
Deep Learning for Communication over Dispersive
Nonlinear Channels: Performance and Comparison

with Classical Digital Signal Processing
(Invited paper)

Boris Karanov1,2, Gabriele Liga3, Vahid Aref2, Domaniç Lavery1, Polina Bayvel1, Laurent Schmalen4

1Optical Networks Group, University College London, WC1E 7JE London, U.K
2Nokia Bell Labs, 70435 Stuttgart, Germany

3Signal Processing Systems Group, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
4Communications Engineering Lab, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Abstract—In this paper, we apply deep learning for com-
munication over dispersive channels with power detection, as
encountered in low-cost optical intensity modulation/direct de-
tection (IM/DD) links. We consider an autoencoder based on the
recently proposed sliding window bidirectional recurrent neural
network (SBRNN) design to realize the transceiver for optical
IM/DD communication. We show that its performance can be
improved by introducing a weighted sequence estimation scheme
at the receiver. Moreover, we perform bit-to-symbol mapping
optimization to reduce the bit-error rate (BER) of the system.
Furthermore, we carry out a detailed comparison with classical
schemes based on pulse-amplitude modulation and maximum
likelihood sequence detection (MLSD). Our investigation shows
that for a reference 42 Gb/s transmission, the SBRNN autoen-
coder achieves a BER performance comparable to MLSD, when
both systems account for the same amount of memory. In
contrast to MLSD, the SBRNN performance is achieved without
incurring a computational complexity exponentially growing with
the processed memory.

I. INTRODUCTION

Deep learning techniques [1] applied to the design of
communication systems have been subject to extensive re-
search efforts in recent years. Often, a specific transmitter
or receiver function, such as coding, modulation or equal-
ization, is optimized using artificial neural networks (ANN)
and deep learning [2]–[6]. For example, a low-complexity
fiber nonlinearity compensation block was designed using
ANNs in [4]. A deep learning-based receiver in combination
with an efficient sequence estimation scheme was proposed
for molecular communications [5]. ANNs have also been
considered for the equalization module in short reach optical
access networks [6]. However, the approach of designing
and optimizing the communication system independently on
a module-by-module basis can be sub-optimal in terms of
the end-to-end performance. Owing to the universal function
approximator properties of the ANNs [7], it was proposed

The work received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie project
COIN (grant agreement No. 676448). G. Liga gratefully acknowledges the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No757791)

in [8], [9] to optimize the complete communication system
in a single process spanning from the transmitter input to the
receiver output. Such autoencoder systems, implemented as
a single deep neural network, have the potential to achieve
the optimal end-to-end performance. Autoencoders recently
gained popularity in communication scenarios, where the op-
timum pair of transmitter and receiver or optimum processing
modules are not known or prohibitive due to complexity
reasons.

In low-cost optical fiber links based on intensity modulation
and direct detection (IM/DD), the communication channel
is nonlinear with memory, due to the joint effects of chro-
matic dispersion and square-law photodiode opto-electrical
conversion. Such systems are particularly suitable for deep
learning-based signal processing due to the absence of optimal
algorithms and the presence of stringent computational cost
constraints. Simple end-to-end learning systems based on feed-
forward neural networks (FFNN) have been investigated for
communication over such type of channels and it was verified
in experiment that they can outperform conventional pulse
amplitude modulation schemes with specific, ubiquitously
deployed linear equalizers [10], [11]. More recently, extending
the design of [5], an advanced autoencoder for dispersive
nonlinear channels which takes into consideration the inter-
symbol interference (ISI) has been proposed [12]. The novel
communication transceiver based on sliding window process-
ing and end-to-end bidirectional recurrent neural networks
(SBRNN) achieved a significant performance improvement
compared to previous FFNN autoencoders by exploiting the
channel memory. It was shown in [12] that the system can
outperform state-of-the-art nonlinear neural network-based
equalizers using multi-symbol receiver processing [6], [13],
while requiring significantly fewer trainable parameters.

In this work, we make key modifications in the SBRNN
autoencoder, allowing us to increase the system reach or
enhance the data rate for shorter distances. First, we generalize
the sliding window estimator by introducing new weighting
factors at the output of the receiver neural network. This
leads to an improved bit-error rate (BER) performance com-

ar
X

iv
:1

91
0.

01
02

8v
1

 [
cs

.I
T

]
 2

 O
ct

 2
01

9

S
erializer

R
N

N
ce

ll
R

N
N

ce
ll

R
N

N
ce

ll

R
N

N
ce

ll
R

N
N

ce
ll

R
N

N
ce

ll

T
x

m
er

ge
T

x
m

er
g
e

T
x

m
er

ge

o
n

e-
h

ot
v
ec

to
r

o
n

e-
h

ot
v
ec

to
r

on
e-

h
o
t

v
ec

to
r

...

...

LPF ` MZM ` LPF `
D

eserializer
xptq uptq rptq

nDACptq nRec.ptq nADCptq

fiber

R
N

N
ce

ll
R

N
N

ce
ll

R
N

N
ce

ll

R
N

N
ce

ll
R

N
N

ce
ll

R
N

N
ce

ll

R
x

m
er

g
e

R
x

m
er

g
e

R
x

m
er

ge

S
of

tm
ax

S
o
ft

m
a
x

S
o
ft

m
a
x

...

...

Communication channel

Transmitter Receiver

End-to-end sequence-based optimization

Fig. 1. System schematic of the end-to-end SBRNN autoencoder, enabling end-to-end optimization on a sequence level via deep learning.

pared to the previous system, where equal weights were as-
signed [12]. Furthermore, instead of the previously employed
ad hoc approach to bit mapping, we perform bit-to-symbol
mapping optimization, thus obtaining an additional BER re-
duction. Additionally, we compare the end-to-end SBRNN
to a benchmark system based on pulse-amplitude modulation
(PAM) and classical receiver digital signal processing scheme,
tailored for communication over dispersive channels, such as
maximum likelihood sequence detection (MLSD) [14]. Our
results show that the autoencoder, when processing the same
sequence time window, achieves similar BER performance
to the MLSD system. However, the SBRNN scheme has a
computational complexity which scales only linearly with the
channel memory, contrary to the exponential growth of the
MLSD scheme.

II. SLIDING WINDOW BIDIRECTIONAL RECURRENT
NEURAL NETWORK AUTOENCODER

Following the idea of end-to-end learnable communication
systems introduced in [8], the complete fiber-optic link can be
implemented as an end-to-end deep neural network [10]. In
particular, we employ a sequence processing scheme using a
bidirectional recurrent neural network (BRNN) [15], because
of the ISI from both preceding and succeeding symbols in our
channel model [12]. Figure 1 shows the full chain of BRNN
transmitter and receiver including the communication channel.

A. Bidirectional Recurrent Neural Network-Based Transceiver

The function of the neural network-based transmitter is to
encode a stream of input messages p. . . ,mt´1,mt,mt`1, . . .q,
mt P t1, . . . ,Mu, each of which is drawn independently
from an alphabet of M total messages, into a sequence of
transmit blocks of n samples p. . . ,nt´1,nt,nt`1, . . .q. First,
we represent the messages mt as one-hot vectors 1m,t P RM
(whose elements are a “1” at position m and zeros elsewhere)
and feed them for bidirectional processing into the recurrent
structure as the input p. . . ,xt´1,xt,xt`1, . . .q. At the receiver
we apply similar bidirectional processing to the distorted
samples after propagation. The BRNN technique, identical at
both transmitter and receiver, is shown schematically in Fig. 2.
In the forward direction, an input xt at time t is processed by
the recurrent cell together with the previous output ht´1 to
produce an updated output ht. The procedure is performed on
the full data sequence. To adequately handle distortions arising
from the succeeding symbols, the structure is also repeated in
the backward direction. In this work we concentrate on a low-
complexity recurrent cell based on the concatenation between
the current input and the previous output. It was shown
that in the framework of optical IM/DD communication, the
processing capabilities of such cells are similar compared
to long short-term memory structures, without the associated

extra complexity [12]. The current cell output is given by

ht “ αTx/Rx

´

W
`

xTt hTt´1

˘T ` b
¯

,

where T denotes the matrix transpose, W P RnˆpM`nq and
b P Rn (transmitter) or W P R2Mˆpn`2Mq and b P R2M

(receiver) are the weight matrix and bias vector, respectively,
and αTx/Rx is the utilized activation function in the transmit-
ter/receiver BRNN.

At the transmitter, the input is the one-hot vector represen-
tation of the message and the outputs of the RNN cells at the
same time instance in both directions are averaged in the Tx
merge stage. Thus, at a time instant t, the transmitter output
becomes ht “ 1

2

´ÝÑ
h t `ÐÝh t

¯

, with ÝÑh t and ÐÝh t denoting the
outputs of the RNN cells in the forward and the backward
directions, respectively. For practical purposes, we employ a
transmitter activation function which limits the BRNN outputs
to the r0;π{4s range. For this reason, we use the clipping
activation [10] expressed as

αTxpxq “ αReLU pxq ´ αReLU

´

x´ π

4

¯

,

where y “ αReLUpxq is the element-wise ReLU function,
i.e., yi “ maxp0, xiq [1]. Note that the forward/backward
processing introduces extra latency in the order of a full data
sequence. By termination of the sequences, we can limit this
latency to a practically manageable amount (which can be in
the range of thousands of symbols).

In contrast, at the receiver, we concatenate the outputs
of the two RNN cells in the Rx merge block. At time
t, the output of the BRNN is then expressed by ht “
´ÝÑ
h
T

t
ÐÝ
h
T

t

¯T

. We employ pure ReLU activation, i.e., αRx “
αReLUpxq. Additionally we apply a final softmax layer af-
ter the ReLU nodes, resulting in probability vectors at the
output pt “ softmaxpWsoftmaxht ` bsoftmaxq with pt P RM ,
Wsoftmax P RMˆ4M and bsoftmax P RM . The softmax function
is applied element-wise as y “ softmaxpxq with yi “
exppxiq{

´

ř

j exppxjq
¯

.

B. Communication Channel

Short reach optical communications are found in many
data center, metro and access network scenarios and crucially
rely on the simplicity and cost-effectiveness of IM/DD [16].
IM/DD links are also considered as prime candidates for fiber
to the x (FTTX) systems, realized for instance via passive
optical networks (PONs). Such optical communication links
are mainly characterized by the presence of fiber chromatic
dispersion [17], which introduces inter-symbol interference
(ISI), and nonlinear (square-law) photodiode (PD) detection.
Meeting the increasing data rate demands for such systems
becomes quite a challenging task because of the limitations
imposed by these impairments. The joint effects of ISI and
square-law detection render the communication channel non-
linear with memory and one for which the optimal signal
processing algorithms at transmitter and receiver are currently
absent, to the best of our knowledge.

Softmax

pt

only at Rx

ht

ht

Tx/Rx merge

RNN cell

RNN cell

ÐÝ
h t

ÝÑ
h t

xt

ÝÑ
h t´1

ÝÑ
h t

ÐÝ
h t`1

ÐÝ
h t

.

Fig. 2. Schematic of the bidirectional recurrent neural network processing.
The final transmitter/receiver output is obtained by merging the outputs of the
forward and backward passes at the same time instance. Note that softmax
activation is applied to the receiver outputs resulting in probability vectors,
utilized in the sliding window estimation (see Sec. III-B).

In the framework of deep learning-based autoencoder de-
sign, the communication channel is considered part of the
neural network system to facilitate end-to-end training. In our
work we use a detailed IM/DD channel model, i.e. an optically
un-amplified link, which includes low-pass filtering (LPF)
to account for practical hardware limitations at transmitter
and receiver, quantization noise from the digital-to-analog
(DAC) and analog-to-digital (ADC) converters, Mach-Zehnder
modulator (MZM), a photodiode to perform the square-law
opto-electrical conversion, electrical amplification noise and
optical transmission, modeled by the attenuating and disper-
sive properties of the fiber. The signal that enters the receiver
section of the autoencoder after channel propagation can be
expressed as (neglecting the low-pass filtering at the receiver
for ease of exposition)

rptq “ |ĥtĝtxptq ` nDACptquu|2 ` nRec.ptq ` nADCptq,
where xptq is the low-pass filtered transmit signal, nDAC/ADCptq
is additive, uniformly distributed quantization noise from the
DAC/ADC, ĝt¨u is an operator describing the effect of the
electrical field transfer function of the modulator, ĥt¨u de-
scribes the effects of chromatic dispersion, nRec.ptq is additive
Gaussian noise arising from the electrical amplification circuit
at the receiver. For more details on the mathematical modeling
of the channel components we refer the interested reader
to [10, Sec. III-B] and [12, Sec. 2.1].

III. AUTOENCODER TRAINING & SEQUENCE ESTIMATION

In this section, we present a summary of the training
procedure and explain the sequence estimation scheme in
which the trained transceiver is employed. We also give a
detailed description of the weighting optimization that we
performed in the sliding window algorithm as well as the bit-
to-symbol mapping optimization.

A. Training
We perform the system training in a supervised manner by

using a set of labeled data. The set of transmitter and receiver
BRNN parameters (denoted here by θ) is iteratively updated
via stochastic gradient descent (SGD) aimed at minimizing the
average loss Lpθq over a mini-batch S from the training set,
given by

Lpθq “ 1

|S|
ÿ

1m,tPS
`p1m,t, fBRNN,m,tp. . . ,1m,t, . . .qq, (1)

where fBRNN,m,tp. . . ,1m,t, . . .q is the output of the end-to-
end BRNN corresponding the one-hot vector 1m,t input to
the transmitter at the same position and `px,yq denotes the
loss function. In this work, we use the cross entropy as a loss
function, which is defined as `px,yq “ ´ř

i

xi logpyiq. The

SGD is implemented using the Adam algorithm [18]. In the
following we provide a detailed step-by-step description of the
training procedure.

First, a set of Z “ 250 different sequences of Ttrain “ 106

random input messages mi,j is generated, with i P t1, . . . , Zu
and j P t1, . . . , Ttrainu. At the beginning of the training,
the outputs ÝÑh t´1 and ÐÝh t`1 in the forward and backward
directions of the BRNN are initialized to 0. At an optimization
step s, the mini-batch S of messages mi,ps´1qV`1, . . . ,mi,sV ,
for 1 ď i ď Z and fixed V “ 10, is processed by the
transmitter BRNN to obtain the blocks hi,ps´1qV`1, . . . ,hi,sV .
Before feeding them into the communication channel, these
blocks are transformed into a sequence h1,ps´1qV`1, . . . ,
h1,sV ,h2,ps´1qV`1, . . . ,h2,sV , . . . ,hB,ps´1qV`1, . . . ,hB,sV .
At the input of the receiver, this transformation is
reversed and the received blocks yi,ps´1qV`1, . . . ,yi,sV
are applied to the BRNN, obtaining output probability vectors
pi,ps´1qV`1, . . . ,pi,sV . Then, in accordance with (1), the
cross entropy loss between inputs and outputs is averaged
over the whole mini-batch and a single iteration of the
optimization algorithm is performed. Every 100 steps of the
optimization, we re-initialized the outputs ÝÑh t´1 and ÐÝh t`1

in the forward and backward passes of the BRNN to 0 in an
attempt to avoid local minima. Note that using validation data
we confirmed that the convergence of the loss during training
was achieved within 100 000 iterations, the maximum number
of iterations that we allowed.

After training of the autoencoder, we employ it in the sliding
window sequence estimation algorithm proposed in [5]. It is
important to mention that for the training set a Mersenne
twister was used as a random number generator. To ensure
that during training we do not learn parts or construction
rules of the pseudo-random sequence [19] and that training
and testing datasets originate from different sources we used
a Tausworthe [20] random number generator to generate an
independent testing set of data using different 250 sequences
of 10000 randomly chosen messages.

B. Sliding Window Sequence Estimation Algorithm
Figure 3 shows a basic schematic of the sliding window

sequence estimation algorithm, where the autoencoder is rep-

1m,11m,21m,31m,41m,51m,6

Tx one-hot vectors input stream

y1 y2 y3 y4 y5 y6

Tx BRNN

channel

pp1q
1 pp1q

2 pp1q
3

pp2q
2 pp2q

3 pp2q
4

. . .

pp3q
3 pp3q

4 pp3q
5

estim
ated

Rx BRNN

Rx BRNN

Rx BRNN

Sliding
window
processing

. . .

Rx
softmax
output

end-to-end
BRNN

Fig. 3. Schematic of the sliding window sequence estimation technique in
which the BRNN transceiver is operated for W “ 3.

resented by the blocks Tx BRNN, channel and Rx BRNN. For
a given sequence of T `W ´ 1 test messages, the transmitter
BRNN encodes the full stream of input one-hot vectors
1m,1, . . . ,1m,T`W´1. The obtained waveform is then subject
to the channel, yielding the sequence of received blocks of
samples y1, . . . ,yT`W´1. At a time t, the receiver BRNN
processes the window of W blocks yt, . . . ,yt`W´1, trans-
forming them into W probability vectors p

ptq
t , . . . ,p

ptq
t`W´1

via its final softmax layer. Then it slides one time slot
ahead to process the blocks yt`1, . . . ,yt`W . The final output
probability vectors for the first W ´ 1 blocks are given by

pi “ 1

i

i´1
ÿ

k“0

p
pi´kq
i , i “ 1, . . .W ´ 1.

The final probability vectors for the remaining yW , . . . ,yT
blocks in the received sequence are obtained as

pi “
W´1
ÿ

k“0

apkqppi´kqi , i “W, . . . , T, (2)

where apqq ě 0, q “ 0, . . . ,W ´ 1 and
řW´1
q“0 apqq “ 1 are

the weighting coefficients for the softmax probability output of
the receiver BRNN. Equal weights apqq “ 1

W were previously
assumed in both [5] and [12]. Note that the final W´1 blocks
yT`1, . . . ,yT`W´1 from the received sequence are not fully
estimated and we do not include them in the subsequent block
error counting. We choose T " W and thus there is only a
negligible reduction in the data rate of the scheme.

We now present a concrete example of the first few
steps in the operation of the sliding window processor with

W “ 3 based on Fig. 3: At t “ 1, the receiver BRNN pro-
cesses the blocks py1,y2,y3q and outputs probability vectors
´

p
pt“1q
1 ,p

p1q
2 ,p

p1q
3

¯

. The receiver has generated all estimates

for the received block y1 and we have p1 “ p
p1q
1 . Next, the

receiver BRNN shifts a single slot to process py2,y3,y4q at
t “ 2 and generates

´

p
p2q
2 ,p

p2q
3 ,p

p2q
4

¯

. We have gathered all

information about yp2q and compute p2 “ 1
2

´

p
p1q
2 ` p

p2q
2

¯

as a final estimate. Similarly, after t “ 3, a final probability
vector p3 “ ap0qpp3q3 `ap1qpp2q3 `ap2qpp1q3 is computed for y3.
The sliding window processing carries on for the remainder
of the blocks.

In this work, we optimize the weight coefficients apqq in
order to improve the overall error rate performance. We
perform the optimization offline by picking a representative
test sequence of length T `W ´ 1 for which we collect all
corresponding BRNN output probability vectors p

pi´kq
i , with

i “ W, . . . T and k “ 0, . . . ,W ´ 1. We find the best set
of coefficients a “ `

ap0q . . . apW´1q˘ by minimizing the
average cross entropy

c̄paq :“ ´ 1

T ´W ` 1

T
ÿ

i“W
1Tm,i log

˜

W´1
ÿ

q“0

apqqppi´qqi

¸

between the input one-hot vectors 1m,W , . . . ,1m,T and the
estimated final output probability vectors pW , . . . ,pT , using
the constrained optimization problem

aopt “ arg min
a

c̄paq s.t. apqq ě 0,
W´1
ÿ

q“0

apqq “ 1

where q “ 0, . . .W ´ 1 and c̄ is the average cross entropy
between the input one-hot vectors and the estimated final out-
put probability vectors.1 We apply the optimized coefficients
in the estimation for all sequences in the testing set.

After the algorithm estimates the final probability vec-
tor for a given received block, we can perform decision
on the transmitted message. We count a block error when
arg maxp1m,iq ‰ arg maxppiq. The block error rate (BLER)
for the transmitted sequence is given by

BLER “ 1

|Te|
ÿ

iPTe
Itargmaxp1m,iq‰argmaxppiqu,

where |Te| is the number of fully estimated messages in the
test sequence and It¨u denotes the indicator function, equal to
1 when the argument is satisfied and 0 otherwise.

Figure 4 (top) shows the improvement in BLER at different
distances for W “ 10 after optimization of the coefficients
apqq in (2). As a reference we used the BLER performances
when equal weights apqq “ 1

W , q “ 0, . . . ,W´1 are assigned.
Note that the set of coefficients is optimized separately for
each distance. We can see that the benefit from weight opti-
mization becomes more pronounced as the distance increases.
The apqq assignments after optimization at 100 km are depicted
in Fig. 4 (bottom). Larger weights are assigned to the middle

1The optimization problem is convex and can easily be solved numerically.

60 70 80 90 100

0

0.5

1

1.5
¨10´2

Distance (km)

B
L
E
R

u
´

B
L
E
R

o
p
t

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

q

a
pq

q

Fig. 4. Top: BLER difference as a function of distance for the two approaches
for final probability vector estimation in the sliding window algorithm (W “

10). BLERu is obtained assuming apqq “ 1
W
, q “ 0, . . . ,W´1 in (2), while

for BLERopt the coefficients apqq are optimized. Bottom: apqq assignments
after optimization for the system at 100 km.

indices, indicating that a received block is estimated with a
higher accuracy by the receiver when relatively equal amount
of pre- and post-cursor interference is captured.

C. Bit Labeling Optimization

The input and output of the ANN are non-binary mes-
sages m P t1, . . . ,Mu and m̂. In order to guarantee the
low bit error rates (BERs) in the range 10´12 to 10´15,
we require forward error correction (FEC). For complexity
reasons, FEC schemes in optical communications are usually
binary [21] and often based on hard-decision decoding (HDD),
in particular in IM/DD applications. An overview of HDD
decoding schemes and their decoding capabilities is given
in [22]. To convert between the ANN messages and the FEC
encoder/decoder output/input, we need a bit labeling function
ϕ : t1, . . . ,Mu Ñ FB2 , which maps a message m to a binary
vector b “ `

b1, . . . , bB
˘

, bi P F2 “ t0, 1u of length B ě
rlog2pMqs. Usually, we select M and B such that M “ 2B .
Finding a bit labeling that minimizes the bit error rate is
an NP-hard task that is usually solved using combinatorial
optimization, e.g., a bit switching algorithm [23]. Here, we use
the Tabu search algorithm [24] with a Tabu list of size 256. We
start with a random bit labeling and, using the outcome of the
validation run, namely the estimated probabilities P̂ pm̂|mq,
we use the expected error rate as cost function. For a given
bit labeling, the Tabu search tries all possible combinations
of two elements and computes the resulting expected BER.
We select the combination that leads to the lowest expected
BER and is not in the Tabu list. The Tabu list is then updated

LPF ` MZM ` LPF `
xptq uptq rptq

nDACptq nRec.ptq nADCptq

fiber

Tx-PAM

RRC
filter

PAM
Modulator

xk Viterbi processor
(square-root metric)

Channel
Estimation

ylk

νlkpσk, xkq

Rx-MLSD

Ns “ 2
x̂

Fig. 5. Schematic diagram of the system used to evaluate the performance of the MLSD receiver in IM/DD optical links.

with this new assignment in a first-in/first-out fashion. After a
pre-defined number of iterations, the overall best assignment
is selected. We compare the resulting bit mapping with the
trivial BER lower bound BER ą P̂ pm̂ ‰ m|mq{B, assuming
that each symbol error yields exactly a single bit error.

Alternatively, [25] suggests to modify the autoencoder to
encode a set of B bits into a set of B decoded bits. In this case,
the loss function minimizes the average bit error rate. This
is a viable alternative, however, we have found that in some
circumstances, the training can get stuck in a local minimum,
especially when the channel input is heavily constrained. In
this work, we optimize the bit mapping which gives already
performance close to the lower bound.

IV. MAXIMUM LIKELIHOOD SEQUENCE DETECTION

In order to establish a relevant benchmark for the perfor-
mance of the SBRNN autoencoder, we investigate a refer-
ence M -PAM transmission system (M P t2, 4u) with a re-
ceiver based on maximum likelihood sequence detection (Tx-
PAM&Rx-MLSD). For this comparison, it is worth noting that
the autoencoder performs an optimization of both the trans-
mitter and receiver designs, while in contrast, the transmitter is
assumed fixed in the Tx-PAM&Rx-MLSD scheme. However,
for optical IM/DD transmission receivers based on MLSD
have been widely considered [26], [27], and represent a valid
performance reference scheme.

The MLSD receiver assumes that the channel behaves
according to a Markov process, thus facilitating the use of
the Viterbi algorithm [28] which selects

x̂ “ arg max
x

p̂py|xq,

where x “ px1, x2, ..., xNsymq is the sequence of transmitted
PAM symbols, y “ py11 , y21 , ..., yNs1 , y12 , y

2
2 , ..., y

Ns
2 , ..., yNsNsym

q
is the sequence of corresponding received samples. Here Nsym
and Ns denote the number of PAM symbols in the transmitted
sequence and number of samples per symbol, respectively.
The joint distribution p̂py|xq is an approximation of the true
channel likelihood pY|Xpy|xq, whose accuracy depends on
the number of states and metric used in the Viterbi proces-
sor. For IM/DD systems, a more convenient option for an
MLSD receiver is to operate on the distribution ppy|xq, where
y “ py11, y21, ..., yNs1 , y12, y

2
2, ..., y

Ns
2 , ..., yNsNsym

q with ylk “
b

ylk

for l “ 1, ...Ns and k “ 1, 2, ..., Nsym [26]. Indeed, if we
define the channel state as

σk fi pxk´µ2 , xk´µ2`1, ..., xk´1, xk`1, ..., xk`µ2 q (3)

where µ is the number of pre- and post-cursor symbols deter-
mining the channel memory, the distribution of ylk conditioned
on pσk, xkq was shown to be well approximated by a Gaussian
with equal variances [26]. Under such an approximation, and
the assumption of uncorrelated samples ylk conditional to
pσk, xkq, ppy|xq can be suitably factorized via the channel
state definition in (3) for the use in a Viterbi processor.

We can thus define the branch metric of the Viterbi trellis
at time k as

λkpσk, xkq “
Ns
ÿ

l“1

ˆ

b

ylk ´ νlkpσk, xkq
˙2

(4)

where ylk is the l-th out of Ns samples within the k-th symbol
period, and νlkpσk, xkq is given by

νlkpσk, xkq “ E
"

b

ylkpσk, xkq
*

, (5)

with ylkpσk, xkq indicating the value of the received sample
ylk when the pair (σk, xk) occurs. The square-root metric in
(4) was introduced in [27] and was proven to be a convenient
low-complexity alternative to the histogram-based metric, yet
with comparable performance [26]. At the end of each given
window of T symbols, the Viterbi processor makes a decision
on the previous T transmitted symbols by minimizing the
sequence metric ΛT “ řT

k“1 λkpσk, xkq over all surviving
state sequences rσ1, σ2, ..., σT s.

The schematic diagram of the system model employing
MLSD is shown in Fig. 5 (with the channel parameters
taken from Table I). At the transmitter, a Gray-labelled PAM2
(t0;π{4u) or PAM4 (t0;π{12;π{6;π{4u) mapper was used,
followed by pulse-shaping at 2 samples per symbol by a
root-raised cosine (RRC) filter with a roll-off factor of 0.25.
DAC/ADC rates of 84 GSa/s and 42 GSa/s are assumed for the
PAM2 and PAM4 cases, respectively, resulting in a fixed data
rate of 42 Gb/s for both systems. A signal corresponding to a
sequence of 105 symbols was transmitted through the channel
described in Sec. II-B. At the receiver, the estimation of the
νlkpσk, xkq was first done computing (5) over a sequence of
107 symbols. The received signal, sampled at Ns “ 2 samples
per symbol, is then passed directly to the Viterbi processor
which performs the MLSD.

20 30 40 50 60 70 80 90 100
10´4

10´3

10´2

10´1

100

HD-FEC threshold

Transmission distance (km)

B
E
R

Tx-PAM2&Rx-MLSD pη “ 10q
Tx-PAM2&Rx-MLSD pη “ 12q
Tx-PAM4&Rx-MLSD pη “ 12q
SBRNN autoencoder pη “ 12q
SBRNN autoencoder pη “ 60q

Fig. 6. Bit error rate as a function of transmission distance for the 42 Gb/s SBRNN autoencoder and M -PAM & Rx MLSD systems (M P t2, 4u). In the
case of MLSD η “ µ log2pMq, where µ represents the number of pre- and post-cursor PAM symbols defining one of Mµ channel states. In the case of
SBRNN η “ W log2pMq is the number of bits inside the processing window. The solid SBRNN curves with square marks () include the bit-to-symbol
mapping optimization described in Section III-B, while circle marks () give the BER with a randomly chosen bit mapping and cross marks () show the
lower bound on the BER (at most 1 bit error per symbol).

TABLE I
CHANNEL SIMULATIONS PARAMETERS

Parameter Value

DAC/ADC rate 84 or 42(PAM4) GSa/s
LPF bandwidth 32 GHz

DAC/ADC ENOB 6
Fiber dispersion parameter 17 ps/nm/km
Fiber attenuation parameter 0.2 dB/km

Receiver noise power 0.245 or 0.127(PAM4) mW

TABLE II
AUTOENCODER SIMULATIONS PARAMETERS

Parameter Value

M 64
n 48

Test sequence length 10000
Processing window W 2 or 10

Simulation oversampling 4
Symbol rate 7 GSym/s

Information rate 6 bits/symbol

V. PERFORMANCE AND COMPLEXITY

In this section, we make a comparison between the BER per-
formance of the SBRNN autoencoder and the Tx-PAM&Rx-
MLSD systems at a fixed data rate of 42 Gb/s and also discuss
their computational complexity. Table I lists the parameters
used for the channel simulation, identical for both schemes.

A. BER Performance

The performance of the SBRNN autoencoder is numerically
evaluated using the design parameters given in Table II. Note

that weight optimization in the sliding window estimation
is done as described in Sec. III-B. An input sequence of
messages, each from a set of M “ 64 (6 bits), is encoded by
the transmitter BRNN into a sequence of symbols (blocks) of
n “ 48 samples. We assume an oversampling factor of 4 over
the 84 GSa/s sampling rate of the DAC and, thus, simulation
is performed at 336 GSa/s. The symbol rate of the system
becomes 7 GSym/s and information is transmitted at the rate
of 42 Gb/s. In an attempt to set up a fair comparison between
the investigated systems, we fixed a parameter η, which in the
case of SBRNN, corresponds the number of information bits
processed inside the sliding window η “ W log2M . For the
PAM transmitter with MLSD receiver, this number denotes
the amount of bits contained within a channel state in the
Viterbi algorithm η “ µ log2M , where M P t2, 4u is the
PAM order and µ, already defined in Sec. IV, denotes the
number of post- and pre-cursor PAM symbols which form a
Viterbi state. It is important to stress that in Tx-PAM2&Rx-
MLSD and Tx-PAM4&Rx-MLSD, a fixed η “ 12 also means
using the same number of Viterbi states (4096). This implies
Tx-PAM4&Rx-MLSD accounting for a decreased amount of
memory compared to Tx-PAM2&Rx-MLSD.

Figure 6 shows the BER performance of the examined
systems as a function of transmission distance. We see that for
η “ 12, the SBRNN autoencoder and Tx-PAM2&Rx-MLSD
have comparable performance at all examined distances be-
yond 50 km. Both systems outperform the Tx-PAM4&Rx-
MLSD, where the obtained BER is below the 6.7% hard-
decision forward error correction (HD-FEC) threshold up to
30 km. This is due to the decreased sensitivity of the PAM4
signal and Viterbi memory (µ “ 6). Moreover, the results

indicate that assuming a wider processing window of η “ 60
for the SBRNN leads to a significant BER improvement.

Note that we obtained the BER of the SBRNN autoen-
coder using the bit-to-symbol mapping algorithm described in
Sec.III-C, for an additional comparison Fig. 6 also shows the
BER performance of the system when the ad hoc approach
of assigning the Gray code to the input m P t1, . . . ,Mu is
employed as well as the trivial case of a single block error
resulting in a single bit error. We see that by performing the
bit-to-symbol mapping optimization the performance of the
system is improved, leading to an increase in the achievable
distances below the HD-FEC threshold to 50 km and 70 km
for the cases of η “ 12 and η “ 60, respectively.

B. Computational Complexity

We study the computational complexity of the two systems
using the floating point operations per decoded bit (FLOPSpdb)
as a common metric. In the case of the SBRNN autoencoder,
we count FLOPS in matrix multiplications, bias additions and
element-wise nonlinear activations in both direction of the
recurrent structures as well as multiplications and additions
in the final probability vector estimations. At the transmitter,
the number of FLOPS needed to encode a bit is given by

FLOPSrSBRNN-TXs
pdb “ 2np2pM ` nq ` 1q

log2M
,

where M and n are hyper-parameters of the neural network,
i.e. pre-defined design choices which do not change with the
processing memory. Correspondingly, at the receiver we have

FLOPSrSBRNN-RXs
pdb “ W p24M2 ` 8Mn` 5M ` 2q

log2M
,

which exhibits a linear dependence of the floating point
operations on the processing window W . It is worth noting
that often in practice some portion of the trained neurons
are inactive, thus reducing the actual amount of FLOPS.
Furthermore, one-hot vector multiplications at the transmitter
in principle can be substituted by embedding lookups.

For the Viterbi processor, the amount of floating point
operations scales linearly with the number of states in the
trellis which is equal to Mµ. Assuming a fully populated
trellis, the Viterbi processor performs for each trellis section
Mµ`1 branch metric calculations, Mµ`1 additions, and Mµ`1

comparisons (other than the storage of Mµ sequences). As for
the computation of the branch metric, a total of 3Ns`pNs´1q
FLOPS are required (assuming addition, multiplication, and
square-root use 1 FLOP each). Moreover, we will here account
for each comparison as 1 FLOP and consider the additional
set of comparisons required for the selection of the most likely
sequence at the end of the Viterbi decoding negligible. Thus,
the overall number of required FLOPS per decoded bit is
approximately given by

FLOPSrMLSDs
pdb « 9Mµ`1

log2M
(6)

for Ns “ 2. Importantly, the expression in (6) indicates
that the number of FLOPSrMLSDs

pdb exhibits an exponential

dependence on the processing memory of the detector. In
presence of strong inter-symbol interference this may result
in computationally prohibitive demands or increasingly sub-
optimal performance.

VI. CONCLUSIONS

We improved the performance of the SBRNN autoencoder
by conducting an essential optimization of the bit-to-symbol
mapping function using Tabu search combinatorial algorithm.
Furthermore, we proposed an offline method for optimizing the
weight assignments in the sliding window estimation algorithm
which leads to BER reduction at longer distances. In a compar-
ative study of performance and computational complexity with
schemes based on PAM modulation and maximum likelihood
sequence detection, our results indicate that for a fixed memory
in the receiver algorithms, the SBRNN autoencoder achieves
BER close to the scheme based on PAM2. It outperforms the
PAM4 scheme, which is associated with higher sensitivity
to noise in the system. Importantly, in terms of floating
point operations per decoded bit, the autoencoder has linear
dependence on the assumed memory, unlike the benchmark
scheme where the dependence is exponential.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[2] F. Khan, Q. Fan, C. Lu, A. P. T. Lau, “An optical communication’s
perspective on machine learning and its applications,” J. Lightwave
Technol., vol. 37, no. 2, pp. 493-516, 2019.

[3] D. Zibar, M. Piels, R. Jones, and C. Schäffer, “Machine learning
techniques in optical communication,” J. Lightwave Technol., 2016.

[4] C. Häger and H. Pfister, “Nonlinear interference mitigation via deep
neural networks,” in Proc. OFC, 2018, paper W3A.4.

[5] N. Farsad and A. Goldsmith, “Neural network detection of data se-
quences in communication systems,” IEEE Trans. Signal Process.,
vol. 66, no. 21, pp. 5663-5678, 2018.

[6] V. Houtsma, E. Chou, and D. van Veen, “92 and 50 Gbps TDM-PON
using neural network enabled receiver equalization specialized for PON,”
in Proc. OFC, 2019 paper M2B.6.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, 1989.

[8] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., 2017.

[9] S. Dörner, S. Cammerer, J. Hoydis and S. ten Brink, “Deep learning-
based communication over the air,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 132-143, Feb. 2018.

[10] B. Karanov, M. Chagnon, F. Thouin, T. Eriksson, H. Bülow, D. Lavery,
P. Bayvel and L. Schmalen, “End-to-end deep learning of optical fiber
communications,” J. of Lightwave Technol., vol. 36, no. 20, 2018.

[11] M. Chagnon, B. Karanov and L. Schmalen “Experimental demonstration
of a dispersion tolerant end-to-end deep learning-based IM-DD trans-
mission system,” in Proc. ECOC, Rome, Italy, Sep. 2018.

[12] B. Karanov, D Lavery, P. Bayvel and L. Schmalen, “End-to-end opti-
mized transmission over dispersive intensity-modulated channels using
bidirectional recurrent neural networks,” Opt. Express, vol. 27, no. 14,
pp. 19650-19663, 2019.

[13] I. Lyubomirsky, “Machine learning equalization techniques for high
speed PAM4 fiber optic communication systems,” CS229 Final
Proj. Rep., Stanford Univ., 2015. Available: http://cs229.stanford.edu/
proj2015/232 report.pdf.

[14] G. D. Forney, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,”IEEE Trans.
Inform. Theory, vol. 18, no. 3, pp. 363-378, 1972.

[15] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, 1997.

[16] M. Chagnon, “Optical communications for short reach,” J. of Lightwave
Technol., vol. 37, no. 8, pp. 1779-1795, 2019.

http://cs229.stanford.edu/proj2015/232_report.pdf
http://cs229.stanford.edu/proj2015/232_report.pdf

[17] G. Agrawal, Fiber-optic Communication Systems, 4th ed., John Wiley
& Sons, Inc., 2010.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ArXiv preprint arXiv:1412.6980, 2014.

[19] T. Eriksson, H. Bülow, and A. Leven, “Applying neural networks
in optical communication systems: possible pitfalls,” IEEE Photon.
Technol. Lett., vol. 29, no. 23, pp. 2091-2094, 2017.

[20] D.-U Lee, J. Villasenor, W. Luk, and P. Leong, “A hardware Gaussian
noise generator using the Box-Muller method and its error analysis,”
IEEE Trans. Comput., vol 55, no. 6, pp. 659, 2006.

[21] L. Schmalen, A. de Lind van Wijngaarden and S. ten Brink, “Forward
error correction in optical core and optical access networks,” Bell Labs
Technical Journal, vol. 18, no. 3, Dec. 2013

[22] E. Agrell and M. Secondini, “Information-theoretic tools for optical
communication engineers,” in Proc. IPC, 2018.

[23] K. Zeger and A. Gersho, “Pseudo-Gray coding,” IEEE Trans. Com-
mun.,vol. 38, no. 12, pp. 2147-2158, Dec. 1990

[24] F. Glover, “Tabu search – part I,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190-206, 1989

[25] R. T. Jones, M. P. Yankov and D. Zibar, “End-to-end learning for GMI
optimized geometric constellation shape,” in Proc. ECOC, Sep. 2019.

[26] G. Bosco, P. Poggiolini, and M. Visintin, “Performance analysis of
MLSE receivers based on the square-root metric,”, J. of Lightwave
Technol., vol. 26, no. 14, pp. 2098–2109, 2008.

[27] P. Poggiolini, G. Bosco, J. Prat, R. Killey, and S. Savory, “Branch metrics
for effective long-haul MLSE IM/DD receivers,” in Proc. ECOC, 2006.

[28] G. D. Forney, “The Viterbi Algorithm,” Proc. IEEE, 1973.

http://arxiv.org/abs/1412.6980

	I Introduction
	II Sliding Window Bidirectional Recurrent Neural Network Autoencoder
	II-A Bidirectional Recurrent Neural Network-Based Transceiver
	II-B Communication Channel

	III Autoencoder Training & Sequence Estimation
	III-A Training
	III-B Sliding Window Sequence Estimation Algorithm
	III-C Bit Labeling Optimization

	IV Maximum Likelihood Sequence Detection
	V Performance and Complexity
	V-A BER Performance
	V-B Computational Complexity

	VI Conclusions
	References

