properties of a chain of computations.

4.2 Smoothness estimates

We present the smoothness computations for a deep network. Generic estimations of the smoothness properties of

a chain of computation are presented in Appendix C. The propositions below give upper bounds on the smoothness

constants of the function achieved through chain-composition. For a trivial composition such as f ◦ f−1, the upper

bound is clearly loose. The upper bounds we present here are informative for non-trivial architectures.

The estimation is done by a forward pass on the network, as illustrated in Fig. 3. The reasoning is based on the

following lemma.

Lemma 4.3. Consider a chain f of τ computations φt ∈ Cℓφt ,Lφt initialized at some x0 ∈ R
d0 .

(i) We have ℓfτ,x0 ≤ ℓτ , where

ℓ0 = 0, ℓt = ℓφt + ℓt−1ℓφt , for t ∈ {1, . . . , τ}.

(ii) We have Lfτ,x0 ≤ Lτ , where

L0 = 0, Lt = Lt−1ℓφt + Lφt(1 + ℓt−1)
2, for t ∈ {1, . . . , τ}.

In the case of deep networks, the computations are not Lipschitz continuous due to the presence of bi-affine

functions. Yet, provided that inputs of computations are bounded and that we have access to the smoothness of the

computations, we can have an estimate of the Lipschitz-continuity of the computations restricted to these bounded

sets.

Corollary 4.4. Consider a chain f of τ of computations φt ∈ Cmφt ,ℓφt ,Lφt initialized at some x0 ∈ R
d0 and consider

C =
⊗τ

t=1BRt(R
pt). Then the smoothness of the output of the chain fτ,x0 on C, can be estimated as in Lemma 4.3

by replacing ℓφt with ℓ̃φt defined by

ℓ̃φt = min{ℓφt , Lφt(mt−1 +Rt) + ‖∇φt(0, 0)‖2,2},
mt = min{mφt , ℓ̃φt(mt−1 +Rt) + ‖φt(0, 0)‖2},

for t ∈ {1, . . . , τ}, with m0 = ‖x0‖2.

We specialize the result to deep networks. We denote by BL,lu,lx the set of L-smooth bi-affine functions b such

that ‖∇ub(0, 0)‖2,2 = lu, ‖∇xb(0, 0)‖2,2 = lx , i.e., functions of the form

b(x, u) = β(x, u) + βu(u) + βx(x) + β0,

with β bilinear and L-smooth, βu, βx linear and lu, lx Lipschitz continuous respectively and β0 a constant vector.

Proposition 4.5. Consider a chain f of τ computations whose layers φt are defined by

φt(xt−1, ut) = at(bt(xt−1, ut)),

for t ∈ {1, . . . , τ}, where bt ∈ BLbt ,lubt ,lxbt , and at is decomposed as

at = at,kt ◦ . . . ◦ at,1,
with at,i ∈ Cmat,i ,ℓat,i ,Lat,i . Consider C =

⊗τ
t=1BRt(R

pt). The outputs mτ , ℓτ and Lτ of Algo. 4 satisfy mC
fτ,x0

≤
mτ , ℓCfτ,x0

≤ ℓτ , LCfτ,x0
≤ Lτ .

12

m0 φ1

R1

. . . mφt , ℓφt , Lφt
φt

Rt

. . . φτ

Rτ

mτ , ℓτ , Lτ
mt−1 ℓt−1Lt−1 mt ℓt Lt

f

Figure 3: Smoothness estimates computations.

Algorithm 4 Automatic smoothness computations

1: Inputs:

1. Chain of computations f defined by φt = at ◦ bt for t ∈ {1, . . . , τ} with at = at,kt ◦ . . . ◦ at,1
2. Smoothness properties Lbt , l

u
bt
, lxbt of the biaffine function bt ∈ BLbt ,lubt ,lxbt

3. Smoothness properties mat,i , ℓat,i , Lat,i of the nonlinear functions at,i ∈ Cmat,i ,ℓat,i ,Lat,i
4. Initial point x0

5. Bounds Rt on the parameters

2: Initialize m0 = ‖x0‖2, ℓ0 = 0, L0 = 0
3: for t = 1, . . . , τ do

4: ℓxt,0 = LbtRt + lxbt , ℓut,0 = Lbtmt−1 + lubt , ℓ0t,0 = 1
5: mt,0 = ℓxt,0mt−1 + ℓut,0Rt + ‖bt(0, 0)‖2
6: Lt,0 = 0
7: for j = 1, . . . , kt do

8: ℓ̃at,j = min{ℓat,j , ‖∇at,j(0)‖2 + Lat,jmt,j−1}
9: mt,j = min{mat,j , ‖at,j(0)‖2 + ℓ̃at,jmt,j−1}

10: ℓ0t,j = ℓ̃at,j ℓ
0
t,j−1

11: Lt,j = Lt,j−1ℓat,j + Lat,j (ℓ
0
t,j−1)

2

12: end for

13: mt = mt,kt

14: ℓt = ℓxt,0ℓ
0
t,kt

ℓt−1+ℓ
u
t,0ℓ

0
t,kt

15: Lt = Lt−1ℓ
x
t,0ℓ

0
t,kt

+(LbtRt+lbt)
2Lt,ktℓ

2
t−1

+2
(
(Lbtmt−1+l

u
bt
)(LbtRt+l

x
bt
)Lt,kt+Lbtℓ

0
t,kt

)
ℓt−1

+(Lbtmt−1+l
u
bt
)2Lt,kt

16: end for

17: Output: mτ , ℓτ , Lτ

13

The proof of the above lemma is the consequence of simple technical lemmas provided in Appendix C. Note that

the smoothness of the chain with respect to its input given a fixed set of parameters can also easily be estimated by a

similar method; see Corollary C.5 in Appendix C.

The smoothness properties of a chain of composition around a given point follows then directly as stated in the

following corollary.

Corollary 4.6. Consider a chain f of τ computations as defined in Prop. 4.5 and u∗ = (u∗1; . . . , u
∗
τ) ∈ R

p. The

smoothness properties of f on C′ = {u = (u1; . . . ;uτ) ∈ R
p : ∀t ∈ {1, . . . , τ}, ‖ut − u∗t ‖ ≤ R′

t} are given as in

Prop. 4.5 by considering

R′
t in place of Rt,

lβxt + Lβt‖u∗t ‖2 in place of lβxt ,

‖β0
t ‖2 + lβut ‖u∗t ‖2 in place of ‖β0

t ‖2.

5 Application

We apply our framework to assess the smoothness properties of the Visual Geometry Group (VGG) deep network used

for image classification [24].

5.1 VGG network

The VGG Network is a benchmark network for image classification with deep networks. The objective is to classify

images among 1000 classes. Its architecture is composed of 16 layers described in Appendix F. We consider in the

following smoothness properties for mini-batches with sizem = 128, i.e., by concatenatingm chains of computations

f (i) each defined by a different input. This highlights the impact of the size of the mini-batch for batch-normalization.

Smoothness computations. To compute the Lipschitz-continuity and smoothness parameters, we recall the list of

Lipschitz continuity and smoothness constants of each layer of interest. For the bilinear and linear operations we

denote by L the smoothness of the bilinear operation β and by ℓ the Lipschitz-continuity of the linear operation βu.

The smoothness constants of interest are

1. ℓconv =
√
m
⌈
k
s

⌉
, Lconv =

⌈
k
s

⌉
, where the patch is of size k × k and the stride is s,

2. ℓfull =
√
m, Lfull = 1,

3. ℓReLu = 1, LReLu not defined,

4. ℓsoftmax = 2, Lsoftmax = 4,

5. ℓmaxpool = 1, Lmaxpool not defined,

6. ℓlog = 2, Llog = 2.

A Lipschitz-continuity estimate of this architecture can then be computed using Prop. 4.5 on a Cartesian product of

balls C = {w = (u1; . . . ;u16) : ‖ut‖2 ≤ R} for R = 1 for example.

5.2 Variations of VGG

Smooth VGG. First, the VGG architecture can be made continuously differentiable by considering the soft-plus

activation instead of the ReLU activation and average pooling instead of the max-pooling operation. As shown in

Appendix D, we have

1. ℓavgpool = 1, Lavgpool = 0,

2. ℓsoftplus = 1, Lsoftplus = 1/4.

Denoting ℓVGG and ℓVGG-smooth the Lipschitz-continuity estimates of the original VGG network and the modified

original network on a Cartesian product of balls C = {u = (u1; . . . ;u16) : ‖ut‖2 ≤ 1} with ‖x‖2 = 1, we get using

Prop. 4.5,
|ℓVGG−ℓVGG-smooth|

ℓVGG
≤ 10−4.

14

Batch-normalization effect. We can also compare the smoothness properties of the smoothed network with the

same network modified by adding the batch-normalization layer for m inputs and ǫ normalization parameter at each

convolutional layer. As shown in Appendix D, the batch-normalization satisfies

1. mbatch=δm, ℓbatch=2ǫ−1/2, Lbatch=2m−1/2ǫ−1.

Denoting ℓVGG-smooth, LVGG-smooth and ℓVGG-batch, LVGG-batch the Lipschitz-continuity and smoothness estimates

of the smoothed VGG network with and without batch-normalization respectively on a Cartesian product of balls

C = {u = (u1; . . . ;u16) : ‖ut‖2 ≤ 1} with ‖x‖2 = 1, we get using Prop. 4.5,

for ǫ = 10−2,
ℓVGG-smooth ≤ ℓVGG-batch

LVGG-smooth ≤ LVGG-batch

for ǫ = 102,
ℓVGG-smooth ≥ ℓVGG-batch

LVGG-smooth ≥ LVGG-batch

Intuitively, the batch-norm bounds the output of each layer, mitigating the increase of mt in the computations of the

estimates of the smoothness in lines 8 and 9 of Algo. 4. Yet, for a small ǫ, this effect is balanced by the non-smoothness

of the batch-norm layer (which for ǫ→ 0 tends to have an infinite slope around 0).

Acknowledgments. This work was supported by NSF CCF-1740551, NSF DMS-1839371, the program “Learning

in Machines and Brains”, and faculty research awards.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

[2] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press,

2009.

[3] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer science, 22(3):317–330,

1983.

[4] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 3rd edition, 2005.

[5] R. Duda, P. Hart, and D. Stork. Pattern classification. John Wiley & Sons, 2nd edition, 2012.

[6] J. C. Dunn and D. P. Bertsekas. Efficient dynamic programming implementations of Newton’s method for

unconstrained optimal control problems. Journal of Optimization Theory and Applications, 63(1):23–38, 1989.

[7] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams.

Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Pro-

cessing Systems 28, 2015.

[8] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex stochastic

composite optimization. Mathematical Programming, 155(1-2):267–305, 2016.

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[10] A. Griewank. Who invented the reverse mode of differentiation? Documenta Mathematica, Optimization

stories:389–400, 2012.

[11] T. D. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex fusion

penalties. In Proceedings of the 28th International Conference on Machine Learning, 2011.

15

[12] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2nd edition, 2012.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. In Proceedings of the 32nd International Conference on Machine Learning, volume 37, pages 448–456,

2015.

[14] K. V. Kim, Y. E. Nesterov, and B. Cherkasskii. An estimate of the effort in computing the gradient. In Doklady

Akademii Nauk, volume 275, pages 1306–1309. Russian Academy of Sciences, 1984.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems 25, 2012.

[16] Y. Lecun. A theoretical framework for back-propagation. In 1988 Connectionist Models Summer School, CMU,

Pittsburg, PA, 1988.

[17] Z. Li and J. Li. A simple proximal stochastic gradient method for nonsmooth nonconvex optimization. In

Advances in Neural Information Processing Systems 31, pages 5564–5574, 2018.

[18] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems 32, 2019.

[20] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[21] V. Roulet, S. Srinivasa, D. Drusvyatskiy, and Z. Harchaoui. Iterative linearized control: stable algorithms and

complexity guarantees. In Proceedings of the 36th International Conference on Machine Learning, 2019. Long

version.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature,

323(6088):533–536, 1986.

[23] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge

University Press, 2014.

[24] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Inter-

national Conference on Learning Representations, 2015.

[25] P. Werbos. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Fore-

casting. Wiley-Interscience, 1994.

16

A Notations

A.1 Matrices

For a matrix M ∈ R
d×n, we denote by Vec(M) the concatenation of the columns of M . We denote ‖M‖2,2 =

supx 6=0,y 6=0
x⊤My

‖x‖2‖y‖2
its norm induced by the Euclidean norm and ‖M‖F =

√∑
ijM

2
ij its Frobenius norm.

A.2 Tensors

A tensor A = (aijk)i∈{1,...,d},j∈{1,...,n},k∈{1,...,p} ∈ R
d×n×p is represented as a list of matrices A = (A1, . . . , Ap)

where Ak = (aijk)i∈{1,...,d},j∈{1,...,n} ∈ R
d×n for k ∈ {1, . . . p}.

Tensor-matrix product. Given matrices P ∈ R
d×d′, Q ∈ R

n×n′

, R ∈ R
p×p′ , we denote

A[P,Q,R] =

(
p∑

k=1

Rk,1P
⊤AkQ, . . . ,

p∑

k=1

Rk,p′P
⊤AkQ

)
∈ R

d′×n′×p′

If P,Q or R are identity matrices, we use the symbol “ · ” in place of the identity matrix. For example, we denote

A[P,Q, Ip] = A[P,Q, ·] =
(
P⊤A1Q, . . . , P

⊤ApQ
)
.

Fact A.1. Let A ∈ R
d×p×n, P ∈ R

d×d′, Q ∈ R
p×p′ , R ∈ R

n×n′

and S ∈ R
d′×d′′ , T ∈ R

p′×p′′ , U ∈ R
n′×n′′

. Denote

A′ = A[P,Q,R] ∈ R
d′×p′×n′

. Then

A′[S, T, U] = A[PS,QT,RU] ∈ R
d′′×p′′×n′′

.

Flat tensors. If P,Q or R are vectors we consider the flatten object. In particular, for x ∈ R
d, y ∈ R

n, we denote

A[x, y, ·] =

x⊤A1y

...

x⊤Apy

 ∈ R

p,

rather than having A[x, y, ·] ∈ R
1×1×p. Similarly, for z ∈ R

p, we have

A[·, ·, z] =
p∑

k=1

zkAk ∈ R
d×n.

Transpose. For a tensor A = (A1, . . . , Ap) ∈ R
d,n,p we denote At = (A⊤

1 , . . . , A
⊤
p) ∈ R

n,d,p.

Outer product. We denote the outer product of three vectors x ∈ R
d, y ∈ R

n, z ∈ R
p as x⊠ y ⊠ z ∈ R

d×n×p such

that

(x⊠ y ⊠ z)ijk = xiyjzk.

Tensor norm. We define the norm of a tensor A induced by the Euclidean norm as follows.

Definition A.2. The norm of a tensor A induced by the Euclidean norm is defined as

‖A‖2,2,2 = sup
x 6=0,y 6=0,z 6=0

A[x, y, z]

‖x‖2‖y‖2‖z‖2
. (23)

Fact A.3. The tensor norm satisfies the following properties, for a given tensor A ∈ R
d×n×p,

1. ‖A‖2,2,2 = ‖At‖2,2,2,

2. ‖A[P,Q,R]‖2,2,2 ≤ ‖A‖2,2,2‖P‖2,2‖Q‖2,2‖R‖2,2 for P,Q,R with appropriate sizes,

3. ‖A‖2,2,2 = supz 6=0
‖∑p

k=1
zkAk‖2,2

‖z‖2
.

17

A.3 Gradients

For a multivariate function f : R
d 7→ R

n, composed of n real functions f (j) for j ∈ {1, . . . n}, we denote ∇f(x) =
(∇f (1)(x), . . . ,∇f (n)(x)) ∈ R

d×n, that is the transpose of its Jacobian on x, ∇f(x) = (∂f
(j)

∂xi
(x))i∈{1,...,d},j∈{1,...,n} ∈

R
d×n. We represent its 2nd order information by a tensor ∇2f(x) = (∇2f (1)(x), . . . ,∇2f (n)(x)) ∈ R

d×d×n.

Fact A.4. We have for f : R
d → R

n, twice differentiable, and C ⊂ dom f convex,

ℓCf = sup
x,y∈C
x 6=y

‖f(x)− f(y)‖2
‖x− y‖2

= sup
x∈C

‖∇f(x)‖2,2, LCf = sup
x,y∈C
x 6=y

‖∇f(x)−∇f(y)‖2,2
‖x− y‖2

= sup
x∈C

‖∇2f(x)‖2,2,2.

where ‖∇f(x)‖2,2 denotes the operator norm of ∇f(x) and ‖∇2f(x)‖2,2,2 denotes the tensor norm of ∇2f(x) both

with respect to the Euclidean norm.

Proof. We have for x, y ∈ C,

‖f(x)− f(y)‖2 = ‖
∫ 1

0

∇f(x+ t(y − x))⊤(y − x)dt‖2 ≤ sup
x∈C

‖∇f(x)‖2,2‖x− y‖2,

‖∇f(x)−∇f(y)‖2,2 = ‖
∫ 1

0

∇2f(x+ t(y − x))[y − x, ·, ·]dt‖2,2 ≤ sup
x∈C

‖∇2f(x)‖2,2,2‖x− y‖2,

which gives ℓCf ≤ supx∈C ‖∇f(x)‖2,2 and LCf ≤ supx∈C ‖∇2f(x)‖2,2,2. The equalities come from the definitions

of the gradient and the Hessian.

For a real function, f : R
d×R

p 7→ R, whose value is denoted f(x, y), we decompose its gradient∇f(x, y) ∈ R
d+p

on (x, y) ∈ R
d × R

p as

∇f(x, y) =
(
∇xf(x, y)
∇yf(x, y)

)
with ∇xf(x, y) ∈ R

d, ∇yf(x, y) ∈ R
p.

Similarly we decompose its Hessian ∇f(x, y) ∈ R
(d+p)×(d+p) on blocks that correspond to the variables (x, y) as

follows

∇2f(x, y) =

(
∇xxf(x, y) ∇xyf(x, y)
∇yxf(x, y) ∇yyf(x, y)

)

with ∇xxf(x, y) ∈ R
d×d, ∇yyf(x, y) ∈ R

p×p, ∇xyf(x, y) = ∇yxf(x, y)
⊤ ∈ R

d×p.

Given a function f : R
d+p 7→ R

n and (x, y) ∈ R
d×R

p, we denote ∇xf(x, y) = (∇xf
(1)(x, y), . . . ,∇xf

(n)(x, y)) ∈
R
d×n and we define similarly ∇yf(x, y) ∈ R

p×n.

For its second order information we define ∇xxf(x, y) = (∇xxf
(1)(x, y), . . . ,∇xxf

(n)(x, y)), similarly for

∇xxf(x, y). Dimension of these definitions are

∇xf(x, y) ∈ R
d×n, ∇yf(x, y) ∈ R

p×n,

∇xxf(x, y) ∈ R
d×d×n, ∇yyf(x, y) ∈ R

p×p×n,

∇xyf(x, y) ∈ R
d×p×n, ∇yxf(x, y) ∈ R

p×d×n.

A.4 Matrix functions

For a differentiable matrix-valued multivariate function g : R
d → R

p×n such that g(x) = (gj,k(x)1≤j≤p,1≤k≤n), we

denote its first order information as a tensor

∇g(x) =
(
∂gj,k(x)

∂xi

)

1≤i≤d,1≤j≤p,1≤k≤n
∈ R

d×p×n.

This notation is consistent with previous ones, i.e., for f : R
d+p 7→ R

n and g(y) = ∇yf(x, y) ∈ R
p×n, then

∇g(y) = ∇2
xyf(x, y) ∈ R

d×p×n. From previous definitions, we have the following fact.

18

Fact A.5. For a differentiable matrix-valued multivariate function g : R
d → R

p×n, A ∈ R
p′×p, B ∈ R

n×n′

, denoting

h(x) = Ag(x)B ∈ R
p′×n′

, we have

∇h(x) = ∇g(x)[·, A⊤, B] ∈ R
d×p′×n′

.

A.5 Bilinear functions

Definition A.6. A function β : R
d × R

n → R
p is bilinear if it is represented by a tensor B ∈ R

d×n×p such that for

any x ∈ R
d, y ∈ R

n,

β(x, y) = B[x, y, ·].

The gradient of a bilinear function β represented by a tensor B ∈ R
d×n×p at a point x, y is given by

∇xβ(x, y) = B[·, y, ·] ∈ R
d×p, ∇yβ(x, y) = B[x, ·, ·] ∈ R

n×p. (24)

The Hessian of the bilinear function is given

∇2
xxβ(x, y) = 0, ∇2

yyβ(x, y) = 0, ∇2
xyβ(x, y) = B, ∇2

yxβ(x, y) = Bt. (25)

A bilinear function is not Lipschitz continuous as can be seen from Eq. (24). It is smooth w.r.t. the Euclidean norm

with a smoothness constant given by the tensor norm of B as shown in the following proposition.

Lemma A.7. The smoothness of a bilinear function β defined by a tensor B is upper bounded as Lβ ≤ ‖B‖2,2,2.

Proof. We have

‖∇2β(x, y)‖2,2,2 = sup
z 6=0

‖∑p
k=1 zkB̃k‖2,2
‖z‖2

,

where ∇2β(x, y) = (B̃1, . . . , B̃p). We have by Eq. (25) that
∑p
k=1 zkB̃k is of the form

p∑

k=1

zkB̃k =

(
0

∑p
k=1 zkBk∑p

k=1 zkB
⊤
k 0

)

where B = (B1, . . . , Bp). Therefore we get ‖∑p
k=1 zkB̃k‖2,2 = ‖∑p

k=1 zkBk‖2,2, see [12, Theorem 7.3.3.]. There-

fore

‖∇2β(x, y)‖2 = sup
z 6=0

‖∑p
k=1 zkB̃k‖2,2
‖z‖2

= sup
z 6=0

‖∑p
k=1 zkBk‖2,2
‖z‖2

= ‖B‖2,2,2.

B Oracle arithmetic complexity proofs

B.1 Feasibility of the optimization oracle steps

The gradient step (15) is always feasible for any κ > 0, the Gauss-Newton step (16) is feasible for any κ > 0 if h, r
are convex and the Newton step is feasible for any κ > 0 if h ◦ f and r are convex. A sufficient condition for the

Newton step to be feasible if h ◦ f is not convex but h ◦ f and r are smooth is to choose κ < (Lh◦f +Lr)
−1. In other

words, the step-size must be chosen small enough such that the Newton step is a convex problem.

B.2 Optimization oracles as linear quadratic problems

Lemma B.1. Let f be a chain of τ computations φt. Let u = (u1; . . . ;uτ) ∈ R

∑τ
t=1 pt , x0 ∈ R

d0 , denote xt =
ft(x0, u) and E⊤

t = (0ptd0 , 0ptp1 , . . . , Iptpt , . . . , 0ptpτ) ∈ R
pt×(d0+

∑τ
t=1 pt) such that E⊤

t (x0;u) = ut for t ∈
{1, . . . , τ}.

19

1. If φt are differentiable, then

∇ft(x0, u) = ∇ft−1(x0, u)∇xt−1φt(xt−1, ut) + Et∇utφt(xt−1, ut) (26)

with ∇f0(x0, u) = E0, with E⊤
0 = (Id0d0 , 0d0p1 , . . . , . . . , 0d0pτ) ∈ R

d0×(d0+
∑τ
t=1 pt) such that E⊤

0 (x0;u) =
x0.

2. If φt are twice differentiable,

∇2ft(x0, u) =∇2ft−1(x0, u)[·, ·,∇xt−1φt(xt−1, ut)] (27)

+∇2
xt−1xt−1

φt(xt−1, ut)[∇ft−1(x0, u)
⊤,∇ft−1(x0, u)

⊤, ·]
+∇2

xt−1utφt(xt−1, ut)[∇ft−1(x0, u)
⊤, E⊤

t , ·]
+∇2

utxt−1
φt(xt−1, ut)[E

⊤
t ,∇ft−1(x0, u)

⊤, ·]
+∇2

ututφt(xt−1, ut)[E
⊤
t , E

⊤
t , ·]

with ∇2f0(x0, u) = 0.

Proof. It follows from the definition of the chain of computations and the notations used for tensors. Precisely we

have that

ft(x0, u) = φt(ft−1(x0, u), E
⊤
t (x0;u)),

hence the first result that can be written

∇ft(x0, u) = ∇ft−1(x0, u)∇xt−1φt(ft−1(x0, u), E
⊤
t (x0;u)) + Et∇utφt(ft−1(x0, u), E

⊤
t (x0;u)),

hence the second result using the tensor notations.

Proposition 3.1. Let f be a chain of τ computationsφt : R
dt−1×R

pt → R
dt , u = (u1; . . . ;uτ) and x0 ∈ R

d0 . Denote

ψ = fx0,τ and f(x0, u) = (x1; . . . ;xτ). Assume r to be decomposable as r(u) =
∑τ
t=1 rt(ut). Gradient (15),

Gauss-Newton (16) and Newton (17) oracles on h ◦ψ+ r are the solutions v∗ = (v∗1 ; . . . ; v
∗
τ) of problems of the form

min
v1,...,vτ∈R

p1×...×R
pτ

y0,...,yτ∈R
d0×...×R

dτ

τ∑

t=1

1

2
y⊤t Ptyt + p⊤t yt + y⊤t−1Rtvt +

1

2
v⊤t Qtvt + q⊤t vt +

κ

2
‖vt‖22 (18)

subject to yt = Atyt−1 +Btvt for t ∈ {1, . . . , τ},
y0 = 0,

where

At = ∇xt−1φt(xt−1, ut)
⊤, Bt = ∇utφt(xt−1, ut)

⊤,

pτ = ∇h(ψ(u)), pt = 0 for t 6= τ,

qt = ∇rt(ut),
1. for gradient oracles (15),

Pt = 0, Rt = 0, Qt = 0,

2. for Gauss-Newton oracles (16),

Pτ = ∇2h(ψ(u)), Pt = 0 for t 6= τ, Rt = 0, Qt = ∇2rt(ut),

,

3. for Newton oracles (17), defining

λτ = ∇h(ψ(u)), λt−1 = ∇xt−1φt(xt−1, ut)λt for t ∈ {1, . . . , τ},
we have

Pτ = ∇2h(ψ(u)), Pt−1 = ∇2
xt−1xt−1

φt(xt−1, ut)[·, ·, λt] for t ∈ {1, . . . , τ},
Rt = ∇2

xt−1utφt(xt−1, ut)[·, ·, λt], Qt = ∇2rt(ut) +∇2
ututφt(xt−1, ut)[·, ·, λt].

20

Proof. To reformulate the optimization oracle problems as quadratic problems with linear dynamics we reformulate

∇ψ(u)⊤v as a linear chain of compositions and ∇2ψ(u)[v, v,∇h(ψ(u))] as a quadratic on the linear trajectory defined

by the gradient and the parameters using Lemma B.1. Precisely, for u = (u1, . . . ;uτ) and v = (v1; . . . ; vτ), denoting

fx0(u) = (x1; . . . ;xτ) and ∇fx0(u)
⊤v = (y1; . . . ; yτ) with ∇fx0,t(u)

⊤v = yt, we have from (26)

yt = ∇xt−1φt(xt−1, ut)
⊤yt−1 +∇utφt(xt−1, ut)

⊤vt, for t ∈ {1, . . . , τ} (28)

y0 = 0,

and ∇ψ(u)⊤v = ∇fx0,τ (u)
⊤v = yτ . For the second order derivatives, from (27), we have for v = (v1; . . . ; vτ) and

λt ∈ R
dt ,

1

2
∇2fx0,t(u)[v, v, λt] =∇2fx0,t−1(u)[v, v,∇xt−1φt(xt−1, ut)λt]

+
1

2
∇2
xt−1xt−1

φt(xt−1, ut)[yt−1, yt−1, λt]

+∇2
xt−1utφt(xt−1, ut)[yt−1, vt, λt]

+
1

2
∇2
ututφt(xt−1, ut)[vt, vt, λt]

Hence we get

1

2
∇2ψ(u)[v, v,∇h(ψ(u))] =

τ∑

t=1

1

2
∇2
xt−1xt−1

φt(xt−1, ut)[yt−1, yt−1, λt] (29)

+∇2
xt−1utφt(xt−1, ut)[yt−1, vt, λt]

+
1

2
∇2
ututφt(xt−1, ut)[vt, vt, λt]

where yt are given in (28) and λt are defined by

λτ = ∇h(ψ(u)), λt−1 = ∇xt−1φt(xt−1, ut)λt for t ∈ {1, . . . , τ}.
The results follow by using the decomposability of r and inserting (28) and (29).

We present the resolution of the Newton step by dynamic programming in Algo. 5 whose implementation is

justified in Proposition B.2. Note that the gradient is computed during the first backward pass which can reduce

the computations by factorizing those computations. For the Gauss-Newton steps the same dynamic programming

approach can be applied, however it is less computationally expansive to use automatic differentiation procedures as

presented in Sec. 3.

Proposition B.2. Consider problem (18) and assume it is bounded below, then the cost-to-go functions defined for

t ∈ {0, . . . , τ} and xt ∈ R
δt as

costt(xt) = min
vt+1,...,vτ
yt,...,yτ

τ∑

t′=t

1

2
y⊤t′Pt′yt′ + p⊤t′ yt′ +

τ∑

t′=t+1

y⊤t′−1Rt′vt′ +
1

2
v⊤t′Qt′vt′ + q⊤t′ vt′ +

κ

2
‖vt′‖22 (30)

subject to yt′ = At′yt′−1 +Bt′vt′ for t′ ∈ {t+ 1, . . . , τ},
yt = xt,

where P0 = 0, p0 = 0, are quadratics of the form

costt(xt) =
1

2
x⊤t Ctxt + c⊤t xt + cste, (31)

where Ct, ct are defined recursively in line 20 Algo. 5 with Ct = C⊤
t and cste is a constant. The solution of (18) is

given by, starting from y0 = 0,

v∗t = Ktyt−1 + kt yt = Atyt−1 +Btv
∗
t ,

where Kt and kt are defined in line 21 of Algo. 5.

21

Proof. The cost-to-go functions satisfy the recursive equation (20) for t ∈ {1, . . . , τ}

costt−1(xt−1) =
1

2
x⊤t−1Pt−1xt−1 + p⊤t−1xt−1 + min

vt∈Rρt

{
x⊤t−1Rtvt +

1

2
v⊤t Qtvt + q⊤t vt +

κ

2
‖vt‖22

+ costt(Atxt−1 +Btvt)

}
,

starting from costτ (xτ) =
1
2x

⊤
τ Pτxτ + p⊤τ xτ so we get Cτ = Pτ and cτ = pτ . Assume that the cost-to-go function

costt has the form (31) for t ∈ {1, . . . , τ} then the recursive equation (20) reads

costt−1(xt−1) =
1

2
x⊤t−1(Pt−1 +A⊤

t CtAt)xt−1 + (A⊤
t ct + pt−1)

⊤xt−1

+ min
vt∈Rρt

{
v⊤t (R

⊤
t xt−1 + qt +B⊤

t (CtAtxt−1 + ct)) +
1

2
v⊤t (κ I+Qt +B⊤

t CtBt)vt

}
.

If κ I+Qt + B⊤
t CtBt 6� 0, then the minimization problem is unbounded below and so is the original objective. If

κ I+Qt + B⊤
t CtBt ≻ 0, then the minimization gives us costt−1 as a quadratic and the corresponding minimizer

v∗t (xt−1) for a given xt−1, i.e.

Ct−1 = Pt−1 +A⊤
t CtAt − (Rt +A⊤

t CtBt)(κ I+Qt +B⊤
t CtBt)

−1(R⊤
t +B⊤

t CtAt),

ct−1 = A⊤
t ct + pt−1 − (Rt +A⊤

t CtBt)(κ I +Qt +B⊤
t CtBt)

−1(qt +B⊤
t ct),

v∗t (xt−1) = −(κ I+Qt +B⊤
t CtBt)

−1((R⊤
t +B⊤

t CtAt)xt−1 + qt +B⊤
t ct).

The solution of (18) is given by computing cost0(0) which amounts to compute, starting from y0 = 0,

v∗t = argmin
v∈Rρt

{
1

2
v⊤Qtv + q⊤t v + y⊤t−1Rtv + costt+1(Atyt−1 +Btv)

}
= v∗t (xt−1),

yt = Atyt−1 +Btv
∗
t .

Finally we present the derivation of a gradient step, i.e., gradient back-propagation, as a dynamic programming

procedure, which gives the forward-backward algorithm presented in Sec. 3 by taking r = 0, κ = −1.

Proposition B.3. Consider the gradient step (15) as formulated in (18) with κ = 1/γ. The cost-to-go functions

defined as in (30) are linear of the form

costt(xt) = λ⊤t xt + cste, (32)

where

λτ = ∇h(ψ(u))
λt−1 = ∇xt−1φt(xt−1, ut)λt for t ∈ {1, . . . , τ}

and the solution of the step is given by

v∗t = −γ(∇r(ut) +∇utφt(xt−1, ut)λt).

Proof. The cost-to-go function defined in (30) for a gradient step reads for t = τ , costτ (xτ) = p⊤τ xτ , so we get

Eq. (32) for t = τ with λτ = ∇h(ψ(u)). Assume that the cost-to-go function has the form (32) for t ∈ {1, . . . , τ},

then the recursive equation (20) reads

costt−1(xt−1) = min
vt∈Rρt

{
v⊤t qt + λ⊤t (Atxt−1 +Btvt) +

1

2γ
‖vt‖22

}

So we get that costt−1 is a linear function defined by λt−1 = A⊤
t λt and that the optimal corresponding parameter is

independent of xt−1 and reads

v∗t = −γ(qt +B⊤
t λt).

Plugging the values of At, Bt, qt into the solutions give the results.

22

Algorithm 5 Newton oracle by dynamic programming

1: Inputs: Chain of computations f defined by φt, objective h, regularization r, regularization for the step κ, current

weights u = (u1; . . . ;uτ)
2: Forward pass:

3: for t = 1, . . . , τ do

4: Compute xt = φt(xt−1, ut)
5: Store At = ∇xt−1φt(xt−1, ut)

⊤, Bt = ∇utφt(xt−1, ut)
⊤

and ∇2
ututφt(xt−1, ut), ∇2

utxt−1
φt(xt−1, ut), ∇2

xt−1xt−1
φt(xt−1, ut)

6: end for

7: 1st Backward pass:

8: Initialize λτ = ∇h(xτ), Pτ = ∇2h(xτ), pτ = ∇h(xτ)
9: for t = τ, . . . , 1 do

10: Compute

Pt−1 = ∇2
xt−1xt−1

φt(xt−1, ut)[·, ·, λt] pt−1 = 0

Qt = ∇2
ututφt(xt−1, ut)[·, ·, λt] +∇2rt(ut) qt = ∇rt(ut)

Rt = ∇2
xt−1utφt(xt−1, ut)[·, ·, λt]

11: Compute λt−1 = ∇xt−1φt(xt−1, ut)λt
12: end for

13: 2nd Backward pass:

14: Initialize Cτ = Pτ , cτ = pτ , feasible = True

15: for t = τ, . . . , 1 do

16: if κ I+Qt +B⊤
t CtBt 6≻ 0 then

17: feasible = False

18: break

19: end if

20: Compute

Ct−1 = Pt−1 +A⊤
t CtAt − (Rt +A⊤

t CtBt)(κ I+Qt +B⊤
t CtBt)

−1(R⊤
t +B⊤

t CtAt)

ct−1 = A⊤
t ct + pt−1 − (Rt +A⊤

t CtBt)(κ I+Qt + B⊤
t CtBt)

−1(qt +B⊤
t ct)

21: Store

Kt = −(κ I+Qt +B⊤
t CtBt)

−1(R⊤
t +B⊤

t CtAt) kt = −(κ I+Qt +B⊤
t CtBt)

−1(qt +B⊤
t ct)

22: end for

23: if feasible = False then

24: Re-do 2nd backward pass with κ := 2 · κ
25: end if

26: Rollout:

27: Initialize y0 = 0
28: for t = 1, . . . , τ do

29:

v∗t = Ktyt−1 + kt, yt = Atyt−1 +Btvt

30: end for

31: Output: (v∗1 ; . . . ; v
∗
τ)

23

B.3 Detailed complexities of forward and backward passes

Definition B.4 (Sparsity of the operations). We define the sparsity sβ of a bilinear operation β as the number of

non-zero elements in its corresponding tensor.

We define the sparsity sα of a function α as the sparsity of its gradient, i.e., the maximal number of its non-zero

elements for any inputs.

The sparsity of a bilinear operation amounts to the number of multiplications needed to compute B[x, y, z],
B[·, y, z], B[x, ·, z] or B[x, y, ·], which gives us the sparsity of the two bilinear operations studied in this paper.

Fact B.5. For a matrix-product as in (8), we have sβ = mδ̃δ. For a convolution as in (9), we have sβ = mnpnfsf .

We considered ΠkZt−1 as the extraction of coordinates and not a matrix-vector product. Note that the sparsity

of the bilinear operation defines also the number of multiplications needed to compute gradient vector products like

∇xt−1βt(xt−1, ut)λt+1 or ∇utβt(xt−1, ut)λt+1 for λt+1 ∈ R
δt .

The sparsity of a function f ∈ R
d → R

n naturally gives the number of multiplications needed to compute gradient-

vector products ∇f(x)λ for any x ∈ R
d, λ ∈ R

n. For element-wise activation functions as in (10), we have sα = mδ,

where we consider the input of the activation function to be z = Vec(Z) for Z ∈ R
m×δ . Note that the sparsity of an

activation function as defined here does not directly give the cost of computing it, neither its gradient.

Forward-backward detailed complexity. We present in the next proposition the cost of computing only the back-

ward pass to compute the whole gradient. The cost of computing the function and the gradients of the layers in the

forward pass can be further detailed using the sparsity of the bilinear operation and the cost of computing the activation

function and its derivatives. The detailed complexities given in Sec. 3 follow.

Proposition B.6. Consider a chain f of τ layers as defined in Def. 2.1 whose layers φt are defined by at, bt as in (7).

Then the cost of the backward pass defined in Algo. 2 is of the order of

O
(

τ∑

t=1

sat + 2sβt + sβut + sβxt

)

elementary operations.

Proof. If the chain of layers has the form (7), the gradient vector products during the backward pass read

∇xt−1φt(xt−1, ut)λt+1 = ∇xt−1bt(xt−1, ut)∇at(ωt)λt+1 = (Bt[·, ut, ·] +∇βzt (xt−1))∇at(ωt)λt+1,

∇utφt(xt−1, ut)λt+1 = ∇utbt(xt−1, ut)∇at(ωt)λt+1 = (Bt[xt−1, ·, ·] +∇βut (ut))∇at(ωt)λt+1,

where ωt = bt(xt−1, ut). The definitions of the sparsity of bilinear or general operations give the result by looking at

each operation starting from the right.

B.4 Gauss-Newton by axutomatic differentiation

Derivatives of the gradient vector product can then be computed themselves by back-propagation as recalled in the

following lemma.

Lemma B.7 ([21, Lemma 3.4]). Consider a differentiable chain of composition f and an input x0 ∈ R
d0 such

that ψ = fx0,τ : R

∑τ
t=1 pt → R

dτ . Given a variable u ∈ R

∑τ
t=1 pt and a decomposable differentiable function

g : R

∑τ
t=1 pt → R such that g(u) =

∑τ
t=1 gt(ut) for u = (u1; . . . ;uτ), computing the derivative of µ → g(∇ψ(u)µ)

requires two calls to an automatic-differentiation procedure.

Proposition 3.3. Consider the Gauss-Newton oracle (16) on u = (u1; . . . ;uτ) for a convex objective h, a convex

decomposable regularization r(u) =
∑τ

t=1 rt(ut) and a differentiable chain of computations f with outputψ = fx0,τ

on some input x0. We have that

24

1. the Gauss-Newton oracle amounts to solving

min
µ∈Rdτ

(
q
ψ(u)
h

)⋆
(µ) +

(
qur + κ‖ · ‖22/2

)⋆
(−∇ψ(u)µ), (22)

where for a function f we denote by f⋆ its convex conjugate,

2. the Gauss-Newton oracle is v∗ = ∇
(
qur + κ‖ · ‖22/2

)⋆
(−∇ψ(u)µ∗) where µ∗ is the solution of (22),

3. the dual problem (22) can be solved by 2dτ + 1 calls to an automatic differentiation procedure.

Proof. The first and second claims follow from standard duality computations applied to (16), they require convexity

of h and r. The third claim comes from the fact that (22) is a quadratic convex problem that can be solved in at most

dτ iterations of a conjugate gradient descent. Each iteration requires to compute the gradient of µ → (qur + κ‖ ·
‖22/2)⋆(−∇ψ(u)µ) which requires two calls to an automatic differentiation procedure by Lemma B.7 and using that

r∗ is also decomposable. A last call to an automatic differentiation procedure is needed to compute ∇ψ(u)µ∗. The

costs of computing ∇(q
ψ(u)
h)⋆(µ) for µ ∈ R

dτ and ∇(qur + κ‖ · ‖22/2)⋆(u) for u ∈ R

∑τ
t=1 pt are ignored since they do

not involve a chain of compositions and are assumed to be easily accessible.

C Smoothness computations

C.1 Elementary operations

Univariate functions.

Lemma C.1. Let αi ∈ Cℓi,Li for i = 1, . . . , n. Denote ℓ = (ℓi)
n
i=1, L = (Li)

n
i=1.

1. Assume αi : R
di → R

mi , then

a :

{
R

∑n
i=1 di → R

∑n
i=1mi

x = (x1; . . . ;xn) → (α1(x1); . . . ;αn(xn))

is ‖ℓ‖2-Lipschitz continuous and ‖L‖∞-smooth.

2. Assume αi : R
di → R

m, then

a :

{
R

∑n
i=1 di → R

m

x = (x1; . . . ;xn) →∑n
i=1 αi(xi)

is ‖ℓ‖2-Lipschitz continuous and ‖L‖∞-smooth.

3. Assume ai : R
d → R

mi , then

a :

{
R
d → R

∑n
i=1mi

x → (α1(x); . . . ;αn(x))

is ‖ℓ‖2-Lipschitz continuous and ‖L‖2-smooth.

4. Assume αi : R
d → R

m, then

a :

{
R
d → R

m

x →∑n
i=1 αi(x)

is ‖ℓ‖1-Lipschitz continuous and ‖L‖1-smooth.

Proof. 1. We have for x = (x1; . . . ;xn) ∈ R

∑n
i=1 di and z = (z1; . . . ; zn) ∈ R

∑n
i=1mi ,

‖∇a(x)z‖2 = ‖
n∑

i=1

∇αi(xi)zi‖2 ≤
n∑

i=1

‖zi‖2‖∇αi(xi)‖2,2 ≤ ‖z‖2

√√√√
n∑

i=1

ℓ2i ,

25

which gives an upper bound on the Lipschitz-continuity of a. For x = (x1; . . . ;xn), y = (y1; . . . ; yn) ∈
R

∑n
i=1 di , we have

‖(∇a(x)−∇a(y))z‖2 ≤
n∑

i=1

‖zi‖2‖∇αi(xi)−∇αi(yi)‖2,2 ≤
n∑

i=1

‖zi‖2‖xi−yi‖2Li ≤ ‖z‖2‖x−y‖2 max
i∈{1,...,n}

Li.

Hence ‖∇a(x)−∇a(y)‖2,2 ≤ ‖x− y‖2maxi∈{1,...,n} Li which gives an upper bound on the smoothness of a.

2. We have for x = (x1; . . . ;xn) ∈ R

∑n
i=1 di and z ∈ R

m,

‖∇a(x)z‖22 =
n∑

i=1

‖∇αi(xi)z‖22 ≤
n∑

i=1

ℓ2i ‖z‖22,

which gives the Lipschitz-continuity parameter. Similarly we have for x = (x1; . . . ;xn), y = (y1; . . . ; yn) ∈
R

∑n
i=1 di ,

‖(∇a(x)−∇a(y))z‖22 =

n∑

i=1

‖(∇αi(xi)−∇αi(yi))z‖22 ≤
n∑

i=1

L2
i ‖xi−yi‖22‖z‖22 ≤ max

i∈{1,...,n}
L2
i ‖x−y‖22‖z‖22,

which gives the smoothness constant of a.

3. The bound on the Lipschitz-continuity parameter follows from the same argument as in 1. For the smoothness

parameter, we have for x, y ∈ R
d and z = (z1; . . . ; zn) ∈ R

∑n
i=1mi ,

‖(∇a(x)−∇a(y))z‖2 ≤
n∑

i=1

‖zi‖2‖∇αi(x)−∇αi(y)‖2,2 ≤
n∑

i=1

‖zi‖2‖x−y‖2Li ≤ ‖z‖2‖x−y‖2

√√√√
n∑

i=1

L2
i .

Hence the result as in 1.

4. Clear by linearity of the gradient and triangular inequality.

Bilinear functions.

Lemma C.2. Consider s× t bilinear functions βi+(j−1)s : R
di × R

pj → R
mi+(j−1)s for i ∈ {1, . . . s}, j ∈ {1, . . . t}

then

β :

{
R

∑s
i=1 di × R

∑t
j=1 pj → R

∑st
k=1mk

(x, u) → (β1(x1, u1); . . . ;βs(xs, u1);βs+1(x1, u2); . . . ;βst(xs, ut))

is Lβ = maxk∈{1,...,st} Lβk smooth.

Proof. By Lemma A.7, we have that Lβ = supx,u ‖β(x, u)‖2/‖x‖2‖u‖2. Now

‖β(x, u)‖22 =
s∑

i=1

t∑

j=1

‖βi+s(j−1)(xi, uj)‖22

≤
s∑

i=1

t∑

j=1

Lβi+s(j−1)
‖xi‖22‖uj‖22 ≤ max

k∈{1,...,st}
Lβk‖x‖22‖u‖22.

C.2 Compositions

The smoothness properties of the functions can be derived by bounding appropriately their first and second order

information. Even if e.g. the functions are not twice differentiable, the same results would apply by decomposing

carefully the terms, we directly use the second order information as it directly gives what we are interested in.

26

For a smooth function, an upper bound on the Lipschitz continuity of the function on a bounded set can be estimated

even if the function is not Lipschitz continuous. Similarly a bound on the function a bounded set can be refined as

defined below.

Fact C.3. For a function f ∈ Cmf ,ℓf ,Lf and R > 0. Denoting BR = {x ∈ dom f : ‖x‖2 ≤ R}, we have that

ℓBRf ≤ ℓf (R) := min{ℓf , ‖∇f(0)‖2,2 +RLf},
mBR
f ≤ mf (R) := min{mf , ‖f(0)‖2 +Rℓf(R)}

For a sequence of compositions we have the following result.

Lemma C.4. Consider

a = ak ◦ . . . ◦ a1
with aj ∈ Cmaj ,ℓaj ,Laj for j ∈ {1, . . . , k} and a : R

d → R
n. Denote BR = {x ∈ R

d : ‖x‖2 ≤ R}, and for

j ∈ {1, . . . , k},

mj = maj (mt−1),

ℓj = ℓj−1ℓaj(mj−1),

Lj = Laj ℓ
2
j−1 + Lj−1ℓaj (mj−1),

with m0 = R, ℓ0 = 1, L0 = 0. We have

mBR
a ≤ mτ , ℓBRa ≤ ℓτ =

k∏

j=1

ℓaj (mj−1), LBRa ≤ Lτ =

k∑

j=1

Laj

(
j−1∏

i=1

ℓai(mi−1)

)2

k∏

i=j+1

ℓai(mi−1)

 .

Proof. The bound on the output is a direct iterative application of Fact C.3. We have for x ∈ R
d,

∇a(x) =
k∏

j=1

gj(x), where gj(x) = ∇aj(aj−1 ◦ . . . ◦ a1(x)) for j ∈ {1, . . . , k}.

We have

sup
x∈Rd:‖x‖2≤R

‖gj(x)‖2,2 ≤ min{ℓaj , ‖∇aj(0)‖2,2 + Lajm
BR
aj−1◦...◦a1}.

Therefore

ℓBRa ≤
k∏

j=1

ℓaj(mj−1).

We have for x ∈ R
d,

∇2a(x) =

k∑

j=1

∇2aj(x)

(
j−1∏

i=1

gi(x)

)⊤

,

(
j−1∏

i=1

gi(x)

)⊤

,

k∏

i=j+1

gi(x)

 .

Therefore

LBRa ≤
k∑

j=1

Laj

(
j−1∏

i=1

ℓai(mi−1)

)2

k∏

i=j+1

ℓai(mi−1)

 .

Lemma C.4 can be used to estimate the smoothness of a chain of computations with respect to its input for fixed

parameters.

Corollary C.5. Consider a chain f of τ computations φt ∈ Cmφt ,ℓφt ,Lφt with given parameters u = (u1; . . . ;uτ).

27

Denote φt,ut = φt(·, ut). Denote BR = {x ∈ R
d : ‖x‖2 ≤ R}, and for j ∈ {1, . . . , k},

mj = mφt(·,ut)(mt−1),

ℓj = ℓj−1ℓφj(·,uj)(mj−1),

Lj = Lφj(·,uj)ℓ
2
j−1 + Lj−1ℓφj(·,uj)(mj−1),

with m0 = R, ℓ0 = 1, L0 = 0. We have

mBR
fτ,u

≤ mτ , ℓBRfτ,u ≤ ℓτ =

k∏

j=1

ℓφj(·,uj)(mj−1),

LBRfτ,u ≤ Lτ =

k∑

j=1

Lφj(·,uj)

(
j−1∏

i=1

ℓφi(·,ui)(mi−1)

)2

k∏

i=j+1

ℓφi(·,ui)(mi−1)

 .

C.3 Chains of computations

We have the following result for smooth and Lipschitz continuous chains of computations.

Lemma 4.3. Consider a chain f of τ computations φt ∈ Cℓφt ,Lφt initialized at some x0 ∈ R
d0 .

(i) We have ℓfτ,x0 ≤ ℓτ , where

ℓ0 = 0, ℓt = ℓφt + ℓt−1ℓφt , for t ∈ {1, . . . , τ}.

(ii) We have Lfτ,x0 ≤ Lτ , where

L0 = 0, Lt = Lt−1ℓφt + Lφt(1 + ℓt−1)
2, for t ∈ {1, . . . , τ}.

Proof. The first claim follows directly from Lemma B.1. For the second claim we have that (27) gives

Lft ≤ Lft−1ℓφt + Lφtℓ
2
ft−1

+ 2Lφtℓft−1 + Lφt ,

which simplifies to give the result.

For a bivariate function φ(x, u) : R
d × R

p → R
η , we define

ℓuφ = sup
u∈Rp,x∈Rd

ℓφ(x,u+·), ℓxφ = sup
u∈Rp,x∈Rd

ℓφ(x+·,u).

Moreover if the function is continuously differentiable, we define

Luuφ = sup
u∈Rp,x∈Rd

ℓ∇uφ(x,u+·), Lxuφ = sup
u∈Rp,x∈Rd

ℓ∇uφ(x+·,u),

Luxφ = sup
u∈Rp,x∈Rd

ℓ∇xφ(x,u+·), Lxxφ = sup
u∈Rp,x∈Rd

ℓ∇xφ(x+·,u).

For a bivariate continuosuly differentiable function φ(x, u) : R
p × R

d → R
η , we have that

ℓuφ = sup
u∈Rp,x∈Rd

‖∇uφ(x, u)‖2,2, ℓxφ = sup
u∈Rp,x∈Rd

‖∇xφ(x, u)‖2,2.

If the function φ is twice continuously differentiable, we have that

Luuφ = sup
u∈Rp,x∈Rd

‖∇2
uuφ(x, u)‖2,2,2, Lxuφ = sup

u∈Rp,x∈Rd

‖∇2
xuφ(x, u)‖2,2,2,

Luxφ = sup
u∈Rp,x∈Rd

‖∇2
uxφ(x, u)‖2,2,2, Lxxφ = sup

u∈Rp,x∈Rd

‖∇2
uuφ(x, u)‖2,2,2.

Finally for Rx ≥ 0, Ru ≥ 0, we have

sup
(x,u)∈BRx×BRu

‖∇uφ(x, u)‖2,2 ≤ ℓuφ(Rx, Ru) := min{ℓuφ, ‖∇uφ(0, 0)‖2,2 + Luuφ Ru + Lxuφ Rx} (33)

sup
(x,u)∈BRx×BRu

‖∇xφ(x, u)‖2,2 ≤ ℓxφ(Rx, Ru) := min{ℓxφ, ‖∇xφ(0, 0)‖2,2 + Lxxφ Ru + Luxφ Rx}.

28

We then have the following.

Lemma C.6. Let f be a chain of τ computations φt ∈ Cmφt ,ℓuφt ,ℓxφt ,Luuφt ,Lxuφt ,Lxxφt , initialized at some x0 such that

‖x0‖2 ≤ R0. Let C =
⊗τ

t=1BRt(R
pt) = {u = (u1; . . . ;uτ) ∈ R

∑τ
t=1 pt : ut ∈ R

pt , ‖ut‖2 ≤ Rt}. Define for

t ∈ {1, . . . , τ},

mt = min{mφt , ‖φt(0, 0)‖2 + ℓuφt(mt−1, Rt)Rt + ℓxφt(mt−1, Rt)mt−1},
ℓt = ℓuφt(mt−1, Rt) + ℓt−1ℓ

x
φt(mt−1, Rt),

Lt = Lt−1ℓ
x
φt(mt−1, Rt) + Lxxφt ℓ

2
t−1 + (Lxuφt + Luxφt)ℓt−1 + Luuφt .

with m0 = R0, ℓ0 = 0, L0 = 0. We have that

mC
fτ ,x0

≤ mτ , ℓCfτ ,x0
≤ ℓτ , LCfτ ,x0

≤ Lτ .

Proof. The result directly follows from Lemma B.1, with the Lipschitz-continuity constants derived in (33).

Proof. The proof relies on Lemma C.6, where the smoothness of the inner compositions are computed according to

Lemma C.4. Namely, we have

ℓuφt(Rx, Ru) ≤ ℓat(mbt(Rx, Ru))ℓ
u
bt(Rx, Ru), ℓxφt(Rx, Ru) ≤ ℓat(mbt(Rx, Ru))ℓ

x
bt(Rx, Ru),

with

ℓubt(Rx, Ru) = LbtRx + lubt , ℓxbt(Rx, Ru) = LbtRu + lxbt ,

mbt(Rx, Ru) = ℓubt(Rx, Ru)Ru + ℓxbt(Rx, Ru)Rx + ‖bt(0, 0)‖2,
and ℓat can be computed as in Lemma. C.4. On the other hand, denotingLxxφt (Rx, Ru) = sup(x,u)∈BRx×BRu ‖∇

2
xxφt(x, u)‖2,2,2

(and similarly for Luuφt , L
ux
φt
, Lxuφt), we have

Lxxφt (Rx, Ru) ≤ Lat(mbt(Rx, Ru))ℓ
x
bt(Rx, Ru)

2

Luuφt (Rx, Ru) ≤ Lat(mbt(Rx, Ru))ℓ
u
bt(Rx, Ru)

2

Lxu(Rx, Ru) = Lux(Rx, Ru) = Lbtℓat(mbt(Rx, Ru)) + Lat(mbt(Rx, Ru))ℓ
u
bt(Rx, Ru)ℓ

x
bt(Rx, Ru),

where Lat(mbt(Rx, Ru)) is computed by Lemma C.4.

D Smoothness of objectives and layers

D.1 Supervised objectives

For supervised objectives h : R
ndτ → R that reads for ŷ = (ŷ1; . . . ; ŷn) with ŷi ∈ R

dτ ,

h(ŷ) =
1

n

n∑

i=1

hi(ŷi),

we only need to compute the smoothness of hi(ŷi) (see Lemma C.1) which is usually defined by a loss hi(ŷi) =
L(ŷi, yi). We are interested in this section in the smoothness Lh(C) and Lipschitz-continuity ℓh(C) of the objective

h on a set C. We omit the dependency on the set C if Lipschitz-continuity or smoothness properties of the functions

are defined on its whole domain.

Square loss. Assume that the labels belong to a compact set Y . The square loss is defined by h(ŷ) = Lsq(ŷ, y) =
(ŷ − y)2/2. We have then

ℓsq(C) = ρC + ρY , Lsq = 1.

where ρC = maxx∈C ‖x‖2 and ρY = maxy∈Y ‖y‖2.

29

Logistic loss. Consider y ∈ {0, 1}q, the logistic loss is defined as h(ŷ) = Llog(ŷ, y) = −y⊤ŷ+log
(∑q

j=1 exp(ŷj)
)
.

We have then, denoting exp(y) = (exp(yi))i=1,...q ,

∇h(ŷ) = −y + exp(ŷ)

exp(ŷ)⊤ 1q
, ∇2h(ŷ) =

diag(exp(ŷ))

exp(ŷ)⊤ 1q
− exp(ŷ) exp(ŷ)⊤

(exp(ŷ)⊤ 1q)2
.

Therefore using that y ∈ {0, 1}q and that ‖ exp(ŷ)‖2 ≤ ‖ exp(ŷ)‖1,

ℓlog ≤ 2, Llog ≤ 2.

D.2 Unsupervised objectives

For the k-means and spectral clustering objectives, we consider the outputs of the chains of the computations to form

a matrix F (x̄, u) = (f(x̄(1), u), . . . , f(x̄(n), u)) ∈ R
q×n where q = dτ and n to be the number of samples. The

objectives are then h : R
q×n → R and we denote by Z ∈ R

q×n their variables. The overall objective is h(F (x̄, u)) for

x̄ = (x̄(1); . . . ; x̄(n)). We denote k the number of classes that the unsupervised objective aims to cluster and

Y = {Y = (y1, . . . , yn)
⊤ ∈ {0, 1}n×k s.t. Y 1k = 1n}.

K-means clustering. The K-means clustering objective reads

h(Z) = min
Y ∈Y

C∈R
q×k

n∑

i=1

‖Cyi − zi‖22.

forZ = (z1, . . . , zn) ∈ R
q×n. Minimization inC can be performed analytically such that the problem can be rewritten

h(Z) = min
N∈N

Tr((In−N)Z⊤Z),

where N = {N = Y (Y ⊤Y)−1Y ⊤ ∈ R
n×n for Y ∈ Y, Y ⊤Y ≻ 0} is the set of normalized equivalence

matrices.

Spectral clustering. A natural relaxation of K-means is spectral clustering, that considers

P = {P ∈ R
n×n s.t. P � 0, P 2 = P, Rank(P) = k} ⊃ N

instead of the set of normalized equivalence matrices. The solution of

h(Z) = min
P∈P

Tr((In−P)Z⊤Z)

is then given by finding the k largest eigenvectors of the Gram matrix Z⊤Z . Formally the objective is written

h(Z) =

n∑

i=n−k+1

σ2
i (Z),

where for a matrix A, σ1(A) ≥ . . . ,≥ σn(A) are the singular values of A in decreasing order. The objective h is then

a spectral function of the matrix Z .

Convex clustering. The convex clustering objective reads for ŷ = (ŷ1; . . . ; ŷn) ∈ R
qn

h(ŷ) = min
y(1),...,y(n)∈Rq

n∑

i=1

1

2
‖y(i) − ŷ(i)‖22 +

∑

i<j

‖y(i) − y(j)‖2, (34)

= min
y∈Rqn

1

2
‖y − ŷ‖22 + ‖Dy‖G

where y = (y1; . . . ; yn) ∈ R
qn and D ∈ R

qn(n−1)/2×qn maps y to the concatenation of all possible yi − yj for i < j
and ‖ · ‖G is a group norm, i.e., ‖x‖G =

∑
g∈G ‖xg‖2 where G is a partition of {1, . . . , N} for x ∈ R

N and xg ∈ R
sg

30

is the vector corresponding to the group g of size sg . Here the groups are defined by all possible differences for i < j
in Eq. (34).

Proposition D.1. The convex-clustering objective

h(ŷ) = min
y∈Rqn

1

2
‖y − ŷ‖22 + ‖Dy‖G

is convex, Lipschitz-continuous and smooth with parameters

ℓcvx-cluster ≤
n(n− 1)

2
, Lcvx-cluster ≤ 1.

Proof. The convex clustering objective h is the Moreau envelope of the function Ω : y → ‖Dy‖G. It is therefore

convex and 1-smooth, i.e., Lh = 1. Moreover, the Moreau envelope can be rewritten

h(ŷ) = sup
z∈dom(Ω∗)

ŷ⊤z − Ω∗(z)− 1

2
‖z‖22,

where Ω∗ is the convex conjugate of Ω. Therefore ∇h(ŷ) ∈ dom(Ω∗). We have that

Ω∗(z) = sup
y∈Rq

z⊤y − ‖Dy‖G ≥ sup
y∈Rq

z⊤y − n(n− 1)

2
‖y‖2,

such that the supremum is finite only if ‖z‖2 > n(n−1)
2 . Therefore

∇h(ŷ) ∈ dom(Ω∗) ⊂ B2

(
0,
n(n− 1)

2

)
,

where B2(0,
n(n−1)

2) is the Euclidean ball centered at 0 with radius
n(n−1)

2 .

D.3 Bilinear and linear layers

Vectorized matrix-products as a bilinear operation. Given two matrices A ∈ R
n×d and B ∈ R

d×p, the matrix

product AB is defined by a tensor M = ((Id⊗e(qmodn)+1)(f
⊤
⌈q/n⌉ ⊗ Id))q=1,...,np ∈ R

nd×dp×np where ei is the ith

canonical vector in R
n and fj is the jth canonical vector in R

p such that

Vec(AB) = M[Vec(A),Vec(B), ·]. (35)

This can be checked as for q = i+ n(j − 1) ∈ {1, . . . , np}, with i ∈ {1, . . . n}, j ∈ {1, . . . , p},

Vec(AB)q = (AB)ij = Vec(e⊤i A)
⊤ Vec(Bfj)

= Vec(A)⊤(Id⊗ei)(f⊤
j ⊗ Id)Vec(B)

= (M[Vec(A),Vec(B), ·])q .

Convolutional layer detailed. For completeness we detail the convolution for an image. For a convolutional layer,

the input is an image I ∈ R
C×H×B with C channels each composed of a matrix of height H and breadth B the

weights are given by C̃ filters F1, . . . ,FC̃ ∈ R
C×K×K of patch size K and the biases are given by b ∈ R

C̃ . The

convolution of the image by a filter Fc̃, with c̃ ∈ {1, . . . , C̃} with additional bias bc̃, is given at point i, j as

Cc̃,i,j =
C∑

c=1

〈Fc̃[c, ·, ·], E⊤
row,iI[c, ·, ·]Ecol,j〉+ bc̃,

where Fc̃[c, ·, ·] is the filter of size K ×K in channel c of filter Fc̃ and I[c, ·, ·] is the image in channel c.
The matrices Erow,i ∈ R

H×K and Ecol,j ∈ R
B×K extract rows and columns of I[c, ·, ·]. They are bands with

a diagonal of K ones centered at positions i or j. If the pattern of the patch is given as P = 1K 1⊤
K , the extraction

matrices read Erow,i = ei ⊗ 1⊤
K ∈ R

H×K , ei ∈ R
H for i ∈ {1, . . .H}, similarly Ecol,j = ej ⊗ 1⊤

K ∈ R
W×K . They

satisfy E⊤
row,iErow,i = IK2 and Erow,iE

⊤
row,i ∈ R

H×H is a projector. Similarly facts apply for Ecol,j except that one

31

replaces H by B. The output of the convolution with all filters is then a tensor C ∈ R
H̃×B̃×C̃ where H̃ and B̃ depend

on the choices of the stride chosen in the convolution.

Smoothness of fully-connected layer. For a fully connected layer, the bilinear function β(x, u) → U⊤X for u =
Vec(U), x = Vec(X) is clearly 1-smooth (because ‖U⊤X‖F ≤ ‖U‖F‖X‖F). The linear part βu is clearly 1-

Lipschitz continuous. So we get

Lfull = 1, lufull = 1.

Smoothness of convolutional layer. For a convolution, by Lemma C.2, we only need to compute the smoothness of

the convolution of an image with one filter. This is done by the following Lemma.

Lemma D.2. Consider p subsets Sk of {1, . . . , n} of size |Sk| = d. Denote Πk ∈ {0, 1}d×n the linear form that

extracts the Sk coordinates of a vector of size n, i.e., Πkz = zSk for z ∈ R
n. The convolution of z ∈ R

n by w ∈ R
d

through the p subsets Sk defined as

β(z, w) = (w⊤Π1z; . . . ;w
⊤Πpz)

is Lβ =
√
maxi=1,...,n |Vi|-smooth where Vi = {Sj : i ∈ Sj}.

Proof. We have

‖β(z, w)‖22 =

p∑

j=1

(w⊤Πjz)
2 ≤

p∑

j=1

‖w‖22‖zSj‖22

= ‖w‖22
d∑

i=1

∑

Sj∈Vi
z2i ≤ ‖w‖22 max

i=1,...,n
|Vi|‖z‖22.

Concretely, for a convolution such that at most p patches contain a coordinate i the convolution is
√
p-smooth. If

the patches do not overlap then the convolution is 1-smooth. If the convolution has a stride of 1 and the operation is

normalized by the size of the filters then the convolution has again a smoothness constant of 1. Generally for a 2d

convolution with a kernel of size k × k and a stride of s, we have maxi=1,...,n |Vi| =
⌈
k
s

⌉2
and so

Lconv =

⌈
k

s

⌉
, lconv =

⌈
k

s

⌉
.

Batch of inputs. For batch of inputs, the smoothness constants of the non-linear and bilinear parts do not change by

Lemmas C.1 and C.2. The Lipschitz-constant of the linear part of the biaffine function is modified using Lemma C.1

item 3. Namely for a batch of size m, the fully connected layers or the convolutional layers have a linear part whose

Lipschitz constant is given by lb =
√
m.

D.4 Activation functions

The Lipschitz and smoothness constants of an element-wise activation αt function are defined by the Lipschitz and

smoothness constant of the scalar function ᾱt from which it is defined. Denote by f(x) := log(1 + exp(x)), we have

f ′(x) = (1 + exp(−x))−1, f ′′(x) = (2 + 2 cosh(x))−1, f ′′′(x) = − sinh(x)/(2(1 + cosh(x)2)).

Soft-plus. For α defined by element-wise application of ᾱ(x) = f(x), we get

ℓsoftplus = 1, Lsoftplus = 1/4.

Sigmoid. For α defined by the element-wise application of ᾱ(x) = f ′(x), we get

ℓsig = 1/4, Lsig = 1/10.

32

ReLU. For α defined by the element-wise application of ᾱ(x) = max(0, x), we get

ℓReLu = 1, LReLu not defined,

since the function is not continuously differentiable.

Soft-max layer. A soft-max layer takes as input x ∈ R
d and outputs f(x) = exp(x)/(exp(x)⊤ 1d) where exp(x) is

the element-wise application of exp. Its gradient is given by

∇f(x) = diag(exp(ŷ))

exp(ŷ)⊤ 1q
− exp(ŷ) exp(ŷ)⊤

(exp(ŷ)⊤ 1q)2
.

Its second-order information can be computed as for the batch-normalization layer, we get then

ℓsoftmax = 2, Lsoftmax = 4.

D.5 Normalization layers

Proposition D.3. The batch normalization operation νbatch : R
δm → R

δm defined as in (11) is

(i) bounded by mbatch = δm,

(ii) Lipschitz-continuous with a constant ℓbatch = 2ǫ−1/2,

(iii) smooth with a constant Lbatch = 2δm−1/2ǫ−1.

Proof. The batch-normalization layer as defined in (11) is the composition ν = ν2 ◦ ν1 of a centering step

ν1(x) = Vec

(
Z − Z

1m 1⊤
m

m

)

and a normalization step

ν2(x̃) = Vec

(
diag

((
1

m
diag(Z̃Z̃⊤) + ǫ 1δ

)−1/2
)
Z̃

)
,

where here and thereafter Z, Z̃ ∈ R
δ×m, x = Vec(Z), x̃ = Vec(Z̃).

The centering step is an orthonormal projection, i.e., ν1(x) = Vec(ZΠm) = (Πm⊗Iδ)xwhere Πm = Im−1m 1
⊤

m

m
is an orthonormal projector and so is (Πm ⊗ Im). Therefore we have ℓν1 ≤ 1 and Lν1 = 0. For the normalizations

step denote for x ∈ R
m, and x̄ = (x1; . . . ;xδ) ∈ R

mδ with xi ∈ R
m,

f(x) =

√
1

m
‖x‖22 + ǫ, g(x) =

(
xi
f(x)

)

i=1,...,m

, ḡ(x̄) = (g(x1); . . . ; g(xδ)) ∈ R
mδ,

such that ν2(x̃) = Tm,dḡ(Td,mx̃), where Td,m is the linear operator such that Td,mVec(Z) = Vec(Z⊤) for any

Z ∈ R
d×m. First we have that

‖ḡ(x̄)‖2 ≤ δ max
i∈{1,...,d}

‖g(xi)‖2 ≤ δm1/2,

such that

mν2 ≤ δm1/2.

Then the gradients can be computed as

∇f(x) = x

mf(x)
=
g(x)

m
∈ R

m,

∇g(x) = f(x) Im−∇f(x)x⊤
f(x)2

=
mf(x)2 Im−xx⊤

mf(x)3
∈ R

m×m,

∇ḡ(x̄) = diag(∇g(x1), . . . ,∇g(xm)) ∈ R
md×md,

33

where for a sequence of matrices X1, . . .Xτ ∈ R
d×p we denote by

diag(X1, . . . , Xτ) =

X1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Xτ

∈ R
dτ×pτ ,

the corresponding block diagonal matrix. Therefore we get

‖∇g(x)‖2,2 ≤ mf(x)2 + ‖x‖22
mf(x)3

≤ 2m−1‖x‖2 + ǫ

(m−1‖x‖22,2 + ǫ)3/2
≤ cǫ−1/2,

‖∇ḡ(x̄)‖2 ≤ cǫ−1/2,

where c = 2/(3/2)3/2 ≈ 1.1 and we used that the spectral norm of the block-diagonal matrix is given by the maximal

spectral norm of its block diagonal components. Since Tm,d, Td,m are orthonormal operators, we get

ℓν2 ≤ 2ǫ−1/2.

The second order tensor of g reads

∇2g(x) =
3

m2f(x)5
x⊠ x⊠ x− 1

mf(x)3

(
m∑

i=1

x⊠ ei ⊠ ei + ei ⊠ x⊠ ei + ei ⊠ ei ⊠ x

)
∈ R

m×m×m,

∇2ḡ(x̄) = diag3(∇2g(x1), . . . ,∇2g(xd)),

where ei ∈ R
m is the ith canonical vector in R

m and for a sequence of tensors X1, . . . ,Xd we denote by X =
diag3(X1, . . . ,Xd) ∈ R

dm×dm×dm the tensor whose diagonal is composed of the tensors X1, . . .Xd such that

Xi+(m−1)p,j+(m−1)p,k+(m−1)p = (Xp)ijk and 0 outside the diagonal. We get then by definition of the tensor norm,

‖∇2g(x)‖2,2,2 ≤ 3‖x‖32
m2f(x)5

+
3‖x‖2
mf(x)3

=
3‖x‖2(‖x‖22 +mf(x)2)

m2f(x)5
=

3‖x‖2(2‖x‖22 +mǫ)

m2(m−1‖x‖22 + ǫ)5/2

≤ 3

m−1/2

√
c(2c+ 1)

(c+ 1)5/2
(mǫ)−1,

where c = (1 +
√
5)/4 such that 3

√
c(2c+1)

(c+1)5/2
≈ 1.6. Therefore we get ‖∇ḡ(x̄)‖2,2,2 ≤ δmaxi∈{1,...,δ} ‖∇2g(xi)‖2,2,2

and

Lν2 ≤ 2δm−1/2ǫ−1.

D.6 Pooling layers

We consider pooling layers for which the patches do not coincide such that they amount to a (potentially non-linear)

projection.

Average pooling. The average pooling layer is a linear operation. If the patches do not coincide, it is a projection

with Lipschitz constant one.

ℓavg = 1, Lavg = 0.

Max-pooling. Given an image I ∈ R
C×H×B with C channels each composed of a matrix of height H and breadth

B, the max pooling layer extracts np patches of the form P i,j = E⊤
row,iI[c, ·, ·]Ecol,j where Erow,i ∈ R

H×K and

Ecol,j ∈ R
B×K extract rows and columns of I[c, ·, ·] respectively. On each of this patch their maximum value is taken

as the output, namely, the output image reads Ĩc,i,j = maxk,l P
i,j
k,l . It is naturally non-continuously differentiable and

34

it is 1-Lipschitz continuous if the patches do not coincide.

ℓmaxpool = 1 Lmaxpool not defined.

D.7 Auto-encoders, composition of chains of computations

For τ vectors (u1; . . . ;uτ) ∈ R

∑τ
t=1 pt and 1 ≤ s ≤ t ≤ τ , we denote us:t = (us; . . . ;ut) ∈ R

∑t
r=s pr . For τ

functions φt : R
dt−1 × R

pt → R
dt , we can split the chain of computations of the τ functions φt into smaller chains of

computations. Namely, for 1 ≤ s ≤ t ≤ τ , we denote the output of the chain of computations defined by φs, . . . φt as

φs→t(xs−1, us:t) = xt

s.t. xr = φr(xr−1, ur) for r ∈ {s, . . . , t}.
In particular, we have φt = φt→t. The output of the chain of computations of the τ fucntions φt can then be split as

φ1→τ (x0, u1:τ) = φt+1→τ (φ1→t(x0, u1:t), ut+1:τ) for any t ∈ {1, . . . τ − 1}.
On the other hand, the composition of two chains of computations can readily be seen as a chain of computations.

Namely, for two chains of computations f and g with computations (φft)
τf
t=1 and (ψgt)

τg
t=1, parameters u and v respec-

tively, the composition of f and g is

h(x0, u) = g(f(x0, u), v).

It is a chain of τf + τg computations

χt =

{
φt for t ∈ {1, . . . , τf}
ψt−τf for t ∈ {τf + 1, τf + τg}

,

with input x0 and parameters w = (u; v) ∈ R

∑τf
t=1 p

f
t+

∑τg
t=1 p

g
t such that

wt =

{
ut for t ∈ {1, . . . , τf}
vt−τf for t ∈ {τf + 1, τf + τg}

.

D.8 Residual Networks

Recall the architecture of a residual network

xt = at(bt(xt−1, ut) + xt−2) for t = 1, . . . , τ

x0 = x, x−1 = 0,

where we assume bt : R
dt−1 × R

pt → R
ηt such that xt−1 ∈ R

dt−1 , xt−2 ∈ R
ηt and

bt(xt−1, ut) = Bt[xt−1, ut, ·] +But ut +Bxt xt−1 + β0
t ,

where B = (Bt,1, . . . , Bt,ηt) is a tensor. They can be expressed in terms of the variable x̄t = (xt, xt−1) as

φ̄t(x̄t−1, ut) = āt(b̄t(x̄t−1, ut)), (36)

35

where b̄t is defined as

b̄t(x̄t−1, ut) = β̄t(x̄t−1, ut) + β̄t
u
(ut) + β̄t

x
(x̄t−1) + β̄0

t

= B̄t[x̄t−1, ut, ·] + B̄ut ut + B̄xt x̄t−1 + β̄0
t,

B̄t = (B̄t,1, . . . , B̄t,ηt , 0pt×(dt−1+ηt), . . . , 0pt×(dt−1+ηt)︸ ︷︷ ︸
dt−1

),

B̄t,j =
(
Bt,j , 0pt×ηt

)
for j ∈ {1, . . . , dt−1},

B̄ut =

(
But

0dt−1×pt

)
,

B̄xt =

(
Bxt Iηt
Idt−1 0dt−1×ηt

)
,

β̄0
t =

(
β0
t

0dt−1

)
.

Denoting ω̄t = (ωt,1, ωt,2) = b̄t(x̄t−1, ut), we have

āt(ω̄t) = (a(ωt,1), ωt,2).

We can derive the smoothness constants of the layers of a residual network expressed as in (36) as

Lβ̄t = Lβt , lβ̄ut = lβut , lβ̄xt ≤ lβxt + 1, ‖β̄0
t ‖2 = ‖β0

t ‖2,
māt ≤ (1 +mat), ℓāt ≤ max(1, ℓat), Lāt = Lat .

Proposition 4.5 can then be applied in this setting.

D.9 Implicit functions

The smoothness constants of an implicit function are given in the following lemma. They can easily be refined by

considering smoothness properties w.r.t. to each of the variables α and β of the function ζ defining the problem.

Lemma D.4. Let ζ : (α, β) → ζ(α, β) ∈ R for α ∈ R
a, β ∈ R

b be s.t. ζ(α, ·) is µζ-strongly convex for any α.

Denote g(α) = argminβ∈Rb
ζ(α, β). Provided that ζ has a Lζ-Lipschitz gradient and a Hζ-Lipschitz Hessian, the

smoothness constants of g are bounded as

ℓg ≤ Lζµ
−1
ζ , Lg ≤ Hζµ

−1
ζ (1 + ℓg)(1 + Lζµ

−1
ζ) ≤ Hζµ

−1
ζ (1 + Lζµ

−1
ζ)2.

Proof. By the implicit function theorem, g(α) is uniquely defined and its gradient is given by

∇g(α) = −∇αξ(α, g(α))∇βξ(α, g(α))
−1 = −∇2

α,βζ(α, g(α))∇2
β,βζ(α, g(α))

−1,

where ξ(α, β) = ∇βζ(α, β). The Lipschitz constant of g follows from that. For the smoothness we compute its

second order information and bound the corresponding tensors. Note that the same results can be obtained by simply

splitting the functions in appropriate terms. We have

∇g(α) = h(α, g(α)),

where h(α, β) = −∇αξ(α, β)∇βξ(α, β)
−1 = −∇2

α,βζ(α, β)∇2
β,βζ(α, β)

−1.

Using Lemma D.5, we get

∇2g(α) =∇αh(α, g(α)) +∇βh(α, g(α))[∇g(α), ·, ·]
= −∇2

ααξ(α, g(α))[·, ·,∇βξ(α, g(α))
−1]

−∇2ξαβ(α, g(α))[·,∇βξ(α, g(α))
−1∇αξ(α, g(α))

⊤,∇βξ(α, g(α))
−1]

−∇2
βαξ(α, g(α))[∇g(α), ·,∇βξ(α, g(α))

−1]

−∇2ξββ(α, g(α))[∇g(α),∇βξ(α, g(α))
−1∇αξ(α, g(α))

⊤,∇βξ(α, g(α))
−1].

36

The result follows by using Facts A.4 and A.3. We observe that second derivatives of ξ correspond to third derivatives

of ζ, whose norms are bounded byHζ by assumption. Moreover we have that ‖∇βξ(α, g(α))
−1‖2 = ‖∇2

β,βζ(α, β)
−1‖2 ≤

µ−1
ζ by assumption.

The approximation error of the gradient when using an approximate minimizer inside the expression of the gradient

is provided in the following lemma. It follows from smoothness considerations.

Lemma 2.2. Let ζ : (α, β) → ζ(α, β) ∈ R for α ∈ R
a, β ∈ R

b be s.t. ζ(α, ·) is µζ -strongly convex for any α
and denote ξ(α, β) = ∇βζ(α, β). Denote g(α) = argminβ∈Rb ζ(α, β) and ĝ(α) ≈ argminβ∈Rb ζ(α, β) be an

approximate minimizer. Provided that ζ has a Lζ-Lipschitz gradient and a Hζ-Lipschitz Hessian, the approximation

error of using

∇̂ĝ(α) = −∇αξ(α, ĝ(α))∇βξ(α, ĝ(α))
−1

instead of ∇g(α) is bounded as

‖∇̂ĝ(α)−∇g(α)‖2 ≤ Hζµ
−1
ζ (1 + Lζµ

−1
ζ)‖ĝ(α)− g(α)‖2.

Proof. Denote h(α, β) = −∇αξ(α, β)∇βξ(α, β)
−1 = −∇2

α,βζ(α, β)∇2
β,βζ(α, β)

−1 such that ∇̂ĝ(α) = h(α, ĝ(α))
and ∇g(α) = h(α, g(α)). The approximation error is given by computing the smoothness constant of h(α, ·) for any

α. We bound the gradient of h(α, ·) (same results can be obtained by considering differences of the functions). From

Lemma D.5, we have

∇βh(α, β) = −∇2
βαξ(α, β)[·, ·,∇βξ(α, β)

−1]−∇2ξββ(α, β)[·,∇βξ(α, β)
−1∇αξ(α, g(α))

⊤,∇βξ(α, β)
−1].

The result follows by using Facts A.4 and A.3. We observe that second derivatives of ξ correspond to third derivatives

of ζ, whose norms are bounded byHζ by assumption. Moreover we have that ‖∇βξ(α, g(α))
−1‖2 = ‖∇2

β,βζ(α, β)
−1‖2 ≤

µ−1
ζ by assumption.

Lemma D.5. Let ξ : (α, β) → ξ(α, β) ∈ R
b for α ∈ R

a, β ∈ R
b such that ∇βξ(α, β) ∈ R

b×b is positive definite for

all α ∈ R
a, β ∈ R

b. Denoting h(α, β) = ∇αξ(α, β)∇βξ(α, β)
−1 ∈ R

a×b we have

∇αh(α, β) = ∇2
ααξ(α, β)[·, ·,∇βξ(α, β)

−1] +∇2ξαβ(α, β)[·,∇βξ(α, β)
−1∇αξ(α, β)

⊤,∇βξ(α, β)
−1],

∇βh(α, β) = ∇2
βαξ(α, β)[·, ·,∇βξ(α, β)

−1] +∇2ξββ(α, β)[·,∇βξ(α, β)
−1∇αξ(α, β)

⊤,∇βξ(α, β)
−1].

Proof. This follows from the product rule, Fact A.5, Lemma D.6 and Fact A.1.

Lemma D.6. Let g : R
d → S++

n be differentiable and h(x) = (g(x))−1. Then ∇h(x) = ∇g(x)[·, g(x)−1, g(x)−1].

Proof. Let x ∈ R
d and δ ∈ R

d. Consider first d = 1, such that ∇g(x) ∈ R
n×n.

h(x+ δ) = (g(x) + δ∇g(x) + o(δ))−1 = g(x)−1 − δg(x)−1∇g(x)g(x)−1 + o(δ).

So in this case ∇h(x) = g(x)−1∇g(x)g(x)−1 ∈ R
n×n. The result follows for n = d by concatenating this result

in a tensor such that for d > 1, ∇h(x) = ∇g(x)[·, g(x)−1, g(x)−1]. Alternatively it can directly be seen from the

following first order approximation for d > 1,

h(x+ δ) = (g(x) +∇g(x)[δ, ·, ·] + o(‖δ‖2))−1 = g(x)−1 − g(x)−1∇g(x)[δ, ·, ·]g(x)−1 + o(‖δ‖2).

E Optimization complexity proofs

E.1 Smoothness of the objective

Proposition 4.2. Consider a closed convex set C ⊂ R
p, ψ ∈ CC

mCψ ,ℓ
C
ψ ,L

C
ψ

, r ∈ CLr and h ∈ Cℓh,Lh with ℓh = +∞ if h

is not Lipschitz-continuous. The smoothness of F = h ◦ ψ + r on C is bounded as

LCF ≤ LCψ ℓ̃
C
h +

(
ℓCψ
)2
Lh + Lr,

37

where ℓ̃Ch = min{ℓh,minz∈ψ(C) ‖∇h(z)‖2 + Lhℓ
C
ψD

C}, where DC = supx,y∈C ‖x− y‖2.

Proof. Consider h, f to be twice differentiable. Same results can be obtained by considering differences of gradients.

We get for u ∈ R
p,

∇2(h ◦ f)(u) = ∇2f(u)[·, ·,∇h(f(u))] +∇f(u)∇2h(f(u))∇f(u)⊤.
The norm of ∇h(f(u)) can either be directly bounded by ℓh or by using that for any u, u′ ∈ C, ‖∇h(f(u))‖2 ≤
‖∇h(f(u′))‖2 +Lh‖f(u)− f(u′)‖2. By choosing u′ ∈ argminu∈C ‖∇h(f(u))‖2 and bounding the second term by

the diameter of C, we get a bound on supu∈C ‖∇h(f(u))‖2. The result follows using Fact. A.4 and the definitions of

the norms used to bound ℓf , Lf for a given function f .

Corollary 4.6. Consider a chain f of τ computations as defined in Prop. 4.5 and u∗ = (u∗1; . . . , u
∗
τ) ∈ R

p. The

smoothness properties of f on C′ = {u = (u1; . . . ;uτ) ∈ R
p : ∀t ∈ {1, . . . , τ}, ‖ut − u∗t ‖ ≤ R′

t} are given as in

Prop. 4.5 by considering

R′
t in place of Rt,

lβxt + Lβt‖u∗t ‖2 in place of lβxt ,

‖β0
t ‖2 + lβut ‖u∗t ‖2 in place of ‖β0

t ‖2.

Proof. The smoothness properties of fx0 on C′ are given by considering f̂x0(∆) = fx0(u
∗ + ∆) = fx0(u) where

∆ = u− u∗ with ‖∆t‖2 ≤ R′. The shifted chain of computations is given by

f̂x0,t(∆) = at(bt(f̂x0,t−1(∆), u∗t +∆t))

This means that f̂x0(∆) is a chain of compositions defined by the same non-linearities at and bi-affine functions b̂t
modified as

b̂t(xt−1,∆) = bt(xt−1, u
∗
t +∆t) = βt(xt−1,∆t) + βut (∆t) + β̂xt (xt−1) + β̂0

t ,

where

β̂xt (xt−1) = βxt (xt−1) + βt(u
∗
t , xt−1) β̂0

t = β0
t + βut (u

∗
t).

F Detailed network

VGG network. The VGG Network is a benchmark network for image classification with deep networks. The

objective is to classify images among 1000 classes. Its architecture is composed of 16 layers described below. We

drop the dependency to the layers in their detailed formulation. We precise the number of patches np of the pooling or

convolution operation, which, multiplied by the number of filters nf gives the output dimension of these operations.

For a fully connected layer we precise the output dimension δout.

0. xi ∈ R
npnf with np = 224×224 and nf = 3,

1. φ1(x, u) = αReLu(bconv(x, u))
with npconv = 224×224, nfconv = 64,

2. φ2(x, u) = πmaxpool(αReLu(bconv(x, u)))

with npconv = 224×224, nfconv = 64, npmaxpool = 112×112, nfmaxpool = 64,

3. φ3(x, u) = αReLu(bconv(x, u))
with npconv = 112×112, nfconv = 128

4. φ4(x, u) = πmaxpool(αReLu(bconv(x, u)))

with npconv = 112×112, nfconv = 128, npmaxpool = 56×56, nfmaxpool = 128,

5. φ5(x, u) = αReLu(bconv(x, u))
with npconv = 56×56, nfconv = 256,

6. φ6(x, u) = αReLu(bconv(x, u))
with npconv = 56×56, nfconv = 256,

38

7. φ7(x, u) = πmaxpool(αReLu(bconv(x, u)))

with npconv = 56×56, nfconv = 256, npmaxpool = 28×28, nfmaxpool = 256,

8. φ8(x, u) = αReLu(bconv(x, u))
with npconv = 28×28, nfconv = 512,

9. φ9(x, u) = αReLu(bconv(x, u))
with npconv = 28×28, nfconv = 512,

10. φ10(x, u) = πmaxpool(αReLu(bconv(x, u)))

with npconv = 28×28, nfconv = 512, npmaxpool = 14×14, nfmaxpool = 512,

11. φ11(x, u) = αReLu(bconv(x, u))
with npconv = 14×14, nfconv = 512,

12. φ12(x, u) = αReLu(bconv(x, u))
with npconv = 14×14, nfconv = 512

13. φ13(x, u) = πmaxpool(αReLu(bconv(x, u)))

with npconv = 14×14, nfconv = 512, npmaxpool = 7×7, nfmaxpool = 512,

14. φ14(x, u) = αReLu(bfull(x, u))
with δout = 4096,

15. φ15(x, u) = αReLu(bfull(x, u))
with δout = 4096,

16. φ16(x, u) = αsoftmax(bfull(x, u))
with δout = 1000.

17. h(ŷ) =
∑n
i=1 Llog(ŷi, yi)/n for k = 1000 classes.

39

	1 Introduction
	2 Problem formulation
	2.1 Deep network architecture
	2.2 Objectives
	2.3 Layer decomposition
	2.3.1 Linear operations
	2.3.2 Activation functions
	2.3.3 Pooling functions
	2.3.4 Normalization functions

	2.4 Specific structures
	2.4.1 Auto-encoders
	2.4.2 Dense, highway or residual networks
	2.4.3 Implicit functions

	3 Oracle arithmetic complexity
	3.1 Oracle reformulations
	3.2 Automatic differentiation
	3.2.1 Algorithm
	3.2.2 Complexity

	3.3 Gauss-Newton by automatic differentiation

	4 Optimization complexity
	4.1 Convergence rate to a stationary point
	4.2 Smoothness estimates

	5 Application
	5.1 VGG network
	5.2 Variations of VGG

	A Notations
	A.1 Matrices
	A.2 Tensors
	A.3 Gradients
	A.4 Matrix functions
	A.5 Bilinear functions

	B Oracle arithmetic complexity proofs
	B.1 Feasibility of the optimization oracle steps
	B.2 Optimization oracles as linear quadratic problems
	B.3 Detailed complexities of forward and backward passes
	B.4 Gauss-Newton by axutomatic differentiation

	C Smoothness computations
	C.1 Elementary operations
	C.2 Compositions
	C.3 Chains of computations

	D Smoothness of objectives and layers
	D.1 Supervised objectives
	D.2 Unsupervised objectives
	D.3 Bilinear and linear layers
	D.4 Activation functions
	D.5 Normalization layers
	D.6 Pooling layers
	D.7 Auto-encoders, composition of chains of computations
	D.8 Residual Networks
	D.9 Implicit functions

	E Optimization complexity proofs
	E.1 Smoothness of the objective

	F Detailed network

