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Abstract—We consider a setting where multiple active sources
send real-time updates over a single-hop wireless broadcast
network to a monitoring station. Our goal is to design a
scheduling policy that minimizes the time-average of general non-
decreasing cost functions of Age of Information. We use a Whittle
index based approach to find low complexity scheduling policies
that have good performance. We prove that for a system with
two sources, having possibly different cost functions and reliable
channels, the Whittle index policy is exactly optimal. We derive
structural properties of an optimal policy, that suggest that the
performance of the Whittle index policy may be close to optimal
in general. These results might also be of independent interest in
the study of restless multi-armed bandit problems with similar
underlying structure. We further establish that minimizing mon-
itoring error for linear time-invariant systems and symmetric
Markov chains is equivalent to minimizing appropriately chosen
monotone functions of Age of Information. Finally, we provide
simulations comparing the Whittle index policy with optimal
scheduling policies found using dynamic programming, which
support our results.

I. INTRODUCTION

Many emerging applications depend on the timely delivery
of status updates from a number of sources to a central monitor
over a single-hop wireless network. Examples include sensor
and actuator data for networked control systems, collecting
information for IoT applications, mobility data in vehicular
networks, and real-time surveillance and monitoring.

Age of Information (AoI) is a metric that captures timeli-
ness of received information at a destination [1], [2]. Unlike
packet delay, AoI measures the lag in obtaining information
at a destination node, and is therefore suited for applications
involving gathering or dissemination of time sensitive updates.
Age of information, at a destination, is defined as the time
that has elapsed since the last received information update
was generated at the source. AoI, upon reception of a new
update packet, drops to the time elapsed since generation of the
packet, and grows linearly otherwise. Over the past few years,
there has been a rapidly growing body of work on analyzing
AoI for queuing systems [1]–[6], and using AoI as a metric
for scheduling policies in networks [7]–[14].

The problem of minimizing age of information in single-
hop networks was first considered in [7] and [8]. In these
works, the authors considered a base station collecting time-
sensitive information from a number of sources over a wireless
broadcast network, where only one source can send an update

This work was supported by NSF Grants AST-1547331, CNS-1713725, and
CNS-1701964, and by Army Research Office (ARO) grant number W911NF-
17-1-0508.

at any given time. They looked at weighted linear combina-
tions of AoI of all sources as the metric to be optimized. This
prompted the design of low complexity scheduling policies
that provably minimize weighted sum AoI at the base station,
up to a constant multiplicative factor. These results crucially
depend on the fact that for linear AoI, one can find a stationary
randomized policy that is factor-2 optimal. As we will see
later, this observation does not hold for general functions of
AoI. In fact, stationary randomized policies can be arbitrarily
worse than simple heuristic policies.

Scheduling problems with weighted linear combinations of
age have also been considered with throughput constraints in
[9] and with general interference constraints in [10]. AoI-
based scheduling with stochastic arrivals was considered in
[13], where a Whittle Index policy was shown to have good
performance.

On the other hand, nonlinear cost functions of age were
introduced as a natural extension to the AoI metric in [2] for
characterizing how the level of dissatisfaction depends on data
staleness in a more general manner. Nonlinear functions of age
of information were also discussed in the context of queuing
systems in [15] and [16]. These papers develop the notion of
value of information and use nonlinear cost of update delays,
which correspond to nonlinear age cost functions.

Nonlinear functions of age have also been discussed in the
context of networked control systems in [17], [18] and [19]. In
[17], the authors discuss a real time networked control system
and show that the cost function is characterized as a non-
decreasing, possibly nonlinear, function of AoI. In [18], the
authors formulated the state estimation problem for an LTI
system, where the state of a discrete-time LTI system can be
observed in any time-slot by paying a fixed transmission cost.
The problem of minimizing the time-average of the sum of the
estimation error and transmission cost reduces to minimizing
a non-decreasing age-cost function for a single source with
a fixed transmission cost. We explore this relationship more
closely in Section VII, where we establish a similar equiva-
lence for monitoring multiple LTI systems.

In this work, we consider a setting similar to the one in
[7] and [8]. We look at wireless broadcast network with N
sources generating real-time updates that need to be sent to
a monitoring station. In any time-slot, only one source can
attempt a transmission to the base station. Instead of weighted
sum AoI, we are interested in minimizing the time-average of
general non-decreasing cost functions of AoI, summed over
all sources. Examples of such functions include f(x) = 2x,
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Fig. 1: Linear, quadratic, logarithmic and indicator cost func-
tions for a sample age process. The linear process tracks the
actual values of AoI.

f(x) = log(x), f(x) = 1{x≥10}, etc. See Fig.1 for examples.
We develop a restless mutli-armed bandit formulation for the
problem and use a Whittle Index based approach to find low
complexity scheduling policies that have good performance.

Scheduling to minimize functions of age has also been
considered in [11] and [12]. In [11], the authors deals with
minimizing symmetric functions of age of sources over mul-
tiple orthogonal unreliable channels and show that simple
greedy schemes are asymptotically optimal. In [12], the au-
thors formulate the general functions of age problem with
reliable channels and develop a high complexity algorithm
that achieves minimum age. They also derive a key structural
property of the optimal policy in this setting - the optimal
policy is always periodic. However, their approach does not
extend to the setting with unreliable channels. In this work,
we consider unreliable channels and also build upon results
from [12] and [13] to derive stronger structural properties for
optimal policies. These properties hint at why the performance
of the heuristic Whittle index policy may be close to optimal.
Moreover, it has been shown recently that the Whittle policy
is indeed asymptotically optimal for linear functions of AoI
[20].

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the general system model. In Section III,
we describe the equivalent restless multi-armed bandit formu-
lation and discuss why we use the Whittle Index approach to
solve the problem. In Section IV, we discuss the functions
of age problem with reliable channels, develop the Whittle
Index solution for this setting, and also prove key structural
properties that an optimal policy must satisfy. In Section V, we
find the Whittle Index policy for the functions of age problem
with unreliable channels. In Section VI, we provide simulation
results that verify our theoretical results. In Section VII, we
show that the problem of minimizing monitoring error for
linear time-invariant systems when observing them over a
wireless channel is equivalent to minimizing functions of
AoI. We also show a similar result for monitoring symmetric
Markov chains over a wireless channel. This shows the direct
applicability of our Whittle framework to a large class of
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Fig. 2: N sources transmitting updates to a base station over
a wireless channel, with different reliabilities.

wireless monitoring problems.
A preliminary version of this paper appeared in the confer-

ence proceedings of Allerton 2019 [21].

II. MODEL

Consider a single-hop wireless network with N active
sources generating real-time status updates that need to be
sent to a base station. We consider a slotted system in which
each source takes a single time-slot to transmit an update to
the base station. Due to interference, only one of the sources
can transmit in any given time-slot.

For every source i, the age of information at the base station
Ai(t) measures the time elapsed since it received a fresh
information update from the source. We assume active sources,
i.e. in any time-slot, sources can generate fresh updates at
will. Let s(t) be the source activated in time-slot t and ui(t)
be a Bernoulli random variable with parameter pi that denotes
channel reliability between the ith source and the base station.
Then, we have

Ai(t+ 1) =

{
Ai(t) + 1, if s(t) ̸= i or ui(t) = 0,

1, if s(t) = i and ui(t) = 1.
(1)

In this work, we consider general cost functions of age as
our metric of interest. For each source i, let fi(·) denote a
positive non-decreasing cost function.

Let π be a scheduling scheme that decides which sources
to schedule in every time-slot. The age process Ai(t) depends
on π and the channel processes. Then, the expected average
cost of age for source i is given by

Cave
i (π) ≜ lim sup

T→∞

1

T
E
[ T∑

t=1

fi(A
π
i (t))

]
, (2)

where Aπ
i (t) is age process for the ith source under policy π.

Our goal is find a schedule π that minimizes the sum of
average costs of age of sources, i.e. (2). Let Π denote the



set of causal scheduling policies, then we want to solve the
following optimization problem

C∗ = min
π∈Π

N∑
i=1

Cave
i (π), (3)

where C∗ is minimum average cost and π∗ is an optimal
scheduling policy.

III. RESTLESS MULTI-ARMED BANDIT FORMULATION

The restless multi-armed bandit (RMAB) is a classical
resource allocation problem that has been studied in the
optimization and operations research community for many
decades. It involves N Markov bandits, each of which evolves
according to two different transition laws - one for when it is
active, and one for when it is not. The scheduler can only
activate one arm at any given time-slot, and a cost function
maps the states of the arm to a corresponding cost in each time-
slot. The goal of the scheduler is to design an arm activation
policy that minimizes the long term time-average cost. The
general solution strategy for such resource allocation problems
is dynamic programming. However, that suffers from the curse
of dimensionality and is not computationally feasible. Whittle,
in his seminal work [22], showed that RMABs admit low
complexity heuristic solutions called the Whittle Index if they
satisfy a special property called indexability. In this section,
we will show that scheduling to minimize such a metric can
be reformulated as a RMAB.

Consider a restless multi-armed bandit problem with N
arms. The state space for every arm i is the set of positive
integers Z+. The state evolution of the arm depends on
whether it is currently active or not. Let the state of arm i
at time t be denoted by Ai(t). If arm i is active in time-slot
t then the state evolution is given by

Ai(t+ 1) =

{
Ai(t) + 1, w.p. 1− pi

1, w.p. pi.
(4)

If the arm is not active in time-slot t, then the state evolution
is given by

Ai(t+ 1) = Ai(t) + 1. (5)

For every arm i, there is a cost function fi : Z+ → R+

which maps the states of the arm to their associated costs.
Thus, the cost of a state x ∈ Z+N

is given by
∑N

i=1 fi(xi),
where x is a vector of states (ages) and xi is the state (age)
of the ith source. Given that only one arm can be activated in
any time-slot, the goal of the RMAB framework is to find a
scheduling policy that minimizes the total time average cost
of running this system.

This establishes the equivalence between the functions of
age problem discussed earlier and a corresponding restless
multi-armed bandit. Observe that the “restless” part of our
construction cannot be dropped, since the states of the arms
do not freeze when they are not active and there is no way
to reformulate our problem as a simple (non-restless) multi-
armed bandit problem. If that were the case, we could have

found an optimal policy by solving for the Gittins index [23].
However, finding optimal policies for restless bandits is much
harder. The usual approach is to find the Whittle Index policy
which provides good performance under certain conditions,
namely indexability of the RMAB problem.

In [7] and [8], the authors develop three methods to solve
the minimum age scheduling problem. First, they look at
stationary randomized policies, where a source i is scheduled
at random with a fixed probability pi. They find a stationary
randomized policy that is factor-2 optimal for weighted sum
AoI. However, this result does not hold for general functions:
even the best stationary randomized policies in our setting can
lead to an unbounded overall cost, despite there being very
simple policies that have bounded cost. We demonstrate this
with a simple example.

Consider two identical sources with cost functions given by
f(x) = 3x and reliable channels, i.e p1 = p2 = 1. Any sta-
tionary randomized policy schedules at least one of the sources
with probability less than or equal to 0.5. For this source, the
average cost is lower bounded by lim

T→∞

∑T
t=1(3

t) 0.5
T

T since
with probability at least 0.5, it does not get to transmit and its
age increases by 1 in every time-slot. Observe that this lower
bound goes to ∞ and hence the average cost also goes to
∞ for all stationary randomized policies. On the other hand,
a simple round-robin scheme that schedules the two sources
in alternating time-slots guarantees bounded cost for both
sensors. Thus, stationary randomized policies can be infinitely
worse than the optimal policy for the functions of age problem.

The second method developed for age-based scheduling in
[7], [8] uses a Max-Weight approach. The authors design a
quadratic Lyapunov function for the weighted sum of linear
functions of AoI and find the max-weight policy - the policy
that maximizes the amount of negative drift in the Lyapunov
function in every time-slot. Performance guarantees for the
max-weight policy crucially rely on the fact that there exists a
stationary randomized policy that is factor-2 optimal for linear
functions of age. Since this is not the case for general functions
of age, we cannot develop similar performance bounds using a
Max-Weight policy for the general functions of age problem.

This finally leaves us with the third method - using a
Whittle Index based approach. In the following two sections,
we use the RMAB formulation to establish indexability for the
functions of age problem and derive a Whittle Index policy.
We also show that for the case with 2 sources and reliable
channels, the Whittle index policy is exactly optimal. This is
a novel result since the optimality of Whittle Index policies
is typically shown either only asymptotically, or in symmetric
settings for finite systems. On the other hand, our optimality
result holds for two asymmetric sources.

IV. RELIABLE CHANNELS

We first look at the problem with reliable channels between
the sources and the base station. This leads to simpler analysis
and a better understanding of the problem. Consider the setup
described in Section I with channel reliability ui(t) = 1, for all
i and t. In other words, the probability of success pi = 1,∀i.



In Section III, we showed that the functions of age mini-
mization problem is equivalent to a restless multi-armed bandit
problem. Next, we use a Whittle Index based approach to try
and solve the problem.

The first step in the Whittle Index approach is to formulate
the decoupled problem, where we consider a single arm in
isolation with a fixed charge required to activate the arm.

Definition Decoupled Problem
Consider a single arm with the state space Z+ and an
associated non-decreasing cost function f : Z+ → R+.
Let the state of the arm be A(t). Its evolution is given by

A(t+ 1) =

{
A(t) + 1, if not active at time t
1, otherwise.

There is a strictly positive activation charge C to be paid
in every time-slot that the arm is pulled.

Our goal is to find a scheduling policy that minimizes the
time-average cost of running this system. Assuming that the
cost function f(·) is non-negative and non-decreasing, we
solve the decoupled problem using dynamic programming.
The case when the activation charge is set to zero is trivial. The
optimal policy is to always activate the arm. So, we consider
C to be strictly positive. The single source decoupled problem
has also been solved in a slightly different setting in [18].

Theorem 1: The optimal policy for the decoupled
problem is a stationary threshold policy. Let H satisfy

f(H) ≤
∑H

j=1 f(j) + C

H
≤ f(H + 1). (6)

Then, the optimal policy is to activate the arm at time-slot
t if A(t) ≥ H and to let it rest otherwise. If no such H
exists, the optimal policy is to never activate the arm.

Proof: See Appendix A.
Theorem 1 establishes that the optimal policy for the decou-

pled problem has a threshold structure. We now want to show
that the indexability property also holds for the decoupled
problem. The indexability property states that as the activation
charge C increases from 0 to ∞, the set of states for which
it is optimal to activate the arm decreases monotonically from
the entire set Z+ to the empty set {ϕ}.

Theorem 2: The indexability property holds for the
decoupled problem.

Proof: See Appendix B.
The Whittle index approach states that if the decoupled

problem satisfies the indexability property, we can formulate
a heuristic index policy called the Whittle Index Policy that

has good performance.

Definition Whittle Index
Consider the decoupled problem and denote by W (h) the
Whittle index in state h. Given indexability, W (h) is the
infimum charge C that makes both decisions (activate, not
activate) equally desirable in state h. The expression for
W (h) is given by

W (h) = hf
(
h+ 1

)
−

h∑
j=1

f(j). (7)

Observe that using (6), C = W (h) is the minimum value of
the activation charge that makes both actions equally desirable
in state h. This gives us the expression for the Whittle index.

Let Wi(x) := xfi
(
x+1

)
−
∑x

j=1 fi(j) represent the index
function for the ith decoupled problem. By the monotonicity of
fi(·), it is easy to see that the functions Wi(·) are also mono-
tonically non-decreasing. This is because Wi(h)−Wi(h−1) =
h
(
fi(h + 1) − fi(h)

)
≥ 0,∀h since fi(·) is non-decreasing.

Using these functions, we define the Whittle Index Policy.

Definition Whittle Index Policy
Let πW (t) be the action taken by the Whittle Index Policy
at time t. Then πW (t) is given by

πW (t) = arg max
1≤i≤N

{
Wi

(
Ai(t)

)}
= arg max

1≤i≤N

{
Ai(t)fi

(
Ai(t) + 1

)
−

Ai(t)∑
j=1

fi(j)

}
.

(8)

Consider the case when the cost functions are weighted
linear functions of AoI, i.e let fi(Ai(t)) = wiAi(t), with
positive weights wi. This is the setting considered in [7]
and [8]. The Whittle Index for source i is then given by
Wi(Ai(t)) = wi(A

2
i (t) + Ai(t))/2. This is the same as the

Whittle index found in [7], where the authors showed that
the Whittle policy is optimal for symmetric settings when all
the weights are equal. We also establish that for N = 2, the
Whittle index policy is optimal even for asymmetric settings.

Theorem 3: For the functions of age problem with
reliable channels and two sources, the Whittle index
policy is exactly optimal.

Proof: See Appendix F.
This is an atypical result for restless multi-armed bandit

problems which typically only have optimality results for
symmetric or asymptotic settings. Our result is valid for finite



(N = 2) asymmetric settings. To the best of our knowledge,
this is the first work to prove such a result for a restless
multi-armed bandit problem. Next, we discuss some general
properties that an optimal policy satisfies even for larger size
systems. These properties help us establish the optimality of
the Whittle index policy for N = 2 and provide insight as to
why the Whittle index policy has good performance in general.

A. Properties of an Optimal Policy

For the functions of age problem, a policy is stationary if it
depends only on the current values of age. A cyclic policy is
one that repeats a finite sequence of actions in a fixed order.
We define the space of policies that are stationary and periodic.

Definition Stationary Cyclic Policies
A stationary cyclic policy is a stationary policy that
cycles through a finite subset of points in the state space,
repeating a fixed sequence of actions in a particular order.

In [12], the authors show that for reliable channels there
exists an optimal policy that is stationary, cyclic and can be
found by solving the minimum average cost cycle problem
over a large graph.

We look at this cyclic policy and analyze its properties. If
there are multiple such cycles, we consider a cycle with the
shortest length. We denote the length of the cycle by T and age
vectors on the cycle to be x1, . . . ,xT . Let the corresponding
scheduling decisions be d1, . . . , dT . This implies that for state
xk, taking action dk leads to the state xk+1, where the
subscripts cycle back to 1, 2, . . . after T .

We establish an important structural property that such an
optimal policy must satisfy, which we call the strong-switch-
type property. We call the policies that satisfy this property
strong-switch-type policies.

Definition Strong-switch-type Policies
Consider a stationary policy π that maps every point in
the state space Z+N

to the set of arms {1, . . . , N}. We
say that such a policy is strong-switch-type if

π(x1, . . . , xN ) = i

implies
π(x′

1, . . . , x
′
N ) = i,

for all x and x′ such that x′
i ≥ xi and x′

j ≤ xj ,∀j ̸= i.

In words, the strong-switch-type property implies that if a
policy decides to activate arm i for a state vector x, then for a
state vector x′ with a higher age for the ith source and lower
ages for all the other sources, it still decides to activate source
i. Note that our definition of strong-switch-type policies is a
stronger version of the switch-type policies introduced in [13].

Theorem 4: For the functions of age problem with
reliable channels, all state-action pairs that are a part of
the shortest length optimal cyclic policy must satisfy the
strong-switch-type property.

Proof: See Appendix C.
We can prove this result for general values of N . However,

to extend the strong-switch-type property over the entire state-
space, we consider systems with up to three sources.

Theorem 5: There exists an optimal stationary policy
for the functions of age problem with reliable channels
and up to three sources that has the strong-switch-type
property over the entire state-space.

Proof: We have already established that points on the
minimum average cost cycle satisfy the strong-switch-type
property. In Appendix D, we extend this policy over the entire
state space while maintaining the strong-switch property to
obtain a well defined stationary policy.

While we prove this result for up to three source and reliable
channels, we believe that the strong-switch-type property is a
natural property that an optimal policy must have in general,
due to monotonicity of cost functions.

We now define the space of policies that can be found as a
result of the Whittle Index based approach.

Definition Index Policies
Consider a stationary policy π that maps every point in
the state space Z+N

to the set of arms {1, . . . , N}. We
say that such a policy is an index policy if

π(x1, . . . , xN ) = arg max
1≤i≤N

{
Fi(xi)

}
for all x, where Fi : Z+ → R are monotonically non-
decreasing functions for all i.

Observe that if Fi are the same as Wi in the above
definition, then we get back the Whittle Index Policy. Also,
note that an index policy always satisfies the strong-switch-
type property by definition. This is because the index functions
Fi(·) are monotonically non-decreasing. We now show that
index policies are in fact the same as strong-switch-type
policies.

Theorem 6: For the functions of age problem, every
policy that is strong-switch-type is also an index policy.

Proof: The proof is based on induction on the number
of sources. We assume that every strong-switch-type policy
can be represented as an index policy for systems with N



sources. Using this fact, we show that strong-switch-type
policies can also be represented as index policies for systems
with N+1 sources. We also show that the two types of policies
are equivalent for the single source decoupled problem, thus
completing the proof. The details are in Appendix E.

An important point to notice is that while we use the
reliability of channels in the proof of Theorem 5, we do not use
any such condition for the proof of Theorem 6. Thus, strong-
switch-type policies are equivalent to index policies regardless
of channel connectivity.

Theorems 5 and 6 together imply the following corollary.

Corollary 1: For the functions of age problem with
reliable channels and up to three source, there exists a
stationary optimal policy that is an index policy.

In other words, there exists an optimal policy that looks like
the Whittle Index policy in that the arm to be activated has
the maximum value among monotone index functions that take
as arguments only the states of individual arms. This hints at
why the performance of Whittle Index policies may be close
to optimal.

Observe that the Whittle Index policy would be optimal in
general if we could show that it achieves a cost that is the
minimum cost among the space of index policies and that the
strong-switch-type property holds for some optimal policy. We
show that this is indeed the case for N = 2. However, we later
provide an example that shows that the Whittle policy is not
optimal, but only close to optimal, for N = 4.

We leave the question of whether the Whittle index policy
is at most a constant factor away from optimal in general
to future work. We believe that the structural properties
introduced here provide a recipe to proving constant factor
optimality of the Whittle index policy, even for general bandit
problems with similar underlying structure.

V. UNRELIABLE CHANNELS

We now consider independent Bernoulli channels between
every source and the base station, with probability of success
pi for source i. We derive a Whittle index in this setting and
establish indexability of the RMAB problem by enforcing a
bounded cost condition on the functions fi(·).

An important fact to notice is that monotonicity in itself is
not sufficient to ensure that the system has finite average cost
even for N = 1, in the case of unreliable channels. Consider
a single source case where f(a) = 3a and the probability of
success p = 0.5. If the source attempts a transmission in every
time-slot, the expected average cost satisfies

lim sup
T→∞

T∑
t=1

(3t)
0.5T

T
≤ lim sup

T→∞

1

T
E
[ T∑

t=1

3A(t)

]
, (9)

since with probability 0.5, the transmission fails and age
increases by 1 in every time-slot. However, observe that the
summation on the left goes to infinity and thus the expected
average cost goes to infinity. This happens despite the source

attempting a transmission in every time-slot. To prevent such
a situation from happening we enforce the following bounded
cost condition on the age cost functions fi in addition to
monotonicity

∞∑
h=1

fi(h)(1− pi)
h < ∞. (10)

It can be shown that this condition ensures that the single
source case has bounded cost. We define the decoupled prob-
lem in this case as follows:

Definition Decoupled Problem
Consider a single arm with the state space Z+, proba-
bility of success p and an associated non-decreasing cost
function f : Z+ → R+ that satisfies the bounded cost
condition. Let the state of the arm be A(t). If the arm is
active at time t, its evolution is given by

A(t+ 1) =

{
A(t) + 1, w.p. 1− p

1, w.p. p.

If the arm is not active in time-slot t, then the state
evolution is given by

A(t+ 1) = A(t) + 1.

There is a strictly positive activation charge C to be paid
in every time-slot that the arm is pulled.

As before, our goal is to find a scheduling policy that
minimizes the time-average cost of running this system.

Theorem 7: The optimal policy for the decoupled
problem is a stationary threshold policy. Let H satisfy

p2(H − 1)

( ∞∑
k=H

f(k)(1− p)k−H

)
− p

(H−1∑
j=1

f(j)

)
≤ C

≤ p2H

( ∞∑
k=H+1

f(k)(1− p)k−H−1

)
− p

( H∑
j=1

f(j)

)
(11)

Then, the optimal policy is to activate the arm at time-slot
t if A(t) ≥ H and to let it rest otherwise. If no such H
exists, the optimal policy is to never activate the arm.

Proof: See Appendix G.
Observe that taking the limit as p → 1 in Theorem 7, we

get back the threshold policy for reliable channels derived
in Theorem 1. We now establish indexability and derive the
functional form of the Whittle Index.



Theorem 8: The indexability property holds for the
decoupled problem. Denote by W (h) the Whittle index in
state h. Given indexability, W (h) is the infimum charge C
that makes both decisions (activate, not activate) equally
desirable in state h. The expression for W (h) is given by

W (h) = p2h
( ∞∑
k=1

f(k + h)(1− p)k−1
)
− p

( h∑
j=1

f(j)
)
.

(12)

Proof: See Appendix H.
Again, observe that taking the limit as p → 1, we get

back the Whittle Index derived in Section IV. Further, if we
assume that the cost functions are weighted linear functions
of AoI, i.e. fi(Ai(t)) = wiAi(t) where all the weights
are positive, then the index functions for the Whittle policy
are given by Wi(Ai(t)) = wipiAi(t)(Ai(t) +

1+(1−pi)
1−(1−pi)

)/2.
This corresponds to the index policy developed in [7], where
the authors showed that for symmetric settings when all the
weights and channels probabilities are equal, the Whittle index
policy is optimal.

VI. SIMULATIONS

First, we compare the optimal policy, found using dynamic
programming, with the Whittle index policy for two sources.
We consider six different settings in total - 3 sets of functions,
each with reliable and unreliable channels.

For settings A1 and A2, the cost functions are chosen
to be f1(x) = 13x and f2(x) = x2. In A1, we consider
reliable channels, i.e. p1 = p2 = 1. In A2, we consider
unreliable channels, specifically p1 = 0.9 and p2 = 0.5.
For settings B1 and B2, the cost functions are chosen to be
f1(x) = x2 and f2(x) = 3x. In B1, we consider reliable
channels, i.e. p1 = p2 = 1. In B2, we consider unreliable
channels, specifically p1 = 0.65 and p2 = 0.8. For settings
C1 and C2, the cost functions are chosen to be f1(x) = x3/2
and f2(x) = 10 log(x). In C1, we consider reliable channels,
i.e. p1 = p2 = 1. In C2, we consider unreliable channels,
specifically p1 = 0.55 and p2 = 0.75. Simulation results are
presented in Table I.

Setting Optimal Cost Whittle Index Cost

A1 (reliable) 21.95 21.95
A2 (unreliable) 36.12 36.28
B1 (reliable) 8.48 8.48
B2 (unreliable) 23.16 23.37
C1 (reliable) 5.69 5.69
C2 (unreliable) 21.54 21.54

TABLE I: Cost of the Whittle index policy and the optimal
dynamic programming policy for 2 sources.

We find the optimal cost for each setting using finite horizon
dynamic programming over a horizon of 500 time-slots. For
reliable channels, we find the cost of the Whittle index policy
by simply implementing it once over 500 time-slots. For

unreliable channels, we estimate the expected Whittle index
cost by averaging the performance of the Whittle index policy
over 500 independent runs.

Observe that the Whittle index policy is exactly optimal
when the channels are reliable, as expected from our theoret-
ical results. The expected cost for the Whittle index policy is
very close to the optimal cost for unreliable channels as well.
Also, for the same set of functions, having unreliable channels
increases the cost compared to reliable channels, as expected.

Next, we compare the optimal policy with the Whittle
index policy for more than two sources. Simulation results
are presented in Table II.

For settings D1 and D2, we consider 3 sources. The
cost functions are chosen to be f1(x) = x2, f2(x) = 3x

and f3(x) = x4. In D1, we consider reliable channels, i.e.
p1 = p2 = p3 = 1. In D2, we consider unreliable channels,
specifically p1 = 0.66, p2 = 0.8 and p3 = 0.75.

For settings E1 and E2, we consider 4 sources. The cost
functions are chosen to be f1(x) = x3, f2(x) = 2x, f3(x) =
15x and f4(x) = x2. In E1, we consider reliable channels, i.e.
p1 = p2 = p3 = 1. In E2, we consider unreliable channels,
specifically p1 = 0.7, p2 = 0.9, p3 = 0.67 and p4 = 0.8.

No. of Sources Setting Optimal Cost Whittle
Index Cost

3 D1 (reliable) 44.23 44.23
D2 (unreliable) 161.19 161.39

4 E1 (reliable) 73.36 73.36
E2 (unreliable) 129.02 130.94

4 F1 (reliable) 87.66 88.27
F2 (unreliable) 158.35 159.81

TABLE II: Cost of the Whittle index policy and the optimal
policy for more than 2 sources.

For settings F1 and F2, we consider 4 sources. The cost
functions are chosen to be f1(x) = x3, f2(x) = ex, f3(x) =
15x and f4(x) = x2. In F1, we consider reliable channels, i.e.
p1 = p2 = p3 = 1. In F2, we consider unreliable channels,
specifically p1 = 0.8, p2 = 0.85, p3 = 0.75 and p4 = 0.66.

We observe that the cost of the Whittle index policy is the
same as that obtained using dynamic programming for settings
D1 and E1. However, for setting F1, we observe a small gap
in performance between the two policies, thus giving us an
example that shows that the Whittle index policy need not be
optimal, in general. We also verify that the optimal policy
found using dynamic programming follows a cyclic pattern
that satisfies the strong-switch-type property and is distinct
from the Whittle index policy. This is also in line with our
discussion on structural properties.

We note that computing the optimal policy using dynamic
programming becomes progressively harder in terms of space
and time complexity for larger values of N , as the state-space
to be considered grows exponentially with N . The Whittle
index policy, on the other hand, is very easy to compute
and implement with only a linear increase in space and time
complexity with the number of sources. Also, as is evident
from simulations, the performance of the Whittle policy is



close to optimal in every setting considered, thus making it a
very good low complexity heuristic.

VII. APPLICATIONS

In this section, we will apply the framework we have
developed to two problems in remote monitoring and control to
show that optimizing general functions of AoI arise naturally
in many practical settings.

A. Monitoring LTI systems

First, we consider the remote monitoring of linear time-
invariant (LTI) systems over a wireless channel. Suppose that
there are N such systems, where the ith system evolves over
time as follows

xi(t+ 1) = Gixi(t) + wi(t), (13)

where xi(t) ∈ Rdi , Gi ∈ Rdi×di is the system matrix and
wi(t) ∼ N (0,Σi) is multi-variate zero-mean Gaussian noise,
i.i.d. across time. We further assume that the noise increments
wi(t) are independent across sources, so their evolution is
decoupled.

Suppose that a central agent wants to monitor the state
of each of the N systems with as little monitoring error as
possible. However, due to wireless interference constraints, it
can only observe the state of one system at any given time-
slot. How should the agent design a wireless scheduling policy
that minimizes expected monitoring error?

Let x̂i(t) represent the maximum likelihood estimate of the
state of the ith system at the monitor at any given time-slot
t, given past observations. We define monitoring error for the
ith system as

ei(t) ≜ E
[∣∣∣∣xi(t)− x̂i(t)

∣∣∣∣2
2

]
. (14)

The following theorem relates the expected monitoring error
of the ith system to its AoI. Specifically, we compute the
expected error if the ith system has not been observed for the
last ∆ time-slots.

Theorem 9: Suppose that the ith system evolves ac-
cording to (13). Further suppose that the monitor last
observed the state of the ith system at time t = τ . Then,
the expected monitoring error for the ith system at time
t = τ +∆ is given by

ei(τ +∆) = E
[∣∣∣∣xi(τ +∆)− x̂i(τ +∆)

∣∣∣∣2
2

]
=

∆−1∑
k=0

Tr
(
(Gk

i )
T (Gk

i )Σi

)
≜ fi(∆).

(15)

Proof: See Appendix I.
Using this observation, we can establish an equivalence

between minimizing monitoring error and minimizing func-
tions of AoI. To find the scheduling policy π that minimizes

Fig. 3: Symmetric two-state Markov chain, representing the
state of the ith process.

expected time-average monitoring error, we need to solve the
following optimization problem

min
π∈Π

lim sup
T→∞

1

T
E
[ T∑

t=1

N∑
i=1

ei(t)

]
, (16)

where ei(t) is defined as in (14). This optimization problem is
equivalent to solving the following functions of AoI problem

min
π∈Π

lim sup
T→∞

1

T

[ T∑
t=1

N∑
i=1

fi(Ai(t))

]
, (17)

where Ai(t) is the AoI of the ith system and the functions
fi(·) are as defined in (15).

We also show in Appendix I that the functions fi(·) are
monotonically increasing, so we can indeed apply our Whittle
index approach to solve this problem. The rate at which the
functions fi(·) increase depends on the eigenvalues of the
system matrices Gi. If the largest eigenvalue of Gi lies inside
(outside) the unit circle, then fi(·) increases slower (faster)
than a linear function. If the largest eigenvalue of Gi lies on
the unit circle, then fi(·) increases linearly.

B. Monitoring Markov Chains

Consider N symmetric two state Markov chains of the form
drawn in Fig. 3 running in discrete-time. As for the previous
example, we assume that only one system out of the N can be
observed in any given time-slot. We denote the distribution of
the ith Markov chain at time t by xi(t), where xi(t) = [1 0]
if the Markov chain is in state 0 and xi(t) = [0 1] if the
Markov chain is in state 1.

We assume that the base station knows the transition prob-
ability qi and the transition matrix

Qi =

[
1− qi qi
qi 1− qi

]
associated with the ith Markov chain and uses this to maintain
the estimated distribution of the ith chain, based on the most
recent observation. Suppose that the base station knew that the
ith Markov chain had the distribution xi(τ) at time τ . Using
the transition matrix Qi for the ith chain, the base station
can compute the distribution of the Markov chain at time τ +
∆ given the information at time τ . We denote this estimated
distribution of the actual state by x̂i(τ +∆) and it is given by

x̂i(τ +∆) = xi(τ)

[
1− qi qi
qi 1− qi

]∆
= xi(τ)Q

∆
i . (18)

We are interested in minimizing the monitoring error, de-
fined as a notion of distance between the estimated distribution



and the actual state of the Markov chain. We define error for
the ith system as follows -

ei(t) = E
[
D
(
xi(t)||x̂i(t)

)]
, (19)

where D is a notion of divergence between the two probability
distributions. In this work, we will discuss our results for
Kullback-Liebler (KL) divergence and total variation (TV)
distance, however, the general ideas should work for other
divergences as well. The KL divergence for discrete distribu-
tions is defined as

DKL(P ||Q) = −
∑
x∈X

P (x) log(
P (x)

Q(x)
).

The total variation (TV) distance for discrete distributions is
defined as

DTV (P ||Q) =
∑
x∈X

1

2

∣∣P (x)−Q(x)
∣∣.

The following theorem relates the expected monitoring error
of the ith system to its AoI. Specifically, we compute the
expected error if the ith system has not been observed for the
last ∆ time-slots.

Theorem 10: Suppose that the ith system evolves
according to Markov chain in Fig. 3. Further suppose that
the monitor last observed the state of the system at time
t = τ . Then, the expected monitoring error for the ith
system at time t = τ +∆ is given by

ei(τ +∆) = E
[
D
(
xi(τ +∆)||x̂i(τ +∆)

)]
=

{
H
(
[Q∆

i ]00
)
, if D is KL Divergence,

2[Q∆
i ]00

(
1− [Q∆

i ]00
)
, if D is TV Distance.

= fi(∆).
(20)

Here [Q∆
i ]00 is the top diagonal element of the transition

matrix raised to the power ∆, i.e. Q∆
i and H(q) ≜

−q log(q) − (1 − q) log(1 − q) is the binary entropy
function.

Proof: See Appendix J.
Using the result above, it is straightforward to establish an

equivalence between minimizing monitoring error for Markov
chains and minimizing functions of AoI. As for the case with
the LTI systems, we further show in Appendix J that the
functions fi(·) are monotonically increasing, so we can indeed
apply our Whittle index approach to solve this problem.

An interesting observation for the KL divergence case is
that the monitoring error cost ends up being the entropy of
the estimated distribution of the Markov chain. This can be
interpreted as the amount of uncertainty that the base station
has about the Markov chain, which increases with the number
of time-slots that the chain remains unobserved. We use this
Markov model and our Whittle framework to solve a robotics

problem involving time-varying multi-agent occupancy grid
mapping in [24].

VIII. CONCLUSION

In this work, we presented the problem of minimizing
functions of age of information over a wireless broadcast
network. We used a restless multi-armed bandit approach to
establish indexability of the problem and found the Whittle
index policy. For the case with two sources and reliable
channels, we were able to show that the Whittle index policy is
optimal. We also established structural properties of an optimal
policy, for the case with reliable channels. These properties
hint at why the performance of the Whittle index policy is
close to optimal in general.

A possible direction of future work is to try and prove
constant factor optimality of the Whittle index policy in
general, using the structural properties developed in this work.
Other interesting extensions could be to consider sources with
stochastic arrivals instead of active sources and handling un-
known, possibly time-varying functions of Age of Information.
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APPENDIX

A. Proof of Theorem 1

Consider the decoupled problem described in Section IV.
Let u(t) be an indicator variable that denotes whether the arm
is pulled or not at time t. Under a scheduling policy π that
specifies the value of u(t) for all instants of time, the average
cost is given by

lim
T→∞

1

T

T∑
t=1

[
f
(
Aπ(t)

)
+ Cuπ(t)

]
. (21)

We want to find a policy that minimizes this cost over the
space of all policies. Let S : Z+ → R denote the differential
cost-to-go function for this problem, let u : Z+ → {1, 0} be
the stationary optimal policy and let λ denote the optimal cost.
Then, the Bellman equations are given by

S(h) = f(h) + min
u(h)∈{1,0}

{C, S(h+ 1)} − λ,∀h ∈ Z+. (22)

Without loss of generality we set S(1) = 0. Assume that the
optimal policy has a threshold structure, i.e. there exists H
such that it is optimal to pull the arm (u(h) = 1) for all states
h ≥ H and let it rest otherwise (u(h) = 0). If this the case,
then the Bellman equations reduce to

S(h) = f(h) + C − λ, ∀h ≥ H. (23)

Using the monotonicity of f(·), we conclude that S(h+1) ≥
S(h),∀h ≥ H . We will use this fact later. For the state H−1,
we get

S(H − 1) = f
(
H − 1

)
− λ+ S(H)

= f
(
H − 1

)
− λ+ f(H)− λ+ C.

(24)

Repeating this k times, we get

S(H − k) =

k∑
j=0

f
(
H − j

)
− (k + 1)λ+ C, (25)

for all k in {1, . . . ,H−1}. Observe that since we set S(1) = 0,
we get

λ =

∑H
j=1 f(j) + C

H
, (26)

by putting k = H − 1 in (25). Now assume that H further
satisfies the relation given in Theorem 1, i.e.

f(H) ≤
∑H

j=1 f(j) + C

H
≤ f(H + 1). (27)

Using (26), we can simplify (27) as

f(H) ≤ λ ≤ f(H + 1). (28)

Adding C − λ to every term above, we get

f(H) + C − λ ≤ C ≤ f(H + 1) + C − λ

=⇒ S(H) ≤ C ≤ S(H + 1).
(29)

Observe that we assumed f(·) to be non-decreasing. This
combined with (28) and the Bellman equations (23) and (25)
ensures that S(·) is also non-decreasing. Thus, if there exists
a state H that satisfies (27), then the threshold policy with
threshold H satisfies the Bellman equations and is hence
optimal.

The one thing that remains to be shown is the case in
which we cannot find some H that satisfies (27). Consider
the function W : Z+ → R given by

W (h) = hf(h)−
h∑

j=1

f(j). (30)

Observe that W (h+1)−W (h) = h(f(h+1)−f(h)) ≥ 0 since
f(·) is non-decreasing. Thus, W (·) is also non-decreasing.
Also, by definition, W (1) = 0, while we had assumed that
C > 0. Thus, W (1) < C. Now, if there exists some h > 1
such that W (h) ≥ C, then we know that there also exists some
H such that W (H) ≤ C ≤ W (H + 1) using monotonicity
of W (·). Observe that this implies that there exists some H
satisfying

Hf
(
H
)
−

H∑
j=1

f(j) ≤ C ≤ (H + 1)f
(
H + 1

)
−

H+1∑
j=1

f(j).

Rearranging and dividing by H , we get back (27). Thus, if
there exists no H satisfying (27), then W (h) < C,∀h.

Since W (·) is a bounded monotone sequence, it converges
to a finite value. It is easy to see that this implies that f(·) is
also bounded and hence converges. We set λ = limh→∞ f(h)
and the cost-to-go function S(h) to be

S(h) =

∞∑
j=h

(
f(j)− λ

)
+ C. (31)



Clearly, S(h) satisfies the recurrence relation

S(h) = f(h)− λ+ S(h+ 1),∀h. (32)

By the monotonicity of f(·), we know that f(h) ≤ λ,∀h.
Thus, using (31) we conclude that S(h) ≤ C, ∀h. This implies
that S(·) satisfies the Bellman equations, with the optimal
policy being to never activate the arm. This completes our
proof.

B. Proof of Theorem 2

For C = 0, it is obvious that the optimal policy is to always
activate the arm since there is no charge for activating it and
the cost function is monotone and positive. For larger values
of C, consider the function W : Z+ → R+ given by

W (h) = hf(h)−
h∑

j=1

f(j). (33)

Observe that since f(·) is non-decreasing, W (·) is also non-
decreasing. This is because W (h + 1) − W (h) = h

(
f(h +

1) − f(h)
)
≥ 0,∀h since f(·) is non-decreasing. Also, by

definition, W (1) = 0, while we had assumed that C > 0.
Thus, W (1) < C. Now, if there exists some h > 1 such that
W (h) ≥ C, then we know that there also exists some H such
that W (H) ≤ C ≤ W (H + 1) using monotonicity of W (·).
Observe that this implies that there exists some H satisfying

Hf
(
H
)
−

H∑
j=1

f(j) ≤ C ≤ (H+1)f
(
H+1

)
−

H+1∑
j=1

f(j). (34)

Rearranging and dividing by H , we get back (27).
Using this, we can relate the optimal threshold values to

values of activation charge. Let C be such that it lies in
the interval

[
W (h),W (h+ 1)

)
, then the optimal policy is of

threshold type with the threshold at h. Observe that if W is
strictly increasing then there can only be one such interval in
which C can lie. If W (·) is non-decreasing, then there could
be multiple such intervals in which C could lie. In this case,
we choose the smallest h such that the condition holds.

The monotonicity of W (·) ensures that the the threshold
value is also monotone non-decreasing with increasing values
of C. When W (h) < C,∀h, we choose h to be ∞, as
done in Appendix A. This completes the proof of indexability
for the decoupled problem. Observe that C = W (h + 1)
is the minimum value of the activation charge that makes
both actions equally desirable in state h. This gives us the
expression for the Whittle index.

C. Proof of Theorem 4

We look at the optimal cyclical policy and analyze its
properties. If there are multiple such cycles, we consider the
cycle with the shortest length. We denote the length of the
cycle by T , points on the cycle to be x1, . . . ,xT , and the
average cost of this cycle to be C∗. The point xi is an age
vector in Z+N

, where x
(j)
i represents the age of the jth source.

Let the corresponding scheduling decisions be d1, . . . , dT .
This implies that for age vector xk, taking action dk leads

to the age vector xk+1, where the subscripts cycle back to
1, 2, . . . after T . Assume that there exists some pair of states
in this cycle that violate the strong-switch-type property. If not,
then our claim that the cycle satisfies the strong-switch-type
property is true.

Without loss of generality, we assume that the pair of states
that violates strong-switch is given by x1 and xk for some
k ∈ {2, . . . , T}. This is because the cyclical policy is same
up to cyclical permutations, so we can always ensure that one
member of the violating pairs is at the front of the cycle.
Also without loss of generality, we assume that d1 = 1 and
dk = 2, since we can always relabel the sources. Observe that
d1 and dk cannot be the same since they violate the strong-
switch property. In fact, we know that x

(j)
k ≤ x

(j)
1 ,∀j ̸= 1

and x
(1)
k ≥ x

(1)
1 . If the strong-switch property was satisfied,

dk must have been 1 since d1 is 1.
We now construct two new cyclical policies out of which at

least one has a better cost or the same cost but a smaller length
compared to the original optimal policy. This contradicts our
original assumption that the cycle we had started with was the
shortest policy with the lowest average cost. Starting with the
state x1, we take the action d1, following the original cycle up
to xk. At xk, instead of taking action dk, we take the action
d1 leading to the state yk+1. Observe that yk+1 ≤ x2, where
the inequality is element-wise. Since d1 = 1, we schedule
source 1 at both x1 and xk, which guarantees that its age
goes to 1. Thus, x(1)

2 = y
(1)
k+1 = 1. Also, since x

(j)
k + 1 ≤

x
(j)
1 +1,∀j ̸= 1 and none of the other sources are scheduled,

so y
(j)
k+1 ≤ x

(j)
2 ,∀j ̸= 1. Together, this implies yk+1 ≤ x2.

Now, we follow the original cycle starting from d2, . . . , dT .
Action d2 at state yk+1 leads to state yk+2 and so on, up
to action dT at state yk+T−1. Since the channels are reliable
and yk+1 ≤ x2, it is easy to see that yk+i ≤ xi+1,∀i ∈
{1, . . . , T − 1}.

Also, observe that starting at xk, we have repeated an
entire period of the original cycle, i.e. d1, . . . , dT . Every
source gets activated at least once during the original cy-
cle, otherwise, its age goes to infinity, and we might as
well remove it from the system. Starting at any age vector
and following the actions d1, . . . , dT in sequence ensures
that the state reached after these T steps equals x1. Thus,
the actions {d1, . . . , dk−1, d1, . . . , dT } and the age vectors
{y1, . . . ,yk,yk+1, . . . ,yk+T−1} form a cycle of length k+
T−1. Here yi = xi,∀i ∈ 1, . . . , k and yk+i ≤ xi+1,∀i ≥ 1.
We denote the average cost of this cycle by C1.

Now, we perform a cyclic permutation of the original
optimal policy to get a new optimal policy with the ac-
tions {dk, . . . , dT , d1, . . . , dk−1} and the corresponding states
{xk, . . . ,xT ,x1, . . . ,xk−1}. We repeat the process of con-
structing a new cyclical policy of length 2T − k + 1 as done
above, but using the new cyclic permutation of the optimal
policy. That is, instead of choosing action d1 at xk, we choose
action dk at x1.

This new cyclical policy consists of actions
{dk, . . . , dT , dk, . . . , dT , d1, . . . , dk−1} and the corresponding



age vectors {z1, . . . ,z2T−k+1}, forming a cycle of length
2T − k + 1. Using exactly the same argument as earlier, it is
easy to see that zj = xj+k−1,∀j ∈ {1, . . . , T − k + 1} and
zj ≤ xj ,∀j ∈ {T − k + 2, . . . , 2T − k + 1}. We denote the
average cost of this cycle by C2.

We know that the cost of the optimal policy C∗ is minimum
over the space of all policies, and hence less than or equal to
cost of the first cyclical policy that we created C1. Thus,

C∗ ≤ C1

=⇒ 1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ) ≤ 1

k + T − 1

k+T−1∑
t=1

N∑
j=1

fj(y
(j)
t )

≤ 1

k + T − 1

( k∑
t=1

N∑
j=1

fj(x
(j)
t ) +

k+T−1∑
t=k+1

N∑
j=1

fj(y
(j)
t )

)

≤ 1

k + T − 1

( k∑
t=1

N∑
j=1

fj(x
(j)
t ) +

T∑
t=2

N∑
j=1

fj(x
(j)
t )

)
Simplifying this inequality, we get

1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ) ≤ 1

k − 1

k∑
t=2

N∑
j=1

fj(x
(j)
t ). (35)

Similarly, the average cost of the optimal cycle ∗ is also less
than or equal to the average cost of the second cycle C2. Thus,

C∗ ≤ C2

=⇒ 1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ) ≤ 1

2T − k + 1

2T−k+1∑
t=1

N∑
j=1

fj(z
(j)
t )

≤ 1

2T − k + 1

( T∑
t=k

N∑
j=1

fj(x
(j)
t ) +

N∑
j=1

f1(x
(j)
1 )+

2T−k+1∑
t=T−k+3

N∑
j=1

fj(z
(j)
t )

)

≤ 1

2T − k + 1

( T∑
t=k+1

N∑
j=1

fj(x
(j)
t ) +

N∑
j=1

f1(x
(j)
1 )+

T∑
t=1

N∑
j=1

fj(x
(j)
t )

)
Simplifying this inequality, we get

1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ) ≤ 1

T − k + 1

( T∑
t=k+1

N∑
j=1

fj(x
(j)
t )

+

N∑
j=1

f1(x
(j)
1 )

)
.

Rearranging and simplifying again, we get

1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ) ≥ 1

k − 1

k∑
t=2

N∑
j=1

fj(x
(j)
t ). (36)

From the analysis above, we observe that (35) and (36)
must hold simultaneously. However, if that’s the case then the

inequalities cannot be strict. Also, observe that the cyclical
policy given by actions {d2, ..., dk} has average cost C3 that
satisfies

C3 ≤ 1

k − 1

k∑
t=2

N∑
j=1

fj(x
(j)
t ).

This is because starting at state x2 and following the policy
we end up at state xk, where using the exact same argument
as earlier, taking action dk leads us to a state yk+1 such that
yk+1 ≤ x2. The upper bound follows directly. Also, since
(35) is tight, we get that

C3 ≤ 1

T

T∑
t=1

N∑
j=1

fj(x
(j)
t ).

This is a contradiction, since if the above inequality is strict,
our original policy is no longer optimal and if the inequality
is tight, we have a smaller length cycle with the same cost,
which still contradicts our original assumption that we started
with an optimal cost cycle with minimum length.

D. Proof of Theorem 5

We have shown that the points on the optimal cycle satisfy
the strong-switch-type property. We need to show that we can
assign actions to states that are not on the optimal cycle while
maintaining the strong-switch property, for N ≤ 3.

This can be done in an iterative manner. Consider the set of
points in the state-space that have been assigned an action, and
which satisfy the strong-switch property to be D. Let x /∈ D,
be a new point that we want to assign an action to. There
are three possible scenarios - 1) there exists y ∈ D such that
the strong-switch-type property implies a unique action to be
taken at x, 2) there exists no such y ∈ D and so an arbitrary
action can be chosen at x, and 3) there exist multiple such
points in D, which suggest different actions to be taken at x.

Clearly, for scenarios 1 and 2 above, we can assign an action
to the point x, increase our set to D ∪ {x} and repeat the
procedure for a new point. We claim that if N ≤ 3 then
scenario 3 never occurs. This is sufficient to prove that we can
extend the strong-switch-type property over the entire state-
space.

To prove that scenario 3 doesn’t happen, we start by
assuming the contrary. Let y1 and y2 ∈ D and without loss
of generality, assume that the action taken at y1 is 1 and the
action taken at y2 is 2. Also, to satisfy our assumption of
scenario 3 for x, we require that x(1) ≥ y

(1)
1 , x(2) ≥ y

(2)
2 ,

x(j) ≤ y
(j)
1 ,∀j ̸= 1 and x(k) ≤ y

(k)
1 ,∀k ̸= 2. For these

inequalities to be feasible simultaneously, we need y
(1)
2 ≥ y

(1)
1

and y
(2)
1 ≥ y

(2)
2 .

Now, if there are only two sources, i.e. N = 2, then the
fact that y

(1)
2 ≥ y

(1)
1 and y

(2)
1 ≥ y

(2)
2 together with the

assumption that the action taken at y1 is 1 and the action taken
at y2 is 2, we get that y1 and y2 violate the strong-switch
property, despite being in the set D. This is a contradiction
and completes our proof.



Similarly, consider the setting with three sources (N=3).
Now, there are two possibilities - either y

(3)
1 ≤ y

(3)
2 or

y
(3)
1 > y

(3)
2 . If y(3)1 ≤ y

(3)
2 , then using the fact that y(1)1 ≤ y

(1)
2

and y
(2)
1 ≥ y

(2)
2 , the strong-switch-type property implies that

the action taken at y1 must be 2. However, we assumed that
the action taken at state y1 is 1. Thus, this violates the strong-
switch-type property. Similarly, if y

(3)
1 > y

(3)
2 , then using

the fact that y(1)1 ≤ y
(1)
2 and y

(2)
1 ≥ y

(2)
2 , the strong-switch-

type property implies that the action taken at y2 must be 1.
This again violates our assumption that y1 and y2 satisfy the
strong-switch-type property.

Thus, we have proved that for N ≤ 3, if the optimal cycle
is strong-switch-type then we can find a stationary optimal
policy that is strong-switch-type over the entire state-space.

E. Proof of Theorem 6
We use an inductive argument to prove this result. Assume

that for a scheduling setup with N − 1 sources, every strong-
switch type policy can also be written as an index policy.
Now, consider a functions of age setup with N sources and
reliable channels. Using Theorem 5 we know that there exists
an optimal policy that is strong-switch-type. Let this policy be
π : Z+N → {1, . . . , N}.

Let xi denote the age of the ith source when the current
state is x and let x−i denote the vector comprising of ages of
all sources except i. Consider the minimum age x1 at source
1 such that π(x1,x−1) = 1, for any fixed x−1. That is, for
any fixed value of ages for all other sources, consider the
age at source 1 for which the optimal policy schedules the
first source. This value of x1 may depend on x−1, so we
denote it by xth(x−1). Observe that for all values of x1 such
that x1 ≥ xth(x−1), the strong-switch-type property implies
that π(x1,x−1) = 1. In other words, xth(x−1) acts like a
threshold value such that for all values of age at source 1
above it, the optimal policy schedules the first source. If no
such threshold exists, we let xth(x−1) → ∞.

We append the state space of the first arm by zero, i.e. let
the state space of source 1 be Z0 = Z+ ∪ {0}. Zero is the
minimum age that this source can have and without loss of
generality, we can set f1(0) = 0. If at any time-slot the age
of this source is zero, we let it increases to one in the next
time-slot. Scheduling this source when its age is zero gives
us no benefit, as the age increases by one no matter what our
scheduling decision is. We extend the policy π over this new
state space as follows. Let π′ : Z0×Z+N−1 → {1, . . . , N} be
a mapping that satisfies

• π′(x) = π(x),∀x s.t. x1 ̸= 0.
• if xth(x−1) > 1, π′(0,x−1) = π(xth(x−1)− 1,x−1)
• if xth(x−1) = 1, π′(0,x−1) = πN−1(x−1),

where πN−1(x−1) is an optimal strong-switch-type policy for
the functions of age problem with just the sources 2, . . . , N .
It is easy to see that this new extended policy still satisfies the
strong-switch-type property and is still optimal for the original
problem with all N sources over the extended state space.

Now, we project this new optimal policy π′ on to Z+N−1

to get a new policy π′′ : Z+N−1 → {2, . . . , N} such that

π′′(x−1) = π′(xth(x−1)−1,x−1). This is well defined since
xth(x−1) ≥ 1 and π′(xth(x−1) − 1,x−1) ∈ {2, . . . , N}, by
construction. Also, π′′ is strong-switch-type by construction,
since it is a projection of a strong-switch-type policy onto a
lower dimensional space. If not, then π′ would also violate
the strong-switch-type property.

Now, using our induction assumption, we can find index
functions such that

π′′(x2, . . . , xN ) = arg max
2≤i≤N

{
Fi(xi)

}
for all x, where Fi : Z+ → R are monotonically non-
decreasing functions for all i.

We partition the N − 1 dimensional state space of policy
π′′ into a countable number of sets. Let

Sk ≜ {x : x ∈ Z+N−1

, xth(x) = k},∀k ∈ Z+.

Then, Z+N−1

= ∪∞
k=1Sk and Sk ∩ Sj = {ϕ},∀k, j. Consider

x ∈ Sj and y ∈ Sk such that k > j. Then,

max
2≤i≤N

{
Fi(xi)

}
≤ max

2≤i≤N

{
Fi(yi)

}
. (37)

Suppose the opposite is true, i.e. max
2≤i≤N

{
Fi(xi)

}
>

max
2≤i≤N

{
Fi(yi)

}
. Let m = arg max

2≤i≤N

{
Fi(xi)

}
. Clearly, for

the opposite of (37) to hold we need xm > ym. If we define
z such that zi ≜ max{xi, yi},∀i ∈ 2, . . . , N , then using the
index property of π′′(·) we get

π′′(z) = m.

Also, xth(z) ≥ k. If not, then since z ≥ y, the strong-switch
property implies π′(xth(z),y) = 1, where xth(z) < k. This
violates our assumption that y ∈ Sk.

Now, observe that π′(xth(z) − 1, z) = m, since
π′′(z) = m. Also (j, x2, . . . , xm, . . . , xN ) ≤ (xth(z) −
1, z2, . . . , xm, . . . , zN ) where the inequality holds element-
wise. This is because zi = max{xi, yi}, and j ≤ k − 1 ≤
xth(z)− 1, and xm > ym. Thus, using the strong-switch-type
property of π′(·), we get

π′(j,x) = m.

This contradicts our initial assumption that x ∈ Sj , since that
would imply π′(j,x) = 1. Thus, we conclude that (37) must
be satisfied.

We now construct a monotone function based on the above
discussion. Let

F1(j) ≜ sup
z∈Sj

max
2≤i≤N

{
Fi(zi)

}
,∀j ∈ Z+. (38)

Clearly, since the condition (37) is satisfied, the function F1(·)
is monotone. Also, let

π′′′(x) = arg max
1≤i≤N

{
Fi(xi)

}
,∀x ∈ Z+N

,

where we break ties in lexicographic order. Then π′′′ is the
same our original policy π. This is because for every state x ∈



Sj , the construction of F1 forces us to schedule source 1 for
values of x1 ≥ j and not schedule source 1 for values below j.
This holds for all values of j, which means we replicate the
original scheduling policy π(·). Thus, if we assume strong-
switch-type policies can be written as index policies for a
problem with N − 1 sources, we can also prove the same fact
for N sources.

It is trivial to see that strong-switch-type policies and
index policies are equivalent for the single source decoupled
problem. This is because strong-switch-type policies and index
policies both correspond to monotone threshold policies for the
decoupled problem. Hence, using the principle of induction,
we have the required result.

F. Proof of Theorem 3
Using Corollary 1, we know that there exists some index

policy which is optimal.We observe that for N = 2 index
policies have a specific structure.

Let F1(·) and F2(·) represent the index functions for the
optimal index policy. We set the ages of the two sources
to (1, 1) at time t = 1 and assume that the optimal index
functions are such that F1(1) ≥ F2(1). Then, the policy
schedules source 1 at time t = 1. The new state at time t = 2 is
given by (1, 2). Again, assume that F1(1) ≥ F2(2). Then, the
policy schedules source 1 at time t = 2. The new state at time
t = 3 is given by (1, 3). We keep repeating this process until
we reach state (1, k) at time t = k for which F1(1) < F2(k).
The policy then schedules source 2 and reaches state (2, 1) at
time k+1. Now, since we assumed that F1(1) ≥ F2(1), then
using monotonicity we get F1(2) ≥ F2(1). Thus, the policy
schedules source 1 again and we reach state (1, 2) at time
t = k + 2.

From the above discussion, we see that any index policy
for N = 2 has a cyclic form and the cycle consists one of the
sources being scheduled repeatedly followed by the second
source once. To find the best index policy, which is also the
best policy overall, we just need to find the best policy with
this specific structure.

Without loss of generality, assume that an optimal cyclical
policy is given by scheduling source 1 k times followed by
source 2 once, and repeating this sequence of actions. Now,
consider two cases.

1) Case 1: (k > 1) We compare the cost of the optimal
cycle with a cycle that schedules source 1 k−1 times followed
by source 2 once.∑k

j=1 f2(j) + (k − 1)f1(1) + f(2)

k
≥∑k+1

j=1 f2(j) + kf1(1) + f(2)

k + 1

Simplifying, we get

f1(2)− f1(1) ≥ kf2(k + 1)−
k∑

j=1

f2(j),

i.e. W1(1) ≥ W2(k). The Whittle index policy follows the
optimal policy till the state (1, k).

We then compare the cost of the optimal cycle with a cycle
that schedules source 1 k+1 times followed by source 2 once.∑k+2

j=1 f2(j) + (k + 1)f1(1) + f(2)

k + 2
>∑k+1

j=1 f2(j) + kf1(1) + f(2)

k + 1

Simplifying, we get

(k + 1)f2(k + 2)−
k+1∑
j=1

f2(j) > f1(2)− f1(1),

i.e. W2(k + 1) > W1(1).
Together, this implies that the Whittle Index policy must

also schedule source 1 k times followed by source 2 once,
and repeat this sequence of actions. Hence, the Whittle index
policy is optimal.

2) Case 2: (k = 1) We compare the optimal policy with a
cycle that schedules source 1 twice and source 2 once. Then,
we get

2f1(1) + f1(2) + f2(1) + f2(2) + f2(3)

3
>

f1(1) + f2(1) + f1(2) + f2(2)

2
Simplifying, we get

2f2(3)− f2(1)− f2(2) > f1(2)− f1(1),

i.e. W2(2) > W1(1). Using a symmetrical argument, it is
easy to see that W1(2) > W2(1). Thus, the Whittle Index
policy also schedules each source exactly once, and repeats
this sequence of actions.

Combining the two cases, we conclude that for N = 2 and
reliable channels, the Whittle Index policy is exactly optimal.

G. Proof of Theorem 7
Let S : Z+ → R denote the differential cost-to-go function

for this problem, let u : Z+ → {1, 0} be the stationary optimal
policy and let λ denote the optimal cost. Then, the Bellman
equations are given by

S(h) = f(h) + min
u(h)∈{1,0}

{C + (1− p)S(h+ 1), S(h+ 1)}

−λ,∀h ∈ Z+.
(39)

Without loss of generality we set S(1) = 0. Assume that the
optimal policy has a threshold structure, i.e. there exists H
such that it is optimal to pull the arm (u(h) = 1) for all states
h ≥ H and let it rest otherwise (u(h) = 0). If this the case,
then the Bellman equations for values above the threshold H
reduce to

S(h) = f(h) + C + (1− p)S(h+ 1)− λ,∀h ≥ H. (40)

Solving this recursion and assuming limh→∞(1− p)hS(h) =
0, we get

S(H+ j) =

∞∑
k=j

f(k+H)(1−p)k−j +
C − λ

p
,∀j ≥ 0. (41)



Since f(·) is non-decreasing, it is easy to see that S(h) is
also non-decreasing for all values of h above the threshold H ,
using (41). We will use this fact later. Now, observe that

lim
h→∞

(1− p)hS(h) = lim
h→∞

∞∑
j=h

fi(j)(1− pi)
j

+ lim
h→∞

C − λ

h
(1− pi)

h,∀h ≥ H.

(42)

By the bounded cost assumption, the first term is the limit of
the partial sums of a convergent series, thus it goes to zero.
The second term also goes to zero since p < 1 and λ is finite,
again using the bounded cost assumption. This confirms that
our assumption limh→∞(1−p)hS(h) = 0 was indeed correct.

For h = H − 1, the Bellman equation is given by

S(H − 1) = f
(
H − 1

)
− λ+ S(H)

= f
(
H − 1

)
− λ+

∞∑
k=0

f(k +H)(1− p)k +
C − λ

p
.

(43)

Repeating this k times, we get

S(H − k) =

H−1∑
j=H−k

(f(j)− λ) +

∞∑
j=0

f(j +H)(1− p)j

+
C − λ

p
,∀k ∈ {1, . . . ,H − 1}.

(44)

Now, putting k = H − 1 in the above equation and using the
fact that S(1) = 0, we get

λ =
p
(∑H

j=1 f(j) +
∑∞

k=1 f(k +H)(1− p)k
)
+ C

1 + p(H − 1)
. (45)

If we further assume that the threshold value H satisfies the
condition (11) given in Theorem 7, then we get that

p2(H − 1)

( ∞∑
k=H

f(k)(1− p)k−H

)
− p

(H−1∑
j=1

f(j)

)
≤ C

≤ p2H

( ∞∑
k=H+1

f(k)(1− p)k−H−1

)
− p

( H∑
j=1

f(j)

)
.

(46)

Rearranging terms, dividing by 1 + p(H − 1) and using the
expression for λ from (45), we get

p

( ∞∑
k=0

f(H + k)(1− p)k
)

≤ λ

≤ p

( ∞∑
k=1

f(H + k)(1− p)k−1

)
.

(47)

Simplifying the inequalities in (47), the expression for λ from
(45) and the Bellman solutions (41), we get

S(H) ≤ C

p
≤ S(H + 1). (48)

Using (44), we note that for h < H , S(h) − S(h − 1) =
λ− f(h− 1). Also, using the monotonicity of f(·) and (47),
we get

λ ≥ p

( ∞∑
k=0

f(H + k)(1− p)k
)

≥ p

( ∞∑
k=0

f(H)(1− p)k
)

≥ f(H)

≥ f(h),∀h < H.

(49)

Thus, S(h)−S(h−1) ≥ 0,∀h since we already established
monotonocity for h ≥ H . Since S(·) is non-decreasing, (48)
implies that

S(h) ≤ C + (1− p)S(h),∀h ≤ H, and
S(h) ≥ C + (1− p)S(h),∀h > H.

(50)

Thus, if we find an H that satisfies (11), the threshold policy
using H as a threshold satisfies the Bellman equations and is
optimal.

The one thing that remains to be shown is the case in which
we cannot find some H that satisfies (27). As done earlier, we
define a function W : Z+ → R given by

W (h) = p2(h− 1)

( ∞∑
k=h

f(k)(1− p)k−h

)
− p

( h−1∑
j=1

f(j)

)
.

(51)
Observe that

W (h+ 1)−W (h) =

p2h

[ ∞∑
k=0

(
f(h+ 1 + k)− f(h+ k)

)
(1− p)k

]
+ p2

[ ∞∑
k=0

f(h+ k)(1− p)k
]
− pf(h)

≥ 0,∀h

(52)

since f(·) is non-decreasing. Thus, W (·) is also non-
decreasing. Also, putting h = 1 in the definition of W (h)
we get W (1) = 0, while we had assumed that C > 0.
Thus, W (1) < C. Now, if there exists some h > 1 such
that W (h) ≥ C, then we know that there also exists some
H such that W (H) ≤ C ≤ W (H + 1) using monotonicity
of W (·). Observe that this implies that there exists some H
satisfying (11) and hence the threshold policy is optimal. If
there exists no H satisfying (11), then W (h) < C,∀h.

Since W (·) is a bounded monotone sequence, it converges
to a finite value. It is easy to see that this implies that f(·) is
also bounded and hence converges. We set λ = limh→∞ f(h)
and the cost-to-go function S(h) to be

S(h) =

∞∑
j=h

(
f(j)− λ

)
+ C. (53)

Clearly, S(h) satisfies the recurrence relation

S(h) = f(h)− λ+ S(h+ 1),∀h. (54)



By the monotonicity of f(·), we know that f(h) ≤ λ,∀h.
Thus, using (53) we conclude that S(h) ≤ C, ∀h. This implies
that S(·) satisfies the Bellman equations, with the optimal
policy being to never activate the arm. This completes our
proof.

H. Proof of Theorem 8

This proof is very similar to the indexability proof for the
reliable channels case. For C = 0, it is obvious that the optimal
policy is to always activate the arm since there is no charge for
activating it and the cost function is monotone and positive.
For larger values of C, consider the function W : Z+ → R+

given by

W (h) = p2(h− 1)

( ∞∑
k=h

f(k)(1− p)k−h

)
− p

( h−1∑
j=1

f(j)

)
.

Observe that since f(·) is non-decreasing, W (·) is also non-
decreasing, as discussed in Appendix G. Also, by definition,
W (1) = 0, while we had assumed that C > 0. Thus, W (1) <
C. Now, if there exists some h > 1 such that W (h) ≥ C, then
we know that there also exists some H such that W (H) ≤
C ≤ W (H + 1) using monotonicity of W (·). Observe that
this implies that there exists some H satisfying (11).

Using this, we can relate the optimal threshold values to
values of activation charge. Let C be such that it lies in
the interval

[
W (h),W (h+ 1)

)
, then the optimal policy is of

threshold type with the threshold at h. Observe that if W is
strictly increasing then there can only be one such interval in
which C can lie. If W (·) is non-decreasing, then there could
be multiple such intervals in which C could lie. In this case,
we choose the smallest h such that the condition holds.

The monotonicity of W (·) ensures that the the threshold
value is also monotone non-decreasing with increasing values
of C. When W (h) < C,∀h, we choose h to be ∞, as
done in Appendix G. This completes the proof of indexability
for the decoupled problem. Observe that C = W (h + 1)
is the minimum value of the activation charge that makes
both actions equally desirable in state h. This gives us the
expression for the Whittle index.

I. Proof of Theorem 9

Suppose that the base station knows that the ith process was
at state xi(τ) = x0 at time τ . Further, suppose that it received
no additional updates regarding the ith process up to time-slot
τ +∆. Without loss of generality, we can set τ = 0, since we
can always offset the time-slots by a fixed constant.

Then, using the state evolution equation 13, we know that

xi(1) = Gix0 + wi(0)

xi(2) = G2
ix0 +Giwi(0) + wi(1)

...

xi(∆) = G∆
i x0 +

∆−1∑
k=0

G∆−k−1
i wi(k).

(55)

The base station does not have access to the increments
wi(0), ..., wi(∆− 1). However, it knows that each of them is

i.i.d. and N (0,Σi). Thus, the maximum likelihood of the state
at time ∆ is given by

x̂i(∆) = E[xi(∆)|xi(0) = x0] = G∆
i x0. (56)

Using this, we can now compute the difference between the
actual state and the estimate at the base station

xi(∆)− x̂i(∆) =

∆−1∑
k=0

G∆−k−1
i wi(k). (57)

Observe that this is simply a sum of zero-mean independent
multi-variate normal random variables. Thus, xi(∆)− x̂i(∆)
is also a zero-mean multi-variate normal random variable.

Recall the following standard properties of multivariate nor-
mal random variables. If X ∼ N (0,Σ) and Y = GX is some
linear transformation of X , then Y ∼ N (0, GΣGT ). Further,
if X1 ∼ N (0,Σ1) and X2 ∼ N (0,Σ2) are independent, then
Z = X1 + X2 is distributed as N (0,Σ1 + Σ2). Finally, if
X ∼ N (0,Σ), then E[XTX] = Tr(Σ).

Putting the first two properties together, we observe that

xi(∆)− x̂i(∆) ∼ N
(
0,

∆−1∑
k=0

Gk
iΣi(G

k
i )

T

)
. (58)

Using the last property, we get

ei(∆) = E
[
(xi(∆)− x̂i(∆))T (xi(∆)− x̂i(∆))

]
= E

[
||xi(∆)− x̂i(∆)||22

]
= Tr

(∆−1∑
k=0

Gk
iΣi(G

k
i )

T

)

=

∆−1∑
k=0

Tr
(
(Gk

i )Σi(G
k
i )

T
)

=

∆−1∑
k=0

Tr
(
(Gk

i )
T (Gk

i )Σi

)
≜ fi(∆).

(59)

The last two equalities follow from the linearity of the trace
operator and the fact that Tr(AB) = Tr(BA). This completes
the proof of Theorem 9.

We also want to show that fi(∆) increases monotonically
in ∆. This is straightforward to show, since Gk

iΣi(G
k
i )

T is a
covariance matrix for any k ∈ Z+. This implies that it must be
positive semi-definite, and in turn, must have a non-negative
trace. Now, we consider the difference

fi(∆ + 1)− fi(∆) = Tr
(
(G∆

i )Σi(G
∆
i )

T
)
≥ 0. (60)

The last inequality follows due to the non-negativity of trace
for a positive semi-definite matrix. This shows that fi(∆+1) ≥
fi(∆), which allows us to conclude monotonicity of the AoI
cost functions.

J. Proof of Theorem 10

As we discussed earlier, the estimate distribution at time
τ +∆, given the last observation at time τ is xi(τ), is given
by

x̂i(τ +∆) = xi(τ)Q
∆
i .



Without loss of generality, we can assume that xi(τ) =
[1 0], i.e. the chain at time τ is in state 0. This is because
the chain is symmetric, so it does not matter which state we
start from. Using this, we get the estimate distribution to be

x̂i(τ +∆) =
[
[Q∆

i ]00 1− [Q∆
i ]00

]
. (61)

Further, at time τ+∆ the actual state of the chain is 0 with
probability [Q∆

i ]00 and 1 with probability 1 − [Q∆
i ]00. Thus,

the distribution of the actual state at time τ +∆ is given by

xi(τ +∆) =

{
[1 0], with probability [Q∆

i ]00

[0 1], with probability 1− [Q∆
i ]00.

(62)

Now, suppose that the distance between the actual and
estimate distributions is measured using the Kullback-Leibler
(KL) divergence. Then,

E
[
DKL

(
xi(τ +∆)||x̂i(τ +∆)

)]
= [Q∆

i ]00DKL

(
[1 0]

∣∣∣∣∣∣∣∣[[Q∆
i ]00 1− [Q∆

i ]00
])

+ (1− [Q∆
i ]00)DKL

(
[0 1]

∣∣∣∣∣∣∣∣[[Q∆
i ]00 1− [Q∆

i ]00
])

= −[Q∆
i ]00 log

(
[Q∆

i ]00
)
− (1− [Q∆

i ]00) log
(
1− [Q∆

i ]00
)

= H
(
[Q∆

i ]00
)
.

(63)
Here H(q) ≜ −q log(q) − (1 − q) log(1 − q) is the binary
entropy function.

Now, suppose that the distance between the actual and
estimate distributions is measured using the total variation
(TV) distance. Then,

E
[
DTV

(
xi(τ +∆)||x̂i(τ +∆)

)]
= [Q∆

i ]00DTV

(
[1 0]

∣∣∣∣∣∣∣∣[[Q∆
i ]00 1− [Q∆

i ]00
])

+ (1− [Q∆
i ]00)DTV

(
[0 1]

∣∣∣∣∣∣∣∣[[Q∆
i ]00 1− [Q∆

i ]00
])

= [Q∆
i ]00

(
1− [Q∆

i ]00
)
+ (1− [Q∆

i ]00)[Q
∆
i ]00

= 2[Q∆
i ]00

(
1− [Q∆

i ]00
)

≜ g
(
[Q∆

i ]00
)
.

(64)
Here g(x) = 2x(1−x). This completes the proof of Theorem
10.

In addition, we also need to show that the two functions
derived above are monotonically increasing. To do so, we will
simplify our notation a bit. Let µ0 = [Q∆

i ]00 by µ0 and µ1 =
1− µ0 = [Q∆

i ]01. Further, let ν0 = [Q∆+1
i ]00 = µ0(1− qi) +

(1− µ0)qi and ν1 = [Q∆+1
i ]01 = 1− ν0 = µ1(1− qi) + (1−

µ1)qi. We will split the proof into two cases.
Case 1 (KL Divergence): Note that the function x log(x)

is convex for all x > 0, since d2

dx2 (x log(x)) =
1
x > 0,∀x > 0.

Using this fact and the definitions of ν0 and ν1, we obtain the
following inequalities:

(1− qi)µ0 log(µ0) + qiµ1 log(µ1) ≥ ν0 log(ν0), (65)

(1− qi)µ1 log(µ1) + qiµ0 log(µ0) ≥ ν1 log(ν1), (66)

Now, we look at the difference:

H
(
[Q∆+1

i ]00
)
−H

(
[Q∆

i ]00
)
=(

(1− qi)µ0 log(µ0) + qiµ1 log(µ1)− ν0 log(ν0)

)
+

(
(1− qi)µ1 log(µ1) + qiµ0 log(µ0)− ν1 log(ν1)

)
≥ 0. (67)

The inequality above follows by applying (65) and (66). This
proves that the monitoring error grows monotonically with the
AoI for KL divergence.

Case 2 (TV distance): Note that the function 2x(1 − x)

is concave for all x, since d2

dx2 (2x(1 − x)) = −2 < 0,∀x.
Using this fact and the definitions of ν0 and ν1, we obtain the
following inequalities:

(1− qi)2µ0(1− µ0) + qi2µ1(1− µ1) ≤ 2ν0(1− ν0), (68)

(1− qi)2µ1(1− µ1) + qi2µ0(1− µ0) ≤ 2ν1(1− ν1), (69)

Now, we look at the difference:

g
(
[Q∆+1

i ]00
)
− g

(
[Q∆

i ]00
)
=(

2ν0(1− ν0)− (1− qi)2µ0(1− µ0)− qi2µ1(1− µ1)

)
+

(
2ν1(1− ν1)− (1− qi)2µ1(1− µ1)− qi2µ0(1− µ0)

)
≥ 0. (70)

The inequality above follows by applying (68) and (69). This
proves that the monitoring error grows monotonically with the
AoI for TV distance as well.
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