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Abstract—Neural networks have been proposed recently for
positioning and channel charting of user equipments (UEs) in
wireless systems. Both of these approaches process channel state
information (CSI) that is acquired at a multi-antenna base-
station in order to learn a function that maps CSI to location
information. CSI-based positioning using deep neural networks
requires a dataset that contains both CSI and associated
location information. Channel charting (CC) only requires CSI
information to extract relative position information. Since CC
builds on dimensionality reduction, it can be implemented using
autoencoders. In this paper, we propose a unified architecture
based on Siamese networks that can be used for supervised UE
positioning and unsupervised channel charting. In addition, our
framework enables semisupervised positioning, where only a
small set of location information is available during training. We
use simulations to demonstrate that Siamese networks achieve
similar or better performance than existing positioning and CC
approaches with a single, unified neural network architecture.

I. INTRODUCTION

Positioning of wireless transmitters under line-of-sight
(LoS) propagation conditions is a relatively well understood
topic [1]]-[3]]. Corresponding positioning techniques, such
as triangulation and trilateration, find widespread use in
global navigation satellite systems (GNSSs) and in localization
systems that leverage user equipment (UE) access to multiple
infrastructure basestations (BSs). However, positioning of
wireless transmitters is known to be significantly more chal-
lenging under complex propagation conditions [4], [5]]. Such
conditions appear, for example, in non-LoS scenarios (which
may happen indoors) or for channels with rich multi-path
components (which may happen in dense urban areas). The
trend towards communication at high carrier frequencies, such
as millimeter-wave systems, further increases the prevalence
of complex propagation conditions as channel properties can
abruptly change in space [6], [[7].
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A. Machine-Learning-Based Positioning

To enable positioning for such challenging propagation
conditions, data-driven approaches that combine channel-
state information (CSI) fingerprinting with machine learning
methods have been proposed recently [8]—[15]. Most of these
methods rely on deep neural networks, which map CSI to
position in space. While these approaches have been shown
to achieve high accuracy even under challenging propagation
conditions, they require large training databases consisting of
CSI and true location information. The acquisition of such
databases necessitates extensive and repeated measurement
campaigns, where CSI and location measurements must be
taken at high spatial resolution.

Channel charting (CC), as proposed in [16], avoids exten-
sive (and expensive) measurement campaigns for applications
that do not require absolute positioning capabilities (e.g., for
hand-over, cell search, and user grouping). The principle of CC
is to exploit the fact that CSI is high-dimensional, but strongly
dependent on UE position, which is low-dimensional. Dimen-
sionality reduction, e.g., by means of Sammon’s mapping [|17]
or autoencoders [18]-[21]], applied to carefully crafted CSI
features builds a channel chart, in which nearby points
correspond to nearby locations in true space. Unfortunately,
absolute (and exact) position information is not available from
conventional CC. To equip CC with absolute localization
capabilities, the paper [22] proposed the inclusion of side
information into autoencoders. The resulting semisupervised
autoencoder is able to include a subset of known spatial
locations, without requiring measurements at wavelength
scales in space. Unfortunately, the low-dimensional repre-
sentations generated by autoencoders do not exhibit any
desirable distance properties (e.g., that nearby features should
be nearby in the representation space); corresponding distance
constraints must be imposed separately [22]. Furthermore,
autoencoders are often difficult to train, and require tedious
network and algorithm parameter tuning [23].

B. Contributions

In this paper, we propose a unified architecture based
on Siamese networks that enables CSI-based localization
in supervised, semisupervised, and unsupervised scenarios,
which includes CC. The proposed network architecture is
a parametric extension of Sammon’s mapping [17]], which



enables the inclusion of side information that results from (i) a
(possibly small) set of annotated points in space with known
location and (ii) the fact that UEs are moving with finite
velocity [22]. To demonstrate the effectiveness of Siamese
networks for CSI-based positioning and CC, we perform
simulations for LoS and non-LoS channels, and we compare
our approach to conventional neural networks and CC methods
that use Sammon’s mapping and autoencoders. We finally use
a simulator that models UE movement at a T-intersection to
show that a small set of CSI measurements is sufficient to
perform accurate positioning with Siamese networks.

C. Relevant Prior Art

A number of recent papers have investigated the efficacy
of neural networks for CSI-based positioning [8]-[15]. All
of these methods are supervised and require extensive mea-
surement campaigns to generate large databases consisting
of CSI measurements and accurate position information at
densely sampled locations in space (often at wavelength
scales). Channel charting (CC), as proposed in [16], is
unsupervised and uses dimensionality reduction to perform
relative positioning solely from CSI measurements, without
the need of ground-truth position information. Recent exten-
sions of CC include multi-point CC [24] for systems with
simultaneous connectivity to multiple BSs and semisupervised
CC with autoencoders [22]], which enables the inclusion of
partially-annotated datasets. The Siamese network proposed
in this paper unifies supervised CSI-based neural-network-
based positioning with unsupervised CC in a single network
architecture. In addition, our framework is able to match, and
even to outperform, existing methods for all these scenarios.

Siamese networks have been proposed by Bromley et al. in
1993 for handwritten signature verification [25]]. Since then,
this neural network topology has been used in a broad range of
applications, including classification tasks [26], online object
tracking [27]], and similarity function learning for images [28],
human faces [29], and text [30]. The method proposed
in this paper combines Siamese networks with Sammon’s
mapping [17] in order to perform regression for the supervised
scenario and parametric dimensionality reduction for CC.
Furthermore, the same architecture enables the inclusion of
side information that stems from the measurement process.

II. STAMESE NEURAL NETWORKS

We now discuss the basics of Sammon’s mapping and
show how a parametric version can be derived using Siamese
networks. We then discuss how the resulting architecture can
be augmented for supervised and semisupervised learning.

A. Sammon’s Mapping Basics

Sammon’s mapping [17] takes a dataset X = {x, €

RPN | comprising N input vectors with dimension D and
maps all vectors to a set Y = {y, € RP }_, in some D’

dimensional space, where typically D’ < D. The goal of
Sammon’s mapping is to preserve small pairwise distances
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Fig. 1. Illustration of the proposed Siamese network. The architecture consists
of two parallel neural networks fg that share the same parameters 6 and
process the two high-dimensional vectors X, and X,. The distance dn,m
between the low-dimensional outputs y, and y,, of the parallel neural
networks is the main output of the network. To enable supervised learning,
we provide the vectors y, and yn, as secondary outputs; to enable
semisupervised learning, we include a scaling layer that multiplies the output
distances of the Siamese network by a > 0.

between the high- and low-dimensional vectors by minimizing
the following loss function:

N-1 N )
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The variables of this optimization problem are the low-
dimensional vectors in the set ). The parameters wy, ., are
used to de-weight the importance of pairs of vectors that are
dissimilar in high-dimensional space. The common choice
for Sammon’s mapping is Wy, = ||Xn, — Xy || ! for n # m.

As demonstrated in [16], Sammon’s mapping performs
exceptionally well for CC tasks. However, this technique
is nonparametric as it does not explicitly learn a function
f:RP — RP that maps a new high-dimensional vector
X, € RP into a corresponding vector y,, € RP' in
low-dimensional space. For CSI-based positioning and CC,
however, we are interested in a function f that maps
high-dimensional vectors (that contain CSI features) into
low-dimensional vectors (that contain position information).
We next describe a neural-network extension to parametric
Sammon’s mapping.

B. Siamese Networks for Parametric Sammon’s Mapping

Artificial neural networks are well known to be excellent
function approximators. It is therefore natural to replace each
low-dimensional vector y,, € R?’, n=1,..., N, in (1) by
the output of a feedforward neural network y,, = fo(x,,) that
maps high-dimensional vectors to low-dimensional vectors.
The parameters 6 describe the weights and biases of the
neural network. We simply minimize the loss function

L(6) =
N
2

which is a parametric version of Sammon’s mapping, where
¥n = fo(X,) is the mapping from high to low dimension.
As it turns out, minimizing the loss function in is
an instance of training a Siamese network [25]); Figure [I]
illustrates the associated network architecture. The proposed
Siamese network takes in two high-dimensional vectors x,,
and x,,, and maps them to corresponding low-dimensional

N
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vectors y, and y,, using two identical neural networks
described by the function fg : RP — R’ that share the
same set of parameters 6. The scaled distance between the
two low-dimensional vectors is dy, ., = ||y, — ¥m||, where
a > 0 is a trainable parameter required in semisupervised
scenarios (see Section [[I-C).

Minimizing the loss in (2 is equivalent to minimizing
a weighted mean-square error (MSE) between the Siamese
network’s output and the distance ||x,, — X, || between pairs
of high-dimensional vectors. This Siamese network can be
trained using the high-dimensional vectors in the set X', which
makes minimizing (2)) an unsupervised learning problem.

C. Supervised and Semisupervised Extensions

In the application of UE positioning, we are often able to
acquire ground-truth location information of a subset of the
wireless transmitters, e.g., during a dedicated measurement
campaign. In the ensuing discussion, we call the case where
all N low-dimensional vectors y, are known a-priori the
supervised scenario; if only a subset N of these vectors is
known a-priori, then we call this the semisupervised scenario.

1) Supervised scenario: Siamese networks can easily be
extended to support the supervised scenario. To include a-
priori information on the low-dimensional vectors, we can
incorporate additional penalty terms in the loss function,
which depend on the observed low-dimensional vectors y,,.
We include Euclidean distance loss functions between the
network’s secondary outputs y, and y,,, and known low-
dimensional vectors. Specifically, we add terms of the form
I fo(xn) — XnHQ to the loss function, where underlined
quantities, such as y , denote known low-dimensional vectors
(also known as anchor points). Note that these terms are
equivalent to those of a traditional neural network trained
with an MSE loss function.

2) Semisupervised scenario: To support the semisupervised
scenario, we include an additional, trainable scaling factor
o >0 prior to computing the distance output d, ,, =
allyn — ym||. While this scaling factor is irrelevant in
the fully supervised and unsupervised scenarios because
it can be absorbed in the function fg, it is necessary
during semisupervised learning for the following reason:
While supervised information is taken into account using
the secondary outputs y,, and y,, as described above, we
also match the Siamese network’s distance output d,, ,, to
that of the input distances ||x,, — X, ||. These input-vector
distances, exhibit a different scaling (different to that of
¥, — ¥m|). The learnable factor o enables us to scale the
distance output (which is in terms of the low-dimensional
vectors) to approximately match distances between high-
dimensional vectors ||x,, — X,,||. This trick allows us to train
a loss with both an anchor point term and a pair-wise distance
term, while having these terms to be consistent.

D. Practical Considerations

We train the Siamese network in Figure [I] using stochastic
gradient descent (SGD). To improve the performance of our
trained neural networks, we impose an £5-norm regularization

on all weights. Furthermore, we observed that using large
batch sizes improved the quality of the learned networks. To
ensure that (i) the gradient of the loss function is always
defined and (ii) the weights w, ,,, in @) remain bounded, we
replace all Euclidean norms in the loss function (2)), by the
following smooth approximation: ||x|| &~ +/||x||2 + €. Here,
€ > 0 is a hyper-parameter—typical values for ¢ that worked
well for our purposes are of the order of 1076,

III. POSITIONING AND CHANNEL CHARTING WITH
SIAMESE NETWORKS

We now detail how Siamese networks can be used to
perform both positioning and CC.

A. Neural-Network-Based Positioning

Positioning from CSI using neural networks boils down to
a simple regression problem [8]—[15]. The high-dimensional
input vectors x,, € R? correspond to channel features that
are extracted from measured CSI (e.g., obtained during a
training phase in the uplink where UEs transmit data to
the BS). Channel features are usually designed to represent
large-scale properties of wireless channels (such as angle-
of-arrival, power-delay profile, and receive power), while
suppressing noise and small-scale fading artifacts (such as
random phase shifts). A range of carefully-designed channel
features have been proposed in [16]. The low-dimensional
vectors y, € RP ' correspond to measured ground-truth
position information, which can be acquired during a dedicated
measurement campaign. By forming a large dataset consisting
of channel features and associated position vectors, one can
simply train a neural network that minimizes the position
MSE between ground truth and neural network output in a
supervised manner.

B. Relative Positioning with Channel Charting

To enable relative positioning without the need of extensive
measurement campaigns, CC, as put forward in [[16]], learns
a low-dimensional channel chart that preserves locally the
original spatial geometry. CC collects CSI from a large
number of UEs at different spatial locations. The CSI is
transformed into channel features, which are then processed
using dimensionality-reduction methods to extract a low-
dimensional channel chart that preserves locally the original
spatial geometry. UEs that are nearby in real space will be
placed nearby in the channel chart and vice versa—global
geometry is not preserved. CC is unsupervised, meaning that
construction of the channel chart is only based on channel
features that are collected at a BS. CC opens up a range of
location-based applications without requiring LoS channel
conditions, access to GNSS, or extensive measurement
campaigns that are needed for fingerprinting [1]].

The operating principle of CC is as follows. Suppose
that we have n = 1,..., N UE pilot transmissions from
coordinates y?; € RP" where D’ = 3. The nth transmission
from location y); enables the BS to estimate the high-
dimensional CSI vector h,,, which characterizes the channel’s
multi-path propagation, power delay profile, path loss, etc.



One can now extract channel features x,, € R from the
CSI vector h,,, which only reflect large-scale properties of
the wireless channel. The key assumption underlying CC is
now that large-scale fading characteristics are largely static
and are determined by the UE location. In fact, due to the
underlying physics of wave propagation, each channel feature
is a function of the UE position—this function represents the
effect of the unknown environment on the transmitted pilot
signal. From the set of channel features {x,}2_;, one can
now learn the channel chart via dimensionality reduction.

In [16], [22], [24]], Sammon’s mapping, Laplacian eigen-
maps, and autoencoders have been used to learn channel charts.
While Sammon’s mapping [16] and Laplacian eigenmaps [24]
have been shown to perform well in LoS and non-LoS
scenarios, their nonparametric nature limits their use in
practice. Very recently, out-of-sample extensions for Laplacian
eigenmaps have been proposed in [31]. Autoencoders provide
a parametric mapping as the encoder function can be used
directly for the purpose of mapping new channel features to
(relative) location. However, autoencoders are often difficult
to train [23]] and the inclusion of geometry constraints is not
straightforward [22]. To avoid the drawbacks of existing CC
algorithms, we propose to use Siamese networks as illustrated
in Figure [I] and described in Section [[I-B

C. Semi-Supervised Positioning

In situations where only a subset N' C {1,2,..., N} of
channel features x,, n € N/, are annotated with ground-
truth position information y,. one can combine the ideas
of neural-network-based positioning and CC. Concretely, we
can impose a-priori location information on the secondary
outputs y,, and y,, of the Siamese network shown in Figurem
The primary distance output d,, ., is used to match pairwise
channel feature distances ||x,, — X, ||. This approach enables
us to simultaneously enforce that y,, = fg(x,) maps to
known anchor vectors Y, while the scaled pairwise output
distances approximately satisfy

3)

During this approach, we learn the neural network pa-
rameters 6 and the scaling factor a > 0. We reiterate
that the proposed network in Figure [I] enables supervised,
semisupervised, and unsupervised positioning in a single
unified architecture.

allfo(xn) = fo(xm)|l = [I%n = Xm|l-

IV. RESULTS

We now demonstrate the efficacy of the proposed Siamese
network architecture for CSI-based positioning and CC. We
start by describing the simulated scenario and the used
performance metrics. We then provide a comparison to (i)
conventional feedforward neural networks in the supervised
scenario and (ii) to Sammon’s mapping and autoencoders in
the semisupervised scenario and for CC.

A. Simulated Scenario

Figure [2] depicts the simulated scenario and Table
summarizes the key system and simulation parameters. We
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Fig. 2. Simulated UE locations of the synthetic test dataset. The multi-
antenna BS antenna array with B = 32 antennas is located at the origin
(0, 0). Each point represents a UE position; 200 UEs are positioned randomly
in a rectangular area; 200 UEs are positioned on a square in space to facilitate
visualization of supervised and unsupervised positioning methods. The points
associated to locations far away from the BS have more thickness; the color
gradients further aid visualization of our results.

TABLE I
SUMMARY OF SYSTEM AND QUADRIGA CHANNEL MODEL PARAMETERS

Scenario Berlin UMa | Antenna array A/2 ULA
Carrier frequency  2.68 GHz BS location (0,0)
Bandwidth 20 MHz BS height 30m

BS antennas 32 UE height 2.5m
Subcarriers 8 UE transmit power  20dBm

randomly place N = 2000 UEs in a rectangular area of
200 x 200 m?; their associated CSI is used to extract the
training data consisting of channel features. We additionally
extract a test set composed by 400 points: 200 UEs are
randomly placed in the same area; 200 UEs are placed on a
square shape to facilitate visualization of the learned position
information. A BS with B = 32 antennas on a uniform linear
array (ULA) of \/2 spacing is located at (z,y, z) = (0,0, 30)
meters. The UEs transmit one pilot symbol at 20dBm. We
model data transmission at 2.68 GHz with 20 MHz bandwidth
for two channel models: (i) Quadriga LoS (Q-LoS; a LoS
channel model that includes scatterers); and (ii) Quadriga
non-LoS (Q-NLoS; a non-LoS channel model which only
includes scatterers). We use the “Berlin UMa” scenario for
both scenarios [32] with spatial consistency enabled.

At the BS side, we extract CSI at 8 orthogonal-frequency-
division multiplexing (OFDM) subcarriers, which results in
CSI consisting of 32 x 8 complex-valued coefficients (i.e.,
BS antennas times subcarriers). The channel features are
computed by first applying feature scaling as in [16], and
then transforming the scaled features from the antenna and
frequency domain to the beamspace and delay domain (by
taking a 2-D discrete Fourier transform across the 32 antennas
and 8 subcarriers). We then take the entry-wise absolute
value of the features and stack all 8 subcarriers to one 256-
dimensional channel-feature vector. The resulting channel
feature vectors {x,})_, are of dimension D = 256; the
dimension of the location data is D’ = 2 as we assume the
UEs to be at the same height.



For the Siamese network, we use a neural network ar-
chitecture with 6 hidden layers, each having the following
number of activations per layer: 512, 256, 128, 64, 32, and
2. Layers 1 to 5 use rectified linear unit (ReLU) activations,
whereas the last layer 6 uses a linear activation. For the
reference fully-connected neural network (FCNN), we use the
same network topology. For the reference autoencoder (AE)
proposed in [16], [22], we use the same network topology for
the encoder and the reverse topology for the decoder network.

B. Performance Metrics

To measure the performance of the considered methods,
we will use the following metrics:

1) Mean distance error: In the supervised and semisuper-
vised scenarios, a natural way for measuring performance is
the mean distance error (MDE), which we define as follows:

T
1
MDE = — — vl 4
Téﬂw yill 4)

Here, T" denotes the number of vectors in the test set, y; is
the low-dimensional ground truth associated with the high-
dimensional vector x}, and y; = fg(x}) is the output of the
learned neural network fg.

2) Kruskal’s stress: In addition to the MDE, we use
Kruskal’s stress (KS) [33]], [34]] to measure how well the low-
dimensional dataset {y,, })_, represents the original location
dataset {y*}_,. Specifically, KS is defined as

(;nm* dnm 2
m:¢ZMé’ f’). (5)

n,m5 m

Here, 6pm = [ly; = ¥l dom = [[yn — ymll, and 8 =
> Onemnm/ D On - KS is in the range [0,1] and
smaller values indicate that global geometry is preserved
better; if KS = 0, then geometry is perfectly preserved.

3) Trustworthiness and continuity: To characterize the
performance of dimensionality reduction, especially in the
unsupervised scenario where absolute position information
is unavailable, we use two standard metrics that characterize
neighborhood preserving properties: trustworthiness (TW)
and continuity (CT) [35]-[37]. The TW measures whether the
mapping of high-dimensional vectors to the low-dimensional
space introduces new (false) neighbors. The TW is defined as

N
TW(K) =1- NK(2N273K—1) Z Z (r(n,m) - K)7
n=1meuUk
(6)

where r(n,m) denotes the rank of the low-dimensional
vector y,, among the pairwise distances between the other
vectors. The set UX contains the vectors that are among
the K nearest neighbors in low-dimensional space, but not
in high-dimensional space. The CT measures whether similar

TABLE I
SUPERVISED TEST-SET PERFORMANCE

Q-LoS Q-NLoS
| FCNN  Siamese | FCNN  Siamese
MDE [m] | 731 6.69 | 1132 1051
KS | 0.146  0.107 | 0293  0.116
K=1 | 098 0987 | 0966  0.968
™ K =40 | 0993 0993 | 0978  0.982
K =280 | 0994 0995 | 0980  0.987
K=1 | 0988 0989 | 0965  0.966
CT K =40 | 0993 0994 | 0980 0981
K=80| 0994 099 | 0983 0984

vectors in high-dimensional space remain similar in the low-
dimensional space, and is defined as

N
CT(K)=1- m Z Z (PF(n,m) — K),
n=1meVK
7

where 7(n,m) denotes the rank of the high-dimensional
vector x,, among the pairwise distances between the other
vectors. The set VX contains the vectors that are among
the K nearest neighbors in high-dimensional space, but not
in low-dimensional space. TW and CT assume values in
[0,1] and large values imply that neighborhoods are better
preserved; TW = 1 and C'T' = 1 indicate perfect preservation
of neighborhood ranking.

C. Performance Comparison

1) Supervised positioning: Table [lIl compares the test-set
performance of the reference FCNN to that of the proposed
Siamese network in the supervised scenario, i.e., ground truth
location is available for all N = 2000 UEs during training.
We observe that the Siamese network outperforms the FCNN
in almost all cases, except for the TW measure in the Q-LoS
case with K = 1 (where the TW is almost on par with the
reference FCNN). The MDE and KS of the proposed Siamese
network are both substantially smaller than that of the FCNN.
We note that, while both networks are trained in a conventional
regression scenario, the Siamese networks achieve superior
performance. Since fg of the Siamese network is the same as
the function of the FCNN, we conjecture that the improved
performance is due to the fact that Siamese networks learn
from (N2 — N)/2 data points (all distinct pairwise distances),
which serves as a regularizer during SGD. In contrast, the
FCNN learns its parameters from only /N data points.

2) Channel charting (unsupervised): Tables and
show the training and test-set performance, respectively, of
(unsupervised) CC. We also consider the training performance
as conventional Sammon’s mapping does not generate a
parametric mapping—hence, results on the test set are not
available. Since CC is unable to perform absolute positioning,
we omit MDE performance. For the training performance,
the AE consistently outperforms Sammon’s mapping and the
proposed Siamese network—the performance gap between
the AE and Siamese network is small. The performance of



TABLE III
CHANNEL CHARTING (UNSUPERVISED) TRAINING PERFORMANCE

Q-LoS Q-NLoS

‘ Samm. AE Siam. ‘ Samm. AE Siam.

KS ‘ 0.999 0.980 0.951 ‘ 0.990 0.978  0.939
K=1 0.890 0984 0.874 0.969 0.988 0.965

™ K =40 0.865 0.951 0.870 0.972 0.986 0.967
K =280 0.851 0.933 0.864 0.972 0.985 0.967
K=1 0.986 0983  0.984 0.980 0.984 0.981

CT K =40 0.959 0.968 0.961 0.978 0981 0.979
K =280 0.946 0956 0.951 0.976 0.979 0.978

TABLE IV

CHANNEL CHARTING (UNSUPERVISED) TEST-SET PERFORMANCE

Q-LoS Q-NLoS

‘ Samm. AE Siam. ‘ Samm. AE Siam.

KS ‘ N/A 0.985  0.957 ‘ N/A 0.982  0.942
K=1 N/A 0.940 0.843 N/A 0.982 0.966

™ K =40 N/A 0.844 0.802 N/A 0.976  0.959
K =280 N/A 0.735  0.763 N/A 0.964 0.934
K=1 N/A 0.957  0.967 N/A 0980 0.976

CT K =40 N/A 0.862  0.885 N/A 0.972  0.963
K =280 N/A 0.749  0.786 N/A 0.956 0.923

the Siamese network and traditional Sammon’s mapping is
similar, indicating we were able to learn a parametric function
for Sammon’s mapping. In terms of test-set performance, the
Siamese network performs on par with the AE for the Q-LoS
channel and only slightly worse for the Q-NLoS channel.

3) Semisupervised positioning: Table [V| shows the vali-
dation performance of semi-supervised positioning, where
we used the representation-constrained autoencoder (AE) as
in [22] for semisupervised positioning. We assumed that only
10% of the UE locations were available during training. We see
that the Siamese network and the representation-constrained
AE perform comparably well for both channel scenarios.

In order to determine whether semisupervised positioning
has any advantage over fully-supervised positioning with the
same number of observed UE locations, we train a FCNN
and a Siamese network with only 10% known UE locations
(N = 200). Note that this is the same number of known
anchor positions as for the semisupervised experiment in
Table in the semisupervised case, however, we use all
of the N = 2000 channel features during training (but only
N = 200 known UE locations). As we can see by comparing
the performance of Siamese networks in Table VI with Table[V]
for the Q-LoS channel model, using only 10% of the data in
the supervised setting results in inferior performance in terms
of MDE, KS, TW, and CT, compared to the semisupervised
case. Quite surprisingly, for the more challenging Q-NLoS
channel model, semisupervised learning did not show any
advantage over training from only 10% data. This implies
that the proposed method must be improved even further if
one wants to take advantage of semisupervised learning.

TABLE V
SEMISUPERVISED TEST-SET PERFORMANCE

Q-LoS Q-NLoS
| AE  Siamese | AE  Siamese
MDE [m] | 1335 1062 | 2170  17.59
KS | 0324 0275 | 0491  0.327
K=1 |0976 0976 | 0942 0932
W K =40 | 0977 0986 | 0961 0953
K =80 | 0981 0988 | 0965  0.961
K=1 |0979 0980 | 0953 0954
CT K =40 | 0979 0987 | 0954  0.958
K=80|0982 098 | 0957  0.965
TABLE VI

SUPERVISED TEST-SET PERFORMANCE WITH ONLY 10% TRAINING DATA

Q-LoS Q-NLoS
| FCNN  Siamese | FCNN  Siamese
MDE [m] | 1333 12.81 | 17.64 1733
KS ‘ 0.401 0.154 ‘ 0.395 0.288
K=1 0.981 0.965 0.938 0.929
™ K =40 0.986 0.976 0.953 0.954
K =80 0.988 0.981 0.958 0.958
K=1 0.983 0.977 0.947 0.949
CT K =40 0.986 0.976 0.956 0.956
K =80 0.988 0.979 0.961 0.962

4) Visualization of Positioning and CC Results: Figures [3|
and [ show the learned positions on the test set for Q-LoS
and Q-NLoS channel with Siamese networks, respectively.
Note that the same unified Siamese network architecture
was used to obtain all of these results. As we can see, CSI-
based positioning in the supervised setting works well on
both LoS and non-LoS channels, whereas the results for
the non-LoS case are, as expected, slightly less accurate.
The learned positions for the semisupervised setting are only
slightly worse than those for the fully supervised scenario. The
(unsupervised) CC results do not allow absolute positioning,
but one can clearly see that local geometry as well as global
geometry is well preserved.

D. T-Intersection Scenario

We now show a more realistic scenario in which cars
are passing through a T-intersection from three directions as
depicted in Figure [5[a). The car movement was simulated
using the Unity game engine. Each car creates what we
call a “trace” that consists of CSI associated to its position
collected over time. Example traces of UE position are shown
in Figure [5(b). We trained a Siamese network from the
CSI obtained by observing 20 such traces and then use
the resulting network for positioning of new, unseen UE
locations on the same T-intersection. Figure [5[c) shows the
learned UE positions for a test set consisting of 20 new traces.
Clearly, the Siamese network is able to accurately place new
UE positions in real space. Table shows the associated
performance measures. We see that an MDE of only 2.95m
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(b) Semisupervised; MDE = 10.62, KS = 0.275, (c) Channel charting (unsupervised); KS = 0.957,
TW = 0.988, and CT = 0.989.
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Fig. 3. Visualization of predicted locations via Siamese networks for a Q-LoS channel. TW and CT values are evaluated using K = 80 nearest neighbors.
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TW = 0.987, and CT = 0.984.

0.116, (b) Semisupervised; MDE = 17.59, KS = 0.327, (c) Channel charting (unsupervised); KS = 0.942,
TW = 0.961, and CT = 0.965. TW = 0.934, and CT = 0.923.

Fig. 4. Visualization of predicted locations via Siamese networks for a Q-NLoS channel. TW and CT values are evaluated using K = 80 nearest neighbors.

(a) Screenshot of T-intersection simulator.
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(b) Ground truth test-set positions.

(c) Predicted locations via Siamese networks.

Fig. 5. Visualization of predicted locations using a Siamese network on UE positions sampled from a T-intersection traffic simulator using a Q-LoS channel
model. Even from only 20 measured traces, new UEs can be traced accurately. The performance of predicted locations is MDE = 2.95, KS = 0.188,

TW = 0.755, and CT = 0.974, where the TW and CT values are evaluated using K = 80 nearest neighbors.

TABLE VII

SEMISUPERVISED T-INTERSECTION TEST-SET PERFORMANCE

and 5.32m is attainable for the Q-LoS and Q-NLoS channel,
respectively, which demonstrates that Siamese networks are
able to accurately position UEs from very small datasets

QLoS QNLoS generated by realistic motion over time.
MDE [m] | 295 | 532
KS ‘ 0.188 ‘ 0.471 V. CONCLUSIONS
K=1 0.560 0.560 We have shown that Siamese networks can be used to
™ K =40 | 0.605 0.579 implement parametric Sammon’s mapping, which enables
K =80 ] 0755 0729 parametric channel charting (CC) from channel-state infor-
K=1 0.970 0.947 mation (CSI). In addition, we have shown that the same
CT K =40 | 0951 0.934 neural network architecture can be used to include partially
K =280 0.974 0.944

annotated data of user equipment (UE) positions, which



enables supervised as well as semisupervised positioning.
By comparing the proposed Siamese network to that of
fully-connected neural networks, autoencoders, and traditional
Sammon’s mapping, we have demonstrated that our approach
performs on par with or superior to baseline methods, but
with a unified neural network architecture. Moreover, we
have demonstrated that, for Siamese networks, semisupervised
training is able to outperform supervised training under
line-of-sight channel conditions—this implies that including
unlabeled CSI measurements for positioning can be beneficial.
Finally, we have shown that Siamese networks are able to
perform accurate positioning for scenarios with realistic UE
motion, even for very small datasets.

There are many opportunities for extensions of this work.
An evaluation of Siamese networks with real-world CSI
is already ongoing. An extension of Siamese networks to
situations with simultaneous connection to multiple BSs,
as put forward in [24], [31] for CC, is left for the future.
Finally, the development of methods that further improve
semisupervised training for challenging propagation scenarios
is an open research problem.
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