
1

Error-correcting Codes
for Noisy Duplication Channels

Yuanyuan Tang and Farzad Farnoud
Electrical & Computer Engineering, University of Virginia, {yt5tz,farzad}@virginia.edu

Abstract

Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data storage
needs. Compared to conventional storage media, however, data stored in DNA is subject to a wider range of errors resulting from
various processes involved in the data storage pipeline. In this paper, we consider correcting duplication errors for both exact and
noisy tandem duplications of a given length k. An exact duplication inserts a copy of a substring of length k of the sequence
immediately after that substring, e.g., ACGT → ACGACGT, where k = 3, while a noisy duplication inserts a copy suffering from
substitution noise, e.g., ACGT → ACGATGT. Specifically, we design codes that can correct any number of exact duplication
and one noisy duplication errors, where in the noisy duplication case the copy is at Hamming distance 1 from the original. Our
constructions rely upon recovering the duplication root of the stored codeword. We characterize the ways in which duplication
errors manifest in the root of affected sequences and design efficient codes for correcting these error patterns. We show that the
proposed construction is asymptotically optimal, in the sense that it has the same asymptotic rate as optimal codes correcting
exact duplications only.

Index Terms

DNA storage, exact tandem duplication, noisy tandem duplication, error-correcting codes

I. INTRODUCTION

The rapidly increasing amount of data and the need for long-term data storage have led to new challenges. In recent
years, advances in DNA sequencing, synthesis, and editing technologies [20], [16] have made deoxyribonucleic acid (DNA)
a promising alternative to conventional storage media. Compared to traditional media, DNA has several advantages, including
high data density, longevity, and ease of copying information. For example, it may be possible to recover a DNA sequence
after 10, 000 years and a single human cell contains an amount of DNA that can ideally hold 6.4 Gb of information [20].
Research in the past few years has led to significant advances, such as the ability to provide random-access to the data [21]
as well as a DNA storage system with portable size [19]. Nevertheless, there are still significant challenges to be overcome.
One obvious challenge is that a diverse set of errors is possible, including substitutions, duplications, insertions, and deletions.
This paper focuses on error-correcting codes for noisy duplication channels. In such case, in addition to exact duplications, a
noisy duplication, where an approximate copy is inserted into the sequence, may occur.

In duplication channels, (tandem) duplication errors generate copies of substrings of the sequence and insert each copy
after the original substring [5]. This type of channel was first studied in the context of recovering from timing errors in
communication systems that led to individual symbols being repeated [2]. The copying mechanism of DNA, however, allows
multiple symbols being repeated, for example, via slipped-strand mispairings, where the slippage of the molecule copying
DNA causes a substring to be repeated [5]. Properties of duplication in DNA have been studied from various vantage points,
including the theory of formal languages and the entropy of DNA sequences (see, e.g., [10] and references therein). Codes
for correcting duplication errors in the context of data storage in the DNA of living organisms, such as bacteria [12], were
studied by [5], where optimal constructions for correcting exact duplications of constant length were presented. This and
related problems were then further studied by a number of works including [6], [22], [8], [9], [1], [16]. Most related to this
paper is [16], which studies error correction in duplication and substitution channels, when substitutions are independent from
duplications and when they only occur in copies generated by duplications. The latter model, i.e., the noisy duplication model,
which is motivated by the abundance of inexact copies in tandem repeat stretches in genomes [11], is the model studied in
this work.

In the noisy duplication channel, two types of errors are possible: i) exact duplications, which insert an exact copy of
a substring in tandem, such as ACGTC → ACGTCGTC; and ii) noisy duplications, which insert approximate copies, e.g.,
ACGTC→ ACGTCTTC. In both cases, the length of the duplication refers to the length of the duplicated substring (3 in our
preceding examples). In this paper, we limit our attention to exact and noisy tandem duplications of length k, referred to as
k-TDs and k-NDs, respectively. Furthermore, we only consider noisy duplications where the copy and the original substring

This work was supported in part by NSF grants under grant nos. 1816409 and 1755773. This paper was presented in part at the 57th Annual Allerton
Conference on Communication, Control, and Computing in 2019 [17].

ar
X

iv
:2

00
8.

08
17

4v
1

 [
cs

.I
T

]
 1

8
A

ug
 2

02
0

2

differ in one position. In other words, each noisy duplication can be viewed as an exact duplication followed by a substitution
in the inserted copy. One may also consider left duplications, which add the copy before the substring, as opposed to right
duplications discussed above. Left and right duplications are the same for exact duplications but not for noisy duplications. If
the direction is known, codes proposed here for right duplications can be applied to left duplications by reversing the sequence.
Stronger codes are needed to correct the errors if the direction is unknown.

We will design codes that correct (infinitely) many k-TD and a single k-ND errors, as a step towards codes that can correct
t1 k-TDs and t2 k-NDs, for given t1 and t2. The proposed codes will rely on finding the duplication root of the stored
codeword. The duplication root of a sequence x is the sequence obtained from x by removing all repeats of length k. While
k-TDs do not alter the duplication root, k-NDs do. Thus, we will first analyze the effect of noisy duplications on the root
of the sequence. We show that the root may change in a variety of ways, leading to several error patterns. We then design
efficient error-correcting codes that correct these errors via a number of transforms that simplify the different error patterns.

For codes capable of correcting any number of exact duplications, the best possible asymptotic rate (i.e., the limit of the
rate for code length n→∞, as defined in (17)) was given in [5] as

1−
(q − 1) logq e

qk+2
+ o(q−k), (1)

where o(q−k) represents terms whose ratio to q−k vanishes as k becomes larger. The question arises as to whether it is possible
to correct an additional noisy duplication without a rate penalty. It is worth noting that the best known code for correcting an
additional unrestricted substitution, i.e., a substitution that can occur anywhere rather than in a copy generated by duplication,
has rate that is bounded from below by [16]

1− 2

k
logq

q

q − 1
+ o(1). (2)

which indicates a rate penalty. In contrast, we show that the proposed codes have the same asymptotic rate as (1), and are thus
asymptotically optimal.

We note that for q = 4, which is of interest in DNA storage, and for k = 2, 3, 4, the asymptotic rates of optimal codes
correcting any number of exact k-TDs can be shown to equal 0.9613, 0.9912, 0.9979, respectively [5]. The fact that these
values are close to 1 indicates that the rate penalty for correcting an infinite number of exact duplication errors compared to
only correcting a finite number is not significant and diminishes as k grows. In this work, we have focused on correcting many
exact duplications rather than a finite number.

This paper is organized as follows. The notation and preliminaries are given in Section II. In Section III, we analyze the
error patterns that manifest as the result of passing through the noisy duplication channel. Finally, the code construction and
the corresponding code size are presented in Section IV.

II. NOTATION AND PRELIMINARIES

Throughout the paper, Σq represents a finite alphabet of size q, assumed without loss of generality to be {0, 1, . . . , q − 1}.
We use Σ+

q to denote the nonzero elements of Σq and Σ∗q to denote all strings of finite length over Σq . In particular, Σ∗q
includes the empty string Λ. Furthermore, Σn

q represents the strings of length n over Σq and Σ≤nq is the set of strings of length
at most n. The set {1, . . . , n} is represented by [n].

We use bold symbols, such as x and yj , to denote strings over Σq . The entries of strings are shown with normal symbols, e.g.,
x = x1x2 · · ·xn and yj = yj1yj2 · · · yjm, where xi, yji ∈ Σq . The indices of elements of words over Σ∗q start from 1, unless
otherwise stated. For two words x,y ∈ Σ∗q , their concatenation is denoted as xy, and xm represents the concatenation of m
copies of x. Given a word x ∈ Σ∗q , the length of x is represented as |x|. In addition, for a word x ∈ Σ∗q , the Hamming weight
wt(x) denotes the number of non-zero symbols in x. If a word x ∈ Σ∗q can be expressed as x = uvw with u,v,w ∈ Σ∗q ,
then v is a substring of x.

Given a word x ∈ Σ∗q , an (exact) tandem duplication of length k (k-TD) generates a copy of a substring v of x of length
k and inserts the copy immediately after v. More specifically, a k-TD can be expressed as [5]

Ti,k(x) =

{
uvvw if x = uvw, |u| = i, |v| = k

x if |x| < i+ k
(3)

For example, given the alphabet Σ3 = {0, 1, 2} and k = 3, a k-TD may result in

x = 1201210→ x′ = T1,3(x) = 1201201210, (4)

where the underlined substring 201 is the copy. We refer to x′ as a k-TD descendant of x.
Given a word x ∈ Σn

q n ≥ k, the k-discrete-derivative transform [5] is defined as φ(x) = (φ̂(x), φ̄(x)), where

φ̂(x) = x1 · · ·xk, φ̄(x) = xk+1 · · ·xn − x1 · · ·xn−k. (5)

3

where the subtraction is performed entry-wise modulo q. Continuing the example given in (4) with k = 3 and q = 3,

x = 1201210→ x′ = 1201201210,

φ(x) = 120, 0012→ φ(x′) = 120, 0000012.
(6)

As seen in the example, after the k-TD in x, φ̄(x′) can be obtained by inserting 0k into φ̄(x), immediately after the i-th
entry.

Copies generated by tandem duplications may not be always perfect. That is, the copy may not always be exact. Such a
duplication is referred to as a noisy duplication. In this paper, we limit our attention to noisy duplications in which the copy
is at Hamming distance 1 from the original. Continuing example (4), one symbol in the copy 201 may change,

x′ = 1201201210→ x′′ = 1201101210,

φ(x′) = 120, 0000012→ φ(x′′) = 120, 0200112.

As seen in the example, a noisy duplication of length k (k-ND) can be regarded as an exact k-TD followed by a substitution.
Given a word x ∈ Σ∗q , the tandem duplication results in x′ = Ti,k(x) and the following substitution results in x′′ =
Ti,k(x) + aej , where (i + k + 1) ≤ j ≤ (i + 2k), a ∈ Σ+

q , and ej represents a unit vector with 1 in the j-th entry and 0

elsewhere. Note that the first k elements are not affected by exact or noisy duplications and φ̂(x) = φ̂(x′) = φ̂(x′′). Hence,
we focus on changes in φ̄(·). The substitution changes at most two symbols of φ̄(x′) and can be expressed as

φ̄(x′′) = φ̄(x′) + aεj , (7)

where εj = ej−k − ej if (k + 1) ≤ j ≤ (|x′| − k) and εj = ej−k if (|x′| − k + 1) ≤ j ≤ |x′|. We refer to x′′ as a k-ND
descendant of x.

Since noisy duplications may occur at any position, the word x can generate many descendants through noisy duplication
errors. Let Dt(p)

k (x) denote the descendant cone of x obtained after t duplications, p of which are noisy, where t ≥ p.
Furthermore, the descendant cone with many exact k-TDs and at most P noisy duplications, i.e., at most P substitution errors,
can be expressed as

D
∗(≤P)
k (x) =

p=P⋃
p=0

∞⋃
t=p

D
t(p)
k (x). (8)

In this paper, we limit our attention to P = 1.
We define a mapping operation µ : Σ∗q → Σ∗q by removing all runs of 0k in z ∈ Σ∗q . More specifically, consider a string z

as
z = 0m0w10m1 · · ·wt0

mt+1 ,

where t = wt(z), w1, . . . , wt ∈ Σ+
q , and m0, . . . ,mt+1 are non-negative integers. The mapping µ(z) is defined as

µ(z) = 0m0 mod kw10m1 mod k · · ·wt0
mt+1 mod k.

Also, RLL(m) denotes the set of strings of length m containing no 0k. In other words, RLL(m) = {z ∈ Σm
q |µ(z) = z}.

According to [5], given a word x ∈ Σ∗q , after many (even infinite) k-TD errors, the string (φ̂(x), µ(φ̄(x))) stays the same.
To make use of this property, define the duplication root drt(x) as the string obtained from x after all copies of length k are
removed. Note that we then have

φ(drt(x)) = (φ̂(x), µ(φ̄(x))). (9)

If drt(x) = x, we call the word x irreducible. The set of all irreducible words of length n can be written as Irr(n) = {x ∈
Σn

q |drt(x) = x}. In other words, an irreducible word x ∈ Σn
q satisfies φ̄(x) ∈ RLL(n− k).

For a word z ∈ Σ∗q , we define its indicator Γ(z) : Σ∗q → Σ∗2 as Γ(z) = Γ1(z) · · ·Γ|z|(z), where

Γi(z) =

{
1, if zi 6= 0,

0, otherwise.
i = 1, . . . , |z|. (10)

Based on (7), the substitution in a noisy duplication alters two symbols in φ̄(x′) at distance k. For the purpose of error
correction, it will be helpful to rearrange the symbols into k strings such that the two symbols affected by the substitution
appear next to each other in one of the strings. More precisely, for j ∈ [k], we define a splitting operation that extracts entries
whose position is equal to j modulo k. That is, for u ∈ Σn

q and j ∈ [k], define Spk(u, j) = uj = (uj1, uj2, . . . , uj,bn−j
k c+1)

such that
uji = uj+(i−1)k, 1 ≤ i ≤

⌊
n− j
k

⌋
+ 1. (11)

4

For u ∈ Σn
q , we then define the interleaving operation IL : Σn

q → Σn
q as the concatenation of Spk(u, j), j ∈ [k],

IL(u) = Spk(u, 1) · · · Spk(u, k).

Example 1. Given an alphabet Σ3 = {0, 1, 2}, k = 3, and u′ = φ̄(x′) = 221200012,where symbols at the same position
modulo k have the same color, after splitting u′, we obtain

u′1 = Sp3(u′, 1) = 220,

u′2 = Sp3(u′, 2) = 201,

u′3 = Sp3(u′, 3) = 102,

IL(u′) =u′1u
′
2u
′
3 = 220201102.

Based on (7), after one substitution error, we may obtain u′′ = φ̄(x′′) = 221201011, where symbols affected by the substitution
error are underlined. We then have

u′′1 = Sp3(u′′, 2) = 201,

u′′2 = Sp3(u′′, 1) = 220,

u′′3 = Sp3(u′′, 3) = 111,

IL(u′′) =u′′1u
′′
2u
′′
3 = 220201111.

We observe that the error is restricted to u′′3 and that the two symbols changed by the substitution error are adjacent in
IL(u′′), while they are not so in u′′.

Given a word z ∈ Σn
q , we define the cumulative-sum operation CS : Σn

q → Σn
q , as r = CS(z), where

ri =

i∑
t=1

zt mod q, i = 1, . . . , n. (12)

We further define the odd subsequence Od(z) and the even subsequence Ev(z) of a word z ∈ Σ∗q as two sequences
containing symbols in the odd and even positions, respectively. More precisely, Od(z) = Sp2(z, 1) and Ev(z) = Sp2(z, 2).

Our results will rely on codes that can correct a single insertion or deletion. We thus recall the Varshamov-Tenengolts codes
[15], [18], which are binary codes capable of correcting a single insertion or deletion (indel).

Construction 1 ([15]). Given integers m ≥ 1 and 0 ≤ α ≤ (m− 1), the binary Varshamov-Tenengolts (VT) code CV T (α,m)
is given as

CV T (α,m) = {z ∈ Σ≤m−12 |
|z|∑
i=1

izi = α mod m}. (13)

We note that there is a minor difference between this construction and the original VT code. Namely, we allow strings of
length at most m − 1 rather than exactly m − 1. If the length of the stored word is known, it follows from the proof of the
VT code that the code in the construction above can correct a singel indel.

Compared to the binary indel-correcting code, correcting indels in non-binary sequences is more challenging. We will use
Tenengolts’ q-ary single-indel-correcting code [18], which relies on the mapping ζ : Σ∗q → Σ∗2, where the i-th position of ζ(z)
is

ζi(z) =

{
1, if zi ≥ zi−1,
0, if zi < zi−1.

i = 2, 3, . . . , |z|. (14)

with ζ1(z) = 1.

Construction 2 ([18]). For integers m ≥ 1, 0 ≤ α ≤ (q − 1) and 0 ≤ β ≤ (m− 1), Tenengolts’ q-ary single indel-correcting
code CTq(α, β,m) over Σ≤mq is given as

CTq(α,β,m) =

{
z ∈ Σ≤mq

∣∣∣∣ |z|∑
j=1

zj = α mod q,

|z|∑
i=1

(i− 1)ζi(z) = β mod m

}
.

(15)

Again, we allow codewords of length at most m, rather than exactly m as was the case in Tenengolts’ original construction.
If the length of the stored codeword is known, it follows from the proofs of the VT code that we can recover the binary
sequence ζi(z) with |z| ≤ m. Then the code in the construction above can correct a single indel in z.

5

Given a family of codes C = {Cn}n, where Cn ⊆ Σn
q , the code rate is defined as

Rn(C) =
1

n
logq |Cn|, (16)

where |C| denotes the size of the code C. Furthermore, the asymptotic rate is defined as

R(C) = lim sup
n→∞

Rn(C). (17)

If the meaning is clear from the context, we may refer to both the family and individual codes as C and write Rn(C), R(C)
to refer to the rates for a given construction.

III. NOISY DUPLICATION CHANNELS

To enable designing error-correcting codes, in this section, we study the relation between the input and output sequences in
noisy duplication channels. As before, we consider channels with many (possibly infinite) exact duplications and at most one
noisy duplication in which one of the copied symbols is altered.

If a code C ∈ Σn
q corrects many k-TD and one k-ND errors, then for any two distinct codewords c1, c2 ∈ C, we have

D
∗(≤1)
k (c1) ∩D∗(≤1)k (c2) = ∅, (18)

where D∗(≤1)k (·) is defined in (8). This can be shown to be equivalent to

drt(c2) 6= drt(c1),

drt(D
∗(≤1)
k (c1)) ∩ drt(D

∗(≤1)
k (c2)) = ∅.

(19)

Since k-TDs do not alter the root of the sequence, drt(c2) 6= drt(c1) ensures that k-TD errors can be corrected. Noisy
tandem duplications however alter the roots. In fact, they may produce sequences with roots whose lengths are different from
the roots of the stored sequences. Since the codewords have distinct roots, it suffices to recover the root of the retrieved word
to correct any errors. We will restrict our constructions to codes whose codewords are irreducible, and thus are their own roots.
While this is not necessary, it will simplify the code construction, as we will show, and does not incur a large penalty in terms
of the size of the code.

For noisy duplication channels, given a codeword x ∈ Σn
q , the generation of descendants x′′ ∈ D∗(≤1)k (x) includes three

different cases: only k-TDs; k-TDs followed by one k-ND; and k-TDs, followed by a k-ND, followed by more k-TDs. Since
the root is not affected by the k-TDs, to study drt(D

∗(≤1)
k (x)), we only need to consider the second case, i.e., we focus on

descendants x′′ immediately after the noisy duplication.
Given an irreducible string x ∈ Σn

q with n > 2k, our goal is to characterize drt(D
∗(≤1)
k (x)). Based on (5), we have

φ(x) = (φ̂(x), φ̄(x)) = (y, z), (20)

where y = φ̂(x) ∈ Σk
q and z = φ̄(x) ∈ Σn−k

q . Since x is an irreducible string, the string z contains no runs of 0k, i.e.
z = µ(z).

After many k-TDs and one k-ND, we have a descendant x′′ ∈ D∗(≤1)k (x). Since the substitution only occurs in the copy,
the first k symbols always stay the same. Thus x′′ satisfies

φ(x′′) = (φ̂(x′′), φ̄(x′′)) = (φ̂(x), φ̄(x′′)) = (y, z′′). (21)

Based on (9), it suffices to study the problem in the transform domain, i.e., we want to obtain all possible (y, µ(z′′)) derived
from (y, µ(z)). Our code constructions in the next section will also rely on certain sequences derived from µ(z). The next
theorem characterizes how these sequences can be altered by k-TDs and one k-ND. The theorem relies on the indicator map
Γ, defined in (10), and on the splitting operation defined in (11).

Theorem 1. Let x ∈ Σn
q and let x′′ ∈ D∗(≤1)k (x) be a descendent of x (produced by passing through the noisy duplication

channel). Furthermore, let

z = φ̄(x), µ = µ(z),

µj = Spk(µ, j), sj = Γ(µj),

Then we define z′′,µ′′,µ′′j , s
′′
j , similarly, based on x′′. The differences between sequences defined based on x and x′′ are

given in Table I and Table II.

The theorem is proved in the appendix. To illustrate the theorem, we provide an example (in the transform domain).

6

Table I
THE CHANGES IN µj AND sj , j ∈ [k] AS A RESULT OF EXACT AND NOISY DUPLICATIONS, WHEN THE POSITION OF THE SUBSTITUTION IN x′′ SATISFIES
k < p ≤ (|x′′| − k). HERE a, b, c ∈ Σq , d ∈ Σ2 , ā = −a, AND a, b 6= 0. FURTHERMORE, Λ→ u AND u→ Λ REPRESENT INSERTION AND DELETION

OF THE STRING u, RESPECTIVELY. ROWS MARKED BY (∗) INDICATE THAT THIS TYPE OF ERROR OCCURS FOR AT MOST ONE VALUE OF j ∈ [k]. THE
MARKING ($) IS RELATED TO THE ERROR-CORRECTION STRATEGY DISCUSSED IN SECTION IV.

|µ′′| − |µ| µ→ µ′′ µj → µ′′j sj → s′′j

+2k insert 0j−1a0k−j and
0t−1(0− a)0k−t

Λ→ aā (∗)
Λ→ 00 ($)
c→ 0c0 ($)

Λ→ 11
Λ→ 00
d→ 0d0

+k
insert 0j−1a0k−j and sub-
stitute bi → (bi − a)

c→ a(c− a), c 6= a (∗)
a→ a0 (Λ→ 0) ($)
Λ→ 0 ($)

0→ 11, 1→ 11
1→ 10 (Λ→ 0)
Λ→ 0

substitute 0 → a and insert
0t−1(0− a)0k−t

0→ aā (∗)
Λ→ 0 ($)

0→ 11
Λ→ 0

0 insert 0j−1a0k−j and
delete 0t−1a0k−t with a at
the same position

b0→ 0b ($)
stay same

10→ 01
stay same

substitute 0 → a and bi →
(bi − a) with distance k

0c→ a(c− a) (∗, $)
stay same

00→ 11, 01→ 11, 01→ 10
stay same

−k substitute 0 → a and delete
0t−1a0k−t

0→ Λ ($) 0→ Λ

Table II
THE CHANGES IN µj AND sj , j ∈ [k] AS A RESULT OF EXACT AND NOISY DUPLICATION, WHEN THE POSITION OF THE SUBSTITUTION IN x′′ SATISFIES

(|x′′| − k) < p ≤ |x′′|. THE NOTATION IS THE SAME AS THAT OF TABLE I.

|µ′′| − |µ| µ→ µ′′ µj → µ′′j sj → s′′j

+k insert 0j−1a0k−j Λ→ a (∗)
Λ→ 0 ($)

Λ→ 1
Λ→ 0

0 substitute 0→ a 0→ a (∗, $)
stay same

0→ 1
stay same

Example 2. Consider Σ3 = {0, 1, 2}, k = 3, and µ = µ(z) = z = 120102002120. Suppose that after several k-TDs, the
descendant is z′ = 0310320031020020610320. Next a k-ND may insert a substring 03 (marked red below) and alter one or
two symbols (underlined). Depending on the positions of the duplication and substitution, the following cases are possible:
• If z′′ = 03020110020031020020610320, then µ′′ = µ(z′′) = 020110020102002120 and |µ′′| − |µ| = 2k, as in the 1st

row of Table I.
• If z′′ = 0310320031020020610302021, then µ′′ = µ(z′′) = 120102002102021 and |µ′′| − |µ| = k, as in the 2nd row of

Table I.
• If z′′ = 0310320030011010020610320, then µ′′ = µ(z′′) = 121101002120 and |µ′′| = |µ|, as in the 3rd row of Table I.
• If z′′ = 0310320030021000020610320, then µ′′ = µ(z′′) = 122102120 and |µ′′|−|µ| = −k, as in the 4th row of Table I.

Since the length of µ can change by −k, 0, k, or 2k, the noisy duplication may manifest as deletions, insertions, or
substitutions in µ. Furthermore, the complex error patterns in µ are simplified when we consider µj , j ∈ [k]. The errors
marked by (∗) occur for at most one value of j. These correspond to positions affected by the substitution. (Rows marked by
($) relate to our error-correction strategy and are discussed in the next section.

We note that for correcting any number of exact duplications and t noisy duplications, each containing a single substitution,
a description of the channel can be obtained based on Tables I and II. This is because the tables describe the effect of a
sequence of many exact duplications and one noisy duplication on the root of the sequence (and its derived subsequences) and
because a sequence of errors containing t noisy duplications can be divided into t parts, each consisting of a number of exact
duplications and a single noisy duplication. In particular, the length of the root may change by −2k,−k, 0, k, 2k, 3k, or 4k
for two noisy duplications. If each noisy duplication contains more than one substitution, however, characterizing the channel
becomes more challenging as the number of possible cases grows.

Now that we have determined all changes from (y,µ) to (y,µ′′) resulting from passing through the noisy duplication
channel, we consider the code design to correct many exact k-TDs and at most one noisy duplication in the next section.

IV. ERROR-CORRECTING CODES

FOR NOISY DUPLICATION CHANNELS

Recall from Section III that we are interested in constructing a code C ⊆ Irr(n) ∩ Σn
q that can correct many exact k-TDs

and at most one noisy duplication. Based on (19), for any code that corrects k-TDs, two distinct codewords must have distinct

7

x

z

φ̄

drt(x)

drt

µ

µ

φ̄

µj

Sp
k

sj

Γ

IL(µ)

Concat.

r
CS

Figure 1. The various mapping used in the paper. “Concat.” stands for concatenation. Solid edges indicate invertible mappings, where we have assumed
x1 · · ·xk is known, since these symbols are not affected by the channel. The mapping µ is generally non-invertible, but in our constructions, since we assume
x is irreducible, if we recover µ = µ(x), we can recover x.

roots. Thus, for a stored codeword x and the retrieved word x′′, if we can recover the duplication root drt(x) of x from x′′,
we can recover the codeword x. But we have made a further simplifying assumption that C ⊆ Irr(n) and thus x = drt(x).

As shown in Theorem 1, duplication errors manifest in various ways in drt(x′′) and its counterpart in the µ-transform
domain µ(φ̄(x′′)). Hence, for error correction, we utilize several sequences derived from x, including µj and sj , j ∈ [k], as
defined in Theorem 1. Furthermore, we define r = CS(IL(µ)) and r′′ = CS(IL(µ′′)). We note that r (similarly r′′) can be
directly found by rearranging the elements xk+1 · · ·xn.

The relationship between these mappings is illustrated in Figure 1. In the figure, solid edges represent invertible mappings.
Since x is irreducible, the stored codeword can be recovered if any of µ, (µj)j∈[k], IL(µ) or r are recovered (note that
x1 · · ·xk are not affected by errors). We use these mappings to simplify and correct different error patterns described by
Theorem 1 in an efficient manner.

The motivation behind defining µj , j ∈ [k], is to convert insertions and deletions of blocks of length k into simpler errors
involving one or two symbols. Some of the errors, marked by ($) in Tables I and II, involve 0s, which appear in the same
positions in sj and µj . Correcting these errors in sj is more efficient since it will rely on binary codes rather than q-ary codes.
We will first correct these errors in sj and then correct the corresponding µj . Finally, the cumulative-sum mapping CS turns
errors marked by (∗), e.g., Λ → aā into a single q-ary insertion or substitution. Importantly, in each case there is only one
such error. So if other errors are corrected, we can concatenate µj , j ∈ [k], and then correct the single occurrence of this error.

We will construct an error-correcting code that will allow us to recover µ from µ′′. As discussed, for certain errors occurring
in µj , specifically those marked by ($) in Tables I and II, we may do so by correcting errors in sj , via Construction 3 below.

The indicator vectors (s1, . . . , sk) are subject to several error patterns: insertion of 11; insertion of two 0s with distance at
most 2; indel of 1 or 0; swaps of two adjacent elements; and substitution of one or two 0s with one or two 1s. The following
code can correct a single occurrence of one of these errors, as shown in the next theorem. A slightly modified version of this
code is used for the noisy duplication channel.

Construction 3. Given integers 0 ≤ a ≤ 2(n+ 1), 0 ≤ b ≤ 4, and 0 ≤ c ≤ 2n, we construct the code C(a,b,c) as

C(a,b,c) = {u ∈ Σn
2 |u ∈ CV T (a, 2n+ 3), (22)

n∑
i=1

ui = b mod 5, (23)

n∑
i=1

i

j=i∑
j=1

uj

 = c mod (2n+ 1)}, (24)

where n = |u|.

Theorem 2. The code C(a,b,c) can correct a single occurrence of any of the following errors (without a priori knowledge of
the type of error):
• an insertion, deletion, or substitution,
• a substitution of two adjacent bits,
• a substitution of one bit by two adjacent bits,
• an insertion of two bits of the form Λ→ 11, Λ→ 00, or 1→ 010.

These error patterns include all those shown in the sj column of Tables I and II.

The theorem is proved in the appendix.

8

Since (s1, . . . , sk) are weight indicators of (µ1, . . . ,µk), the 0s in (s1, . . . , sk) and (µ1, . . . ,µk) coincide. However, if a
1 is deleted from a run of 1s in sj , we will not be able to identify which symbol is deleted from µj . This means that after
recovering sj from s′′j we can recover µj only in certain cases, specifically, those marked by ($) in Table I and Table II.
Interestingly, the errors not corrected by recovering sj , j ∈ [k] are marked by (∗), indicating that they occur only for a single
value of j. Hence, to correct these errors, we apply the code constraints to the concatenation of µj , j ∈ [k], rather than to
each µj separately.

Construction 4. Define Cnd ⊆ Σn
q as

Cnd = {x ∈ Irr(n) ∩ Σn
q |µ = µ(φ̄(x)), (25)

µj = Spk(µ, j), sj = Γ(µj), (26)

sj ∈ CV T (aj , 2|sj |+ 3), (27)
|sj |∑
i=1

i

(
t=i∑
t=1

sjt

)
= cj mod (2|sj |+ 1), (28)

k∑
j=1

|sj |∑
i=1

sji = b mod 5, (29)

Od(IL(µ)) ∈ CTq(ā1, b̄1, d
n− k

2
e), (30)

Ev(IL(µ)) ∈ CTq(ā2, b̄2, d
n− k

2
e), (31)

CS(IL(µ)) ∈ CTq(ā3, b̄3, n− k), (32)

IL(µ) ∈ CTq(ā4, b̄4, n− k)}, (33)

where j, aj , cj , b, āi, b̄i are integers satisfying j ∈ [k], 0 ≤ aj ≤ 2(|sj |+ 1), 0 ≤ cj ≤ 2|sj |, 0 ≤ b ≤ 4, 0 ≤ ā1, ā2, ā3, ā4 < q,
0 ≤ b̄1, b̄2 ≤ bn−k2 c, and 0 ≤ b̄3, b̄4 < n− k.

In Construction 4, the constraints (27), (28), and (29) play the same role as the code in Construction 3, and the constraints (30),
(31), (32), and (33) can correct the error patterns of {µ1, . . . ,µk} not marked by ($) in Table I and Table II. The constraint (27)
corrects one insertion/deletion or two insertions of 0s or 1s in adjacent positions over Σ2. The constraint (28) corrects one
transposition of {0, 1} in two adjacent positions. The constraint (29) is a weight-indicating equation for {s1, . . . , sk}. The
constraints (30), (31), (33), and (32) can correct one insertion/deletion in Od(IL(µ)), Ev(IL(µ)), IL(µ), and r = CS(IL(µ))
over Σq , respectively.

Theorem 3. The error-correcting code Cnd proposed in Construction 4 can correct infinitely many exact k-TD and up to one
k-ND errors. There exists one such code with size

| Irr(n)|
5q4dn−k2 e2(4dnk e2 − 1)k(n− k)2

≤ |Cnd| ≤ | Irr(n)|. (34)

The proof is given in the appendix. From (34), we have

1

n
logq | Irr(n)| − 2k + 4

n
logq n−

2k + 5

n
≤ Rn(Cnd) ≤ 1

n
logq | Irr(n)|.

Furthermore, based on [16, (8)], for q + k ≥ 4, M
2 ≤ | Irr(n)| ≤ M, where M ,

∑bn/kc−1
i=0 | Irr(n − ik)| is the size of the

optimal code of length n that can correct any number of exact duplications. Hence,

1

n
logqM −

2k + 4

n
logq n−

2k + 6

n
≤ Rn(Cnd) ≤ 1

n
logqM.

In particular, compared to the optimal code correcting only exact duplications, the redundancy is . (2k + 4) logq n symbols.
Additionally both codes have the same asymptotic rate (given in (1) for large k), and in this sense the code proposed here is
asymptotically optimal, although it is not clear whether (2k + 4) logq n is the best possible redundancy.

For the alphabet size q ∈ {3, 4, 5} and the duplication length k = 3, Figure 2 shows the lower bound of the code rate as
the length n of codewords ranges from 100 to 400, based on (34), (16) and [5].

V. CONCLUSION

In this paper, we considered the problem of correcting exact and noisy duplication errors and focused on the case of many
exact duplications and one noisy duplication, which suffers from a substitution. Our error-correction strategy is based on roots

9

Figure 2. The lower bound of the code rate with respect to the length n with the duplication length k = 3 and alphabet size q ∈ {3, 4, 5}.

of sequences and splitting operations that distribute the effect of the duplication among k subsequences of the root but bring
symbols affected by a substitution together. In Section III, we characterized the effect of the single noisy duplication channel
on the roots and their subsequences. We constructed an error-correcting code that first recovers certain binary substrings with
whose help we can determine k − 1 of the subsequences of the root, leaving a q-ary error in the last subsequence, which
is corrected using Tenengolts’ q-ary code. Finally, we showed that relative to the optimal code for correcting only exact
duplications, the proposed construction incurs a redundancy of approximately (2k + 4) logq n symbols.

Directions for future work include correcting more than one noisy duplication while still correcting any number of exact
duplications. The characterization of the channel for one noisy duplication presented in Theorem 1, which was based on roots
and their subsequences, can be useful for describing channels allowing more noisy duplications, especially if the noise level
in duplications is limited so that only a single substitution may occur in each. Then, appropriate extensions of more powerful
binary deletion-correcting codes [14], [3], [13] could be useful for correcting errors similar to those described in Theorem 2.
Codes over the full alphabet could then be used to correct the smaller number of q-ary errors that remain. If the number of
substitutions in each noisy duplication is larger, while Theorem 1 will still provide insights into the problem, characterizing
the channel becomes more challenging. If the noise level in each duplication is so high that most of the duplicated symbols are
substituted, the benefit of first correcting binary errors diminishes as there will be more errors of the type Λ→ aā than Λ→ 00,
say. Dividing the root into subsequences, however, will still be useful for distributing the errors among multiple sequences.
Finally, if the total number of duplications is limited, restricting codewords to irreducible sequences will be inefficient, although
a combination of irreducible sequences and codes in the `1-metric have been found to be of use in the related problem of
correcting only exact duplications [7]. Another possible direction is the use of constrained codes, similar to [16], to decrease
the variety of the error types that may be encountered, thereby simplifying code construction. We note however that such an
approach will likely incur a rate penalty.

REFERENCES

[1] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding the Confusability of Words under Tandem Repeats,” arXiv:1707.03956 [math], Jul.
2017.

[2] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions and prefixing methods,” SIAM Journal on Discrete Mathematics,
vol. 23, no. 4, pp. 2120–2146, 2010.

[3] R. Gabrys and F. Sala, “Codes Correcting Two Deletions,” IEEE Transactions on Information Theory, vol. 65, no. 2, pp. 965–974, Feb. 2019, conference
Name: IEEE Transactions on Information Theory.

[4] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau distance for deletion and adjacent transposition correction,” IEEE Transactions on
Information Theory, vol. 64, no. 4, pp. 2550–2570, 2017.

[5] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data storage in the DNA of living organisms,” IEEE Transactions on
Information Theory, vol. 63, no. 8, pp. 4996–5010, 2017.

[6] ——, “Noise and uncertainty in string-duplication systems,” in 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017, pp.
3120–3124.

[7] S. Jain, F. F. Hassanzadeh, and J. Bruck, “Capacity and expressiveness of genomic tandem duplication,” IEEE Transactions on Information Theory,
vol. 63, no. 10, pp. 6129–6138, 2017.

[8] M. Kovacevic and V. Y. Tan, “Asymptotically optimal codes correcting fixed-length duplication errors in DNA storage systems,” IEEE Communications
Letters, vol. 22, no. 11, pp. 2194–2197, 2018.

[9] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-correcting codes,” Designs, Codes and Cryptography, vol. 87, no. 2-3, pp. 277–298, 2019.

10

[10] H. Lou, M. Schwartz, and F. Farnoud, “Evolution of N-gram Frequencies under Duplication and Substitution Mutations,” in IEEE Int. Symp. Information
Theory (ISIT), Jun. 2018.

[11] D. Pumpernik, B. Oblak, and B. Borštnik, “Replication slippage versus point mutation rates in short tandem repeats of the human genome,” Molecular
Genetics and Genomics, vol. 279, no. 1, pp. 53–61, 2008.

[12] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “CRISPR–Cas encoding of a digital movie into the genomes of a population of living
bacteria,” Nature, vol. 547, no. 7663, pp. 345–349, Jul. 2017.

[13] J. Sima and J. Bruck, “Optimal k-Deletion Correcting Codes,” in 2019 IEEE International Symposium on Information Theory (ISIT), Jul. 2019, iSSN:
2157-8117.

[14] J. Sima, N. Raviv, and J. Bruck, “Two Deletion Correcting Codes from Indicator Vectors,” in 2018 IEEE International Symposium on Information Theory
(ISIT), Jun. 2018, pp. 421–425.

[15] N. J. Sloane, “On single-deletion-correcting codes,” Codes and designs, vol. 10, pp. 273–291, 2000.
[16] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correction for duplication and substitution channels,” IEEE

Transactions on Information Theory, vol. (early access), pp. 1–1, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9130733
[17] Y. Tang and F. Farzad (Hassanzadeh), “Error-correcting codes for noisy duplication channels,” in 57th Annual Allerton Conference on Communication,

Control, and Computing. IEEE, 2019, pp. 1–7.
[18] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion,” IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.
[19] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based data storage,” Scientific reports, vol. 7, no. 1, pp. 1–6, 2017.
[20] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transactions on

Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.
[21] S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable, random-access DNA-based storage system,” Scientific reports, vol. 5, p.

14138, 2015.
[22] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA sequences with uniform tandem-duplication errors,” in 2018 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2535–2539.

APPENDIX A
PROOF OF THEOREM 1

Proof: In a noisy duplication channel with many exact k-TDs and at most one k-ND, given a string x ∈ Σ∗q , let
φ(x) = (y, z) with y = φ̂(x) ∈ Σk

q and z = φ̄(x) ∈ Σ∗q . Since the k-TDs do not change the duplication root drt(x), we focus
our attention to the substitution that will change the duplication root. After many exact k-TDs, we obtain x′ ∈ D≥1(0)k (x), a
descendant of x. After the substitution error, we have x′′ ∈ D≥1(1)k (x). Since the following k-TD errors do not change the
duplication root drt(x′′), we focus on the descendants x′ and x′′.

Let φ(x′) = (y, z′) and φ(x′′) = (y, z′′). In the transform domain, the string z′ can be expressed as

z′ = ua1a2 · · · ai · · · akb1b2 · · · bi · · · bkv.

where u,v ∈ Σ∗q and ai, bi ∈ Σq, i ∈ [k]. Let the length of the run of 0s on the left side of ai be m1 and on the right side
of ai be m2 (ending at bi and excluding ai, bi), i.e., the substring c0m1ai0

m2d with a, b ∈ Σ+
q . Similarly, we define m3 and

m4 as the length of the run of 0s on the left side and right side of bi, starting from ai and excluding ai, bi. Based on (7), if
the substitution position p satisfies k < p ≤ (|x′| − k), the substitution changes two symbols; if (|x′| − k) < p ≤ |x′|, the
substitution changes one symbol.

First, we consider the substitution position satisfying k < p ≤ (|x′| − k) such that two symbols of z′ changes. The 2
symbols in z′ have a distance of k. After the substitution, we have

z′′ = ua1a2 · · · (ai + a) · · · akb1b2 · · · (bi − a) · · · bkv,

where a ∈ Σ+
q . Based on (6), since the substitution only occurs in the copy of a k-TD, we have ai = 0 and m1 +m2 + 1 ≥ k.

Since the length between ai and bi is k, we have two cases for m2 and m3:
• If m2 +m3 < k, then m2 < (k − 1) and m3 < (k − 1), which means that the substring between ai and bi must contain

at least one non-zero symbol.
• If m2 +m3 ≥ k, then m2 = m3 = (k − 1), which means that the substring between ai and bi is 0k−1.
A) Descendants with m2 +m3 < k: Since the substring between ai and bi must contain at least one non-zero symbol, the

changes in µ(z′), as well as µ(z), caused by ai and bi, can be analyzed independently. If the non-zero symbol is d ∈ Σ+
q ,

with ai and bi on the left and right side respectively, the changes in µ(z′) can be separately studied on the two sides of d. In
the following, we use 0j−1a0k−j or 0t−1a0k−t to denote a substring of length k with wt(0j−1a0k−j) = wt(0t−1a0k−t) = 1,
where j, t ∈ [k] and a ∈ Σ+

q .
1) The changes on the left side of d is caused by changing ai. Since ai = 0, then a = ai + a 6= 0.

a) If
⌊m1 +m2 + 1

k

⌋
>
⌊m1

k

⌋
, the length before d increases by k and the substring 0j−1a0k−j is inserted in µ(z′),

before the symbol d.

b) If
⌊m1 +m2 + 1

k

⌋
=
⌊m1

k

⌋
, the length before d stays the same and 0 is substituted by a at ai.

2) The changes on the right side of d is caused by changing bi.
a) If bi 6= 0,

https://ieeexplore.ieee.org/document/9130733

11

Table III
THE CHANGES IN µ(z) WITH m2 +m3 < k.

ai and bi |µ′′| − |µ| µ→ µ′′

1a and 2(a)iA 0 insert 0j−1a0k−j and delete 0t−1a0k−t

1a and 2(a)iB +k insert 0j−1a0k−j and a→ 0

1a and 2(a)ii +k insert 0j−1a0k−j and bi → (bi − a)

1a and 2(b)i +2k insert 0j−1a0k−j and 0t−1(q − a)0k−t

1a and 2(b)ii +k insert 0j−1a0k−j and 0→ (0− a)

1b and 2(a)iA −k 0→ a and delete 0t−1a0k−t

1b and 2(a)iB 0 two substitutions (0→ a and a→ 0)
1b and 2(a)ii 0 two substitutions(0→ a and bi → (bi−a))
1b and 2(b)i +k 0→ a and insert 0t−1(0− a)0k−t

1b and 2(b)ii 0 two substitutions(0→ a and 0→ (0− a))

i) if bi − a = 0,

A) if
⌊m3 +m4 + 1

k

⌋
>
⌊m4

k

⌋
, the length of µ(z′) after d decreases by k and a substring 0t−1a0k−t is deleted

from µ(z′).

B) if
⌊m3 +m4 + 1

k

⌋
=
⌊m4

k

⌋
, the length after d stays the same and a is substituted by 0 at bi.

ii) if bi − a 6= 0, the length after d stays the same and bi is substituted by (bi − a).
b) If bi = 0, then bi − a 6= 0.

i) if
⌊m3 +m4 + 1

k

⌋
>
⌊m4

k

⌋
, the length of µ(z′) after d increases by k and the substring 0t−1(0 − a)0k−t is

inserted in µ(z′).

ii) if
⌊m3 +m4 + 1

k

⌋
=
⌊m4

k

⌋
, the length after d stays the same and 0 is substituted by (0− a) at bi.

Since µ = µ(z) and µ(z) = µ(z′), the changes from µ = µ(z′) to µ′′ = µ(z′′) are shown in Table III classified based on
ai and bi.

B) Descendants with m2 +m3 > k: Based on the analysis above, when m2 +m3 > k, the substring between ai and bi is
0k−1. Hence z′ can be rewritten as

z′ = u0m1ai0
k−1bi0

m4v,

where u,v ∈ Σ∗q . After one substitution, z′′ can be expressed as

z′′ = u0m1(ai + a)0k−1(bi − a)0m4v,

where ai = 0 and a ∈ Σ+
q . Since the length of µ(z′) is influenced by the underlined substring above, we focus on the changes

of this segment.
The length of the underlined substring satisfies⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 1,

or ⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 2.

The two cases are discussed below in detail.
If the length of the underlined substring satisfies

⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 1, then the changes in µ(z′)

consist of two cases (based on the change from (ai, bi) to (ai + a, bi − a)):
1) if (ai, bi) = (0, qi) with qi 6= 0, then we again have two cases:

a) if ai + a, bi − a are non-zero, the length of µ(z′) increases by k, and the substring 0j−1a0k−j is inserted in µ(z′)
and bi is substituted by bi − a.

b) if (ai + a, bi − a) = (qi, 0), we have µ(z′′) = µ(z′).
2) if (ai, bi) = (0, 0), then ai + a, bi − a are non-zero, the length of µ(z′) increases by k, and the substring 0j−1a0k−j is

inserted in µ(z′) and 0 is substituted by (0− a) at bi.

Similarly, if the length of the underlined substring satisfies
⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 2, the changes in

µ(z′) also contain two cases:
1) if (ai, bi) = (0, qi), then there are two different cases:

12

a) if ai + a, bi − a are non-zero, the length of µ(z′) increases by k, and the substring 0j−1a0k−j is inserted in µ(z′)
and bi is substituted by bi − a.

b) if (ai + a, bi − a) = (qi, 0), we have µ(z′′) = µ(z′).
2) if (ai, bi) = (0, 0), then ai + a, bi − a are non-zero, the length of µ(z′) increases by 2k, and the string 0j−1a0k−j and

0t−1(0− a)0k−t are inserted in µ(z′)

Since the k-TDs do not change the duplication root, we have drt(x) = drt(x′) and µ(z) = µ(z′). Based on the analysis
above, the changes in µ(z) caused by one substitution can be divided into four different cases:
• if |µ(z′′)| = |µ(z)| + 2k, then µ(z′′) is derived from µ(z) by inserting one 0j−1a0k−j and one 0t−1(0 − a)0k−t.

Furthermore, a and (0− a) have distance k.
• if |µ(z′′)| = |µ(z)| + k, then µ(z′′) is derived from µ(z) by either inserting 0j−1a0k−j and substituting bi → (bi − a)

or inserting 0t−1(0− a)0k−t and substituting 0→ a. In both cases, a and (bi − a) have a distance of k.
• if |µ(z′′)| = |µ(z)|, three different cases occur. First, µ(z′′) = µ(z), there are no changes. Second, µ(z′′) is derived

from µ(z) by two substitutions (0→ a and bi → (bi − a) with distance k). Third, the string 0j−1a0k−j is inserted and
0t−1a0k−t is deleted, where a stays in the same position. In the third case, µ(z′′) is derived from µ(z) by swapping 0e

with a substring (the form of d or cΣe−2
q d with e 6= 0 and c, d ∈ Σ+

q) between ai = 0 and bi = a, where the distance of
the begining of the two substrings is k. Furthermore, the integer e satisfies 1 ≤ e ≤ (k − 1).

• if |µ(z′′)| = |µ(z)| − k, µ(z′′) is derived from µ(z) by deleting 0t−1a0k−t and substituting 0→ a.
In conclusion, the changes from µ = µ(z) to µ′′ = µ(z′′) caused by one substitution are described in the first and second

columns of Table I. We now discuss the changes in µj , i.e., the difference between µj and µ′′j for j ∈ [k]. This is done by
considering four cases:
• If |µ(z′′)| = |µ(z)| + 2k, µ(z′′) is derived from µ(z) by inserting a 0j−1a0k−j and a 0t−1(0 − a)0k−t. For j ∈ [k],

the length of each µj increases by 2. For one value of j, a(0− a) is inserted in µj and two 0s are inserted in the other
(k − 1) strings with a distance at most 2.

• If |µ(z′′)| = |µ(z)| + k, µ(z′′) is derived from µ(z) by inserting 0j−1a0k−j or 0t−1(0 − a)0k−t and substituting
(bi → (bi − a)) or (0→ a). For j ∈ [k], the length of µj increases by 1. For one value of j, the insertion and substitution
bi → a(bi − a) occur in µj and 0 is inserted into each of the other (k − 1) strings.

• If |µ(z′′)| = |µ(z)|, µ(z′′) is derived from µ(z) in three different cases. First, µ(z′′) = µ(z), there are no changes.
Second, µ(z′′) is derived from µ(z) by substituting two symbols (0→ a, bi → (bi − a)) with distance k. For one value
of j, the substitutions (0bi → a(bi−a)) occur in µj and the other (k−1) strings stay the same. Third, µ(z′′) is obtained
from µ(z) by inserting 0j−1a0k−j and deleting 0t−1(0 − a)0k−t. For j ∈ [k], at least one µj swaps (b0) → (0b) with
b ∈ Σ+

q and the other strings stay the same.
• If |µ(z′′)| = |µ(z′′)| − k, µ(z′′) is derived from µ(z) by deleting 0t−1a0k−t and substituting 0→ a. For {µ1, . . . ,µk},

one 0 is deleted from each of the k strings.
The changes of {µ1, . . . ,µk} can be summarized in the third column of Table I. The forth column is obtained by noting

that sj = Γ(µj), j ∈ [k]. This completes the proof of Table I.
Second, we consider the case in which the substitution position p satisfies (|x′| − k) < p ≤ |x′|, which means that one

symbol in z changes. Since one substitution only changes one symbol in z′, we have

z′′ = ua1a2 · · · (ai + a) · · · ak.

where a ∈ Σ+
q . Since the substitution only occurs in a tandem duplication copy, we have ai = 0 and m1 +m2 + 1 ≥ k. Note

that a = ai + a 6= 0. There are two cases to consider:

1) If
⌊m1 +m2 + 1

k

⌋
>
⌊m1

k

⌋
, then the length of µ(z′) increases by k and the substring 0j−1a0k−j is inserted into µ(z′).

2) If
⌊m1 +m2 + 1

k

⌋
=
⌊m1

k

⌋
, then the length of µ(z′) stays the same and 0 is substituted by a at ai.

We can then find the difference between µj and µ′′j , and sj and s′′j , j ∈ [k], which are listed in Table II. This completes
the proof of Theorem 1.

APPENDIX B
THE PROOF OF THEOREM 2

Proof: Given a codeword s ∈ C(a,b,c), let s′′ be obtained from s, either with no error, or via one of the errors listed in
Theorem 2.

1) If |s′′| = |s| − 1, then there has been a single deletion, correctable via the VT code (22).
2) If |s′′| = |s|, then there are the following possibilities: no error, a single substitution, swapping two adjacent different

symbols, 00→ 11, and 11→ 00. Based on (23), we have
∑n

i=1 s
′′
i = (b+ b′′) mod 5, and b′′, along with the syndrome

13

of the VT code, is helpful for distinguishing these cases. If b′′ = 2, one substitution 00 → 11 between s and s′′ has
occurred. We have

∑
i is
′′
i = a + 2p + 1 mod (2n + 3), where p is the position of the substitution. Hence, we can

recover s by one substitution 11 → 00 at the position p of s′′. If b′′ = −2, a substitution 11 → 00 has occurred from
s to s′′. We have

∑
i is
′′
i = a − 2p − 1 mod (2n + 3). Then we can recover s from s′′ by flipping two symbols at

positions p and p+ 1. If b′′ = 1, a substitution 0→ 1 has occurred. We have
∑

i is
′′
i = a+ p mod (2n+ 3). Hence, we

can recover s by one substitution 1 → 0 at position p of s′′. If b′′ = −1, a substitution 1 → 0 has occurred. We have∑
i is
′′
i = a−p mod (2n+3). Then s can be recovered by flipping the symbol in the pth position of s′′. If b′′ = 0 and the

VT syndrom has changed, an adjacent transposition has occurred in s. If the transposition occurs at p, for the constructed
string {scs|scsi =

∑i
j=1 sj , i ∈ [|s|]}, the string scs and scs

′′
only differ at position p with |scsp − scs

′′

p | = 1 [4]. Then

we have
∑

i i
(∑i

j=1 s
′′
j

)
= c± p mod (2n+ 1). Thus, we can recover s by swapping the two symbols at positions p

and (p+ 1) of s′′.
3) If |s′′| = |s|+ 1, based on Theorem 1, s′′ is derived from s in one of the following ways: inserting a 0, inserting a 1,

0→ 11, or 1→ 00. Based on (22) and (23), we have
∑

i is
′′
i = (a+ a′′) mod (2n+ 3) and

∑
i s
′′
i = (b+ b′′) mod 5. If

b′′ = 0 and a′′ ≤ wt(s′′), one 0 is inserted in s, and we can recover s by deleting it [15]. If a′′ > wt(s′′) and b′′ = 1,
one 1 is inserted in s. Then we can recover s by deleting a 1 from s′′ [15]. If a′′ > wt(s′′) and b′′ = 2, s′′ is derived
from s by a substitution 0 → 11. We have a′′ = 2p + 1 + r1, where p denotes the position of the original 0 and r1
denotes the number of 1s on its right. During the recovery process, we denote our guess for the position and the number
of 1s on the right side of the position as p′ and r′1, respectively. If r′1 < r1, then 2p′+ 1 + r′1 > 2p+ 1 + r1. If r′1 > r1,
then 2p′ + 1 + r′1 < 2p+ 1 + r1. Only if r′1 = r1, then 2p′ + 1 + r′1 = 2p+ 1 + r1. If b′′ = −1, the substitution 1→ 00
has occurred. If the substitution is at the position p, then a′′ = −p+ r1, where r1 denotes the number of 1s on the right
side of the substitution. Similar to correcting the substitution 0→ 11, we can obtain the position p and recover s by the
substitution 00→ 1 at the positions p, (p+ 1) of s′′.

4) If |s′′| = |s|+2, then s′′ is derived from s in one of three ways: inserting 11, inserting 00, or inserting two 0s separated by
1 (1→ 010). Based on (22) and (23), we have

∑
i is
′′
i = (a+a′′) mod (2n+3) and

∑
i s
′′
i = (b+b′′) mod 5. If b′′ = 2,

11 is inserted in s. Let p denote the position in which 11 is inserted. Based on (22), we have a′′ = (p+ p+ 1) + 2r1 =
2(l0 + l1 + 1) + 1 + 2r1 = 2(l1 + r1 + 2) + 2l0 − 1 = 2 wt(s′′) + 2l0 − 1, where l1 and r1 denote the number of 1s
at the left and right sides of the position p, and l0 denotes the number of 0s at the left side of the inserting position.
Then we can recover s by deleting one 11 from s′′ after l0 0s from the beginning. If b′′ = 0, two 0s are inserted in s.
If a′′ = 0 mod 2, 00 is inserted in s and a′′ = 2r1, where r1 denotes the number of 1s on the right side of the insertion
position. Then we can recover s by deleting 00 from s′′ before r1 1s from the end of s′′. If a′′ = 1 mod 2, two 0s are
inserted in s separated by 1 and a′′ = 2r1 + 1. Similarly, we can recover s by deleting two 0s before r1 and r1 + 1 1s
from the end of s′′.

These error patterns include all those occurring in {s1, . . . , sk} caused by many exact k-TDs and at most one substitution
error in the noisy duplication channel.

APPENDIX C
THE PROOF OF THEOREM 3

Proof: To prove Theorem 3, we have to show that the error-correcting code Cnd in Construction 4 can correct all error
patterns in {µ1, . . . ,µk}. Based on Theorem 2, the code C(a,b,c) over Σ2 can correct all error patterns shown in the µj column
of Tables I and II in rows marked by ($). The constraints (30), (31), (32) and (33) can correct the other error patterns.

Given a codeword x ∈ Cnd ⊆ Irr(n)∩Σn
q , we have φ(drt(x)) = (y,µ) with y = φ̂(x) ∈ Σk

q and µ = µ(z) = z = φ̄(x) ∈
Σn−k

q . After many exact k-TDs and at most one substitution, we obtain a descendant x′′ ∈ D∗(≤1)k (x) with φ(x′′) = (y, z′′)
and z′′ = φ̄(x′′). In the following, we can recover the codeword (y,µ) by correcting four types of error patterns in (y,µ′′),
where µ′′ = µ(z′′). Based on the recovered (y,µ), we can obtain the duplication root drt(x) and thus the codeword x. The
four cases are below:
• If |µ′′| = |µ| − k, then a 0 is deleted from both {µ1, . . . ,µk} and {s1, . . . , sk}. By (27), we recover {s1, . . . , sk} by

inserting a 0 in each of them. Based on (10), the positions of 0s between {µ1, . . . ,µk} and {s1, . . . , sk} coincide. We
can recover {µ1, . . . ,µk} by inserting 0s at the same positions in {s1, . . . , sk}.

• If |µ′′| = |µ|, {µj , j ∈ [k]} contain two types of errors: transpositions of 0 and b in more than one µj , or the substitution
either 0c→ a(c− a) or 0→ a in one µj . By (27), we have

|s′′j |∑
i=1

is′′ji = (aj + a′′j) mod (2|sj |+ 3), j ∈ [k].

If {a′′j , j ∈ [k]} contain more than one non-zero integer, both {µj , j ∈ [k]} and {sj , j ∈ [k]} with non-zero {a′′j , j ∈ [k]}
contain one adjacent transposition of (0, b) and (0, 1), respectively. By (24), the transposition positions {pj , j ∈ [k]} can

14

be obtained. Since both {µj , j ∈ [k]} and {sj , j ∈ [k]} contain adjacent transpositions at the same positions, we can
recover {µj , j ∈ [k]} by swapping two symbols starting at {pj , j ∈ [k]}. If {a′′j , j ∈ [k]} only contain one non-zero
integer, say a′′1 , three types of errors may occur based on the weight change of {sj , j ∈ [k]} by (29). Based on the proof
of Theorem 2, we can obtain the change position p1 in µ1 and s1. If p1 < |µ1|, according to Table I, µ1 contains one
substitution 0c → a(c − a), we can recover µ1 by the substitution µ′1p1

µ′1(p1+1) → 0(µ′1p1
+ µ′1(p1+1)). If p1 = |µ1|,

according to Table II, µ1 contains one substitution 0→ a, we can recover µ1 by the substitution µ′1p1
→ 0.

• If |µ′′| = |µ|+ k, then (k− 1) of {µj , j ∈ [k]} contain one insertion Λ→ 0, and one string, say µk, contains either one
insertion Λ → a in Table II or one insertion and one substitution c → a(c − a) in Table I. By (22), the (k − 1) strings
{µj , j ∈ [k − 1]} can be recovered. After that, we generate IL′(µ) = µ1 · · ·µ(k−1)µ

′
k by concatenating the k strings.

Compared to IL(µ), IL′(µ) contains either one insertion Λ→ a or one insertion and one substitution c→ a(c−a). Based
on (30), (31) and Construction 2, we obtain the changes (∆ā1,∆ā2). If ∆ā1 + ∆ā2 6= 0 mod q, then IL′(µ) contains
one insertion Λ→ a. Then we can recover the insertion Λ→ a by (33). If ∆ā1 + ∆ā2 = 0 mod q, IL′(µ) contains one
insertion and one substitution c→ a(c−a). By (12) and the fact that a+(c−a) = c, we construct r′ = CS(IL′(µ)) with
one insertion. Since (32) can correct one insertion in CS(IL′(µ)), we can recover CS(IL(µ)), IL(µ), and {µj , j ∈ [k]}.

• If |µ′′| = |µ| + 2k, then (k − 1) strings of {µj , j ∈ [k]} insert two 0s with distances at most 2, and one string such
as µ1 contains one insertion a(0− a). Similar to the proof of Theorem 2, based on (27), we can recover {µ2, . . . ,µk}
by deleting two 0s. After that, we generate the string IL′(µ) = µ′1µ2 · · ·µk. Obviously, the string IL′(µ) contains one
insertion a(0− a). When IL(µ(z)) is divided into two strings Od(IL(µ(z))) and Ev(IL(µ(z))), one symbol is inserted
into each of Od(IL(µ(z))) and Ev(IL(µ(z))) to generate Od(IL′(µ(z))) and Ev(IL′(µ(z))). Since both (30) and (31) can
correct an insertion of one symbol in Od(IL(µ)) and Ev(IL(µ)), respectively, we can recover IL(µ) and {µj , j ∈ [k]}.

Having recovered {µj , j ∈ [k]}, we can reconstruct µ, the duplication root drt(x), and the codeword x ∈ Cnd. Thus, the
error-correcting code Cnd can correct all the error patterns caused by many exact k-TD and at most one substitution.

Because the integers j, aj , cj , b, ā1, ā2, ā3, ā4, b̄1, b̄2, b̄3, b̄4 can be any value in their corresponding ranges, the number of
possible codes is 5q3dn−k2 e

2(2dn−kk e+ 3)k(2dn−kk e+ 1)k(n− k). These codes partition the set Irr(n), so there is at least one
code with size

|Cnd| ≥
| Irr(n)|

5q4dn−k2 e2(2dn−kk e+ 3)k(2dn−kk e+ 1)k(n− k)2
.

Since dn−kk e = dnk e − 1, the code size of Cnd can be rewritten as

| Irr(n)| ≥ |Cnd| ≥
| Irr(n)|

5q4dn−k2 e2(4dnk e2 − 1)k(n− k)2
.

	I Introduction
	II Notation and Preliminaries
	III Noisy duplication channels
	IV Error-correcting codes for noisy duplication channels
	V Conclusion
	References
	Appendix A: Proof of Theorem 1
	Appendix B: The proof of Theorem 2
	Appendix C: The proof of Theorem 3

