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Abstract—We compare three formulations of stationary equa-
tions of the Kuramoto model as systems of polynomial equa-
tions. In the comparison, we present bounds on the numbers of
real equilibria based on the work of Bernstein, Kushnirenko,
and Khovanskii, and performance of methods for the optimisa-
tion over the set of equilibria based on the work of Lasserre,
both of which could be of independent interest.
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I. INTRODUCTION

The Kuramoto model is a prototypical model for studying

many phenomena including the synchronization of power

systems, neural networks, chemical oscillators, particle co-

ordinations, rhythmic applause, and so on. See [1]–[4]. The

general Kuramoto model is given by the differential equation:

dθi

dt
= ωi −

1

N

N
∑

j=1

Ki,j sin(θi − θj), for i = 1, ..., N, (1)

where N is the number of oscillators, Ki,j is the coupling

strength between the i-th and j-th oscillators. The matrix

K = [Ki,j] may also be viewed as the adjacency matrix for

the underlying weighted graph. Ω = (ω1, . . . , ωN ) contains

the natural frequencies of the N oscillators. Of crucial impor-

tance in studying the phase space of this system of ordinary

differential equations are the equilibria which are values of

θ1, . . . , θN for which dθi
dt

= 0 for all i = 1, . . . , N . The

stability analysis of the equilibria can reveal the behavior of

the dynamical system near the equilibria. One can also study

synchronization phenomenon of the Kuramoto model with

the knowledge of the equilibria of the model [5]. Interpreted

as a special case [6]–[8] of the power flow equations in

alternating-current power systems with harmonic currents, the

equilibria of the Kuramoto model provide crucial information

for planning and designing power grids.

Equilibria of the Kuramoto model can be found by solving

the equilibrium conditions dθi
dt

= 0 for all i. Since the
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equilibrium conditions are invariant under transformations of

the form θi → θi + α for all θi with any fixed α ∈ (−π, π],
they possess infinitely many solutions. To remove this degree

of freedom, we fix θN = 0 and remove the N -th equation
dθN
dt

= 0. Thus, we are left with N − 1 nonlinear equations

in N − 1 angles. For example with N = 3, the Kuramoto

model is thus known [9]–[11] to have at most 6 equilibria on

the complete graph.

The counting the number of equilibria of the Kuramoto

model with a finite number N of oscillators, has a very long

history and should be seen as a key structural property of

the set of equilibria. Generally, it is being turned into a root

counting problem for systems of polynomial equations. As

we will show, there are multiple reformulations to polynomial

equations, and some of the bounds on the number of roots

are sensitive to the choice of the reformulation. We present

strong numerical evidence that for many Kuramoto models,

a bound based on the reformulation we introduce and the

theory of [12], [13], and [14] (BKK) is the best known and

in some sense the best possible bound for the number of

complex equilibria.

Outside of the structural properties of the set of equilibria,

one may be interested in the optimisation over the set. This

has been particularly popular in power systems applications,

where there is a cost (of power generation) associated with

the equilibria, cf. [15]. Again, we demonstrate that the

optimisation methods are very sensitive to the choice of

the reformulation. Again, the use of the reformulation we

introduce offers performance superior to those previously

used.

First, in Section II, we describe a novel polynomial refor-

mulation of the equilibrium equations of the Kuramoto model

and compare it the reformulations suggested previously. Next,

we review some known structural results in Section III abd

propose an upper bound on the number of equilibria based

on our reformulation and the BKK theory in Section IV.

Next, we suggest the use of the method of moments for

optimisation over the set of equilibria in Section V. Next,

we provide computational results for the Kuramoto model on

benchmark graphs. We show how sensitive is the performance

of both the method of moments and a numerical polynomial

homotopy continuation (NPHC) method to the choice of
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the reformulation. Using the NPHC method, we provide

strong numerical evidence to demonstrate that our structural

results are tight in certain cases. That is: we employ the

numerical homotopy continuation method and demonstrate

that for generically chosen natural frequencies and weights

on the graph, our upper bound is always equal to the

number of complex solutions. In Section VII, we discuss the

implications of our results and conclude.

II. POLYNOMIAL FORMULATIONS

In studying nonlinear systems of equations like the equi-

librium equations of (1), it is a common practice to first

transform them into algebraic equations which would allow

the use of powerful tools from algebraic geometry.

Formulation 1. Previously [5], [6], [16]–[18], the equi-

librium conditions (1) were transformed into a system of

polynomial equations by using the identities sin(θi − θj) =
sin θi cos θj − sin θj cos θi and then the substitution si :=
sin θi and ci := cos θi for all i = 1, . . . , N − 1, and adding

the equation s2i + c2i − 1 = 0, for all i = 1, . . . , N − 1.

This way, one obtains the following system of polynomial

equations:

ωi −
1

N

N
∑

j=1

Ki,j (sicj − sjci) = 0

s2i + c2i − 1 = 0,

(F1)

for i = 1, . . . , N − 1.

Formulation 2. Alternatively, one may consider a formula-

tion based on the so-called tangent half-angle identities [19,

pages 382–383]:

sin θi =
2 tan θi

2

1 + tan2 θi
2

and cos θi =
1− tan

θi
2

1 + tan2 θi
2

, (2)

wherein one introduces ti := tan θi
2 . This way, one obtains

the following system of polynomial equations:

ωi −
1

N

N
∑

j=1

Ki,j

(

2ti
1 + t2i

1− tj

1 + t2j
− 2tj

1 + t2j

1− ti

1 + t2i

)

= 0

(

2ti
1 + t2i

)2

+

(

1− ti

1 + t2i

)2

− 1 = 0,

(F2)

for i = 1, . . . , N − 1. In Figure 1, we present an example of

the first equation for N = 3. It is clear that the degree of each

equation in this algebrization increases, as one clears out the

denominators to get the equations into the polynomial form,

but the number of equations and the number of variables

remains linear in N .

This increase of degree can be partially mitigated by lifting

the problem, i.e., introducing additional variables such as

ai := 1 + t2i and performing the appropriate substitutions.

Thereby, one obtains yet different algebrizations.

We are not aware of any applications of such half-angle

formulation to the Kuramoto model, although it has been used

under a variety of names in a variety of applications. It is, for

example, known as the Weierstrass substitution, and traceable

to the work of Euler [20, E342, Caput V, paragraph 261].

Emiris pioneered the use of this transformation in Robotics

[21] and Computational Chemistry [22].

Formulation 3. In the present work, we suggest yet another

transformation using the trigonometric identity [23, cf. p. 71,

4.3.1]:

sin(θi − θj) =
1
2I(e

I(θi−θj) − e−I(θi−θj)) (4)

where I :=
√
−1 is the imaginary unit. The equilibrium

equations of (1) become

ωi −
N
∑

j=1

Ki,j

IN
(eIθie−Iθj − e−IθieIθj) = 0. (5)

To formulate the equilibrium equations as an algebraic sys-

tem, we let

xi := eIθi and yi := e−Iθi, (6)

for all i = 1, . . . , N − 1. With this substitution, (5) becomes

an enlarged system of 2(N − 1) equations in 2(N − 1)
variables

N
∑

j=1

Ki,j

IN
(xiyj − xjyi) = ωi for i = 1, . . . , N − 1

xiyi = 1 for i = 1, . . . , N − 1.

(F3)

For example, with N = 3, the system (1) becomes

K1,2

3I
(x1y2 − x2y1) +

K1,3

3I
(x1 − y1)− ω1 = 0

K2,1

3I
(x2y1 − x1y2) +

K2,3

3I
(x2 − y2)− ω2 = 0

x1y1 − 1 = 0

x2y2 − 1 = 0.

(7)

It can be readily verified that the equilibria of (1) (with the

translation symmetry removed) are in one-to-one correspon-

dence with the special solutions of the above system (F3)

that satisfy the additional restriction that |xi| = |yi| = 1 for

i = 1, . . . , N − 1.

It is not clear, however, which of these formulations to use

in which applications. In this paper, we consider two criteria

related to two applications.

III. BOUNDS ON THE NUMBER OF EQUILIBRIA

Via the transformations given in (F1) or (F3), the problem

of counting equilibria of the Kuramoto model is turned into a

root counting problem for systems of polynomial equations.

This approach has a long history, going back to [?], [9], [10],

who have shown that for N = 3, the Kuramoto model on a

complete graph of 3 nodes has at most 6 equilibria. Perhaps

the best-known bound on the number of roots of a system of

polynomial equations comes from the theorem of Bézout.



K1,2

(

2t1
1 + t21

1− t2

1 + t22
− 2t2

1 + t22

1− t1

1 + t21

)

+K1,3

(

2t1
1 + t21

1− t3

1 + t23
− 2t3

1 + t23

1− t1

1 + t21

)

= 3ω1

K2,1

(

2t2
1 + t22

1− t1

1 + t21
− 2t1

1 + t21

1− t2

1 + t22

)

+K2,3

(

2t2
1 + t22

1− t3

1 + t23
− 2t3

1 + t23

1− t2

1 + t22

)

= 3ω1

(3)

Figure 1. A reformulation of the example using ti := tan
θi
2

.

Bézout’s bound is simply the product of the degrees of

all the equations. In the example shown in (7), since each

of the four equations is quadratic (degree 2), the highest

possible number of isolated solutions as given by Bézout’s

bound is therefore 24 = 16. In general, Bézout’s bound for

the system (F3) is 22(N−1). Bézout’s bound is a basic result

in intersection theory [24], the study of how the varieties

defined by an ideal given by an algebraic equation intersect

one another.

Bi-homogeneous Bézout’s bound for the equilibrium equa-

tions for (1) can be derived [6], [8], [25] as
(

2(N−1)
N−1

)

. In a

wide variety of special cases of the Kuramoto model, there

are case-specific bounds as well. These include complete

graphs [26], nearest-neighbour coupling on one-dimensional

lattice graphs [16], [26], [27, e.g.], two-dimensional lattice

graphs [16], [17], [28]–[31], and three-dimensional lattice

graphs [31], [32], and the homogeneous frequencies case [6].

Notice that these bounds relate only to isolated roots.

Casetti et al. [26] have shown that even after fixing the trivial

zero mode by setting θN = 0, there may exist infinitely many

equilibria, known as incoherent manifolds [33]. Surprisingly,

such infinite families of equilibria were also shown to exist

in the one-, two- and three-dimensional lattice model with

nearest neighbour interaction in [16], [30], [34], where it was

demonstrated that the number of infinite families of equilibria

grows exponentially in N .

IV. THE BKK BOUND

In the present contribution, we establish an upper bound

on the number of equilibria for (1) using a novel polynomial

formulation and the theory of Bernstein [12], Kushnirenko

[13], and Khovanski [14], to whom we refer to using the

acronym BKK. The advantage of this bound over existing

bounds is that it takes into consideration of the sparsity

of the connections in the underlying network. This marks

a significant leap forward from the recent studies of the

Kuramoto model and the closely related load flow equations

for electric-power networks [5], [8], [35] from algebraic view

points.

First, let us briefly review the BKK work [12]–[14] on the

number of isolated non-zero complex solutions which is a

refinement of the Bézout bound that takes into consideration

the monomials that appear in the polynomial system: Given

a polynomial, each of its terms give rise to an exponent

vector. For instance, for the term x3y2z1, the exponent vector

is simply the vector whose entries are the exponents of

x, y and z, respectively, i.e., (3, 2, 1). The choice of this

ordering is inconsequential as long as it is kept the same

for each equation. The set of all exponent vectors derived

from the non-zero terms of an polynomial equation is called

the support of that equation. For example, if we arrange the

variables in the order of (x1, y1, x2, y2), then the supports of

the four equations in (7) are

{(1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0)}
{(0, 1, 1, 0), (1, 0, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 0)}
{(1, 1, 0, 0), (0, 0, 0, 0)}
{(0, 0, 1, 1), (0, 0, 0, 0)}.

A convex set is a set of points in which the line segment

connecting any pair of points in the set also lie in that

set. The convex hull of a set is the minimal convex set

containing that set. For a polynomial, the convex hull of its

support is known as the Newton polytope of that polynomial.

In the study of convex polytopes, the mixed volume of

several polytopes is an important concept. which can be

considered as a generalization of the concept of volume into

the context of several polytopes. Given n convex polytopes

Q1, . . . , Qn ⊂ R
n and positive real numbers λ1, . . . , λn

Minkowski’s Theorem states that the n-dimensional volume

of the Minkowski sum λ1Q1 + · · ·+ λnQn, defined as

{ λ1q1 + · · ·+ λnqn | qi ∈ Qi for i = 1, . . . , n }

is a homogeneous polynomial of degree n in the variables

λ1, . . . , λn. The coefficient associated with the monomial

λ1 · · ·λn in this polynomial is known as the mixed volume

of the polytopes Q1, . . . , Qn. In the simplest case, the mixed

volume of two line segments on the plane is precisely the

area of the parallelogram spanned by translations of these

two line segments. With these definitions, one can state:

Theorem 1 (Bernstein [12]). Given a system of n polynomial

equations in n variables, the number of isolated complex

solutions for which no variable is zero is bounded above by

the mixed volume of the Newton polytopes of the equations.

Recall that via the change of variables given in (6), each

(real) equilibrium of (1) corresponds to a unique non-zero

complex solution of (F3). The BKK bound given above hence

provides an upper bound to the number of isolated (real)

equilibria.

Bernstein [12] has also shown that the BKK bound is

generically exact: when the coefficients in the polynomial



system are chosen at random, with probability one, the

number of isolated complex solutions for which no variable

is zero is exactly the BKK bound. In the polynomial formula-

tion of the Kuramoto model given in (F3), if certain relations

are imposed on the coefficients (e.g., the coefficients of x1y2
and x2y1 in (7) must be the same) the generic exactness still

holds true under a mild additional condition. This result of

[12], translated to the language of Kuramoto model is thus:

Theorem 2. If there exists a choice of Ki,j’s and ωi’s for

which the number of non-zero complex solutions of (F3) is

the BKK bound, then for almost all choices of complex Ki,j’s

and ωi, the number of non-zero complex solutions of (F3) will

be the BKK bound.

In other words, among the systems (F3) for all possible

choices of the Ki,j’s and ωi’s, if the BKK bound is attainable

then it must also be generically exact. In Section VI, we

shall compute the BKK bound for the polynomial system

(F3) induced by a number of graphs. Then, the attainability

and hence the generic exactness of the BKK bound in each

case is verified by solving the system (F3) for some specific

chosen set of Ki,j’s and ωi’s.

V. THE OPTIMISATION PROBLEMS

One can also optimise over the system obtained using

either of the three substitutions, possibly intersected with

additional polynomial inequalities.

Let us denote the algebraic set, which is obtained by inter-

secting the reformulation of (1) with r additional polynomial

inequalities as K . Let us consider a polynomial objective

function f(x), x ∈ K and its global minimum f∗ achieved

at one or more x∗ ∈ K . Then, it is easy to see:

Theorem 3 (Asymptotic Convergence). Whenever K is non-

empty and there exists an M > 0 such that ‖ x ‖∞< M for

all x ∈ K , there exists a hierarchy of semidefinite program-

ming relaxations [SDPr] their respective duals [SDPr]∗ such

that the following holds:

(a) inf[SDPr] ր f∗ as r → ∞,

(b) sup of semidefinite-programming duals of SDPr] ր
f∗ as r → ∞,

(c) if there exists a unique global minimizer x∗ ∈ K , with

respect to f , then as r tends to infinity the components

of the optimal solution of [SDPr] corresponding to the

linear terms converge to x∗.

The proofs follow from the seminal work of Lasserre

[36]. Although Theorem 3 states just the existence of such

a hierarchy, there are readily available algorithms [37] for

constructing the hierarchy and computing an arbitrarily-

accurate approximation of [SDPr]. Albeit non-trivial, the

algorithms have been implemented successfully [15], [38,

e.g.]. Under slightly stronger assumptions [39], one can also

show finite convergence.

Notice that the inequalities are often bounds on the phase-

difference of adjacent oscillators:

|θi − θj | ≤ zij , (8)

for some constant zij . In power-systems applications, for

instance, such inequalities bound losses, thermal limits, and

allow for a certain realism of the equilibria. In the traditional

reformulation, the inequality (8) becomes

(sicj − sjci) ≤ arcsin(zij), (9)

where arcsin(zij) is clearly a constant, which can be pre-

computed. In the second reformulation, the constraint (8)

becomes a bound on xi − yi. In the third reformulation, the

constraint (8) becomes:

ti ≤ arctan(zij), (10)

with care needed to consider the appropriate orthant, but

again with a constant right-hand side. Still, this leaves the

question as to which reformulation to use open.

VI. COMPUTATIONAL RESULTS

First, we compare the BKK bound for both formulations

(F1) and (F3) on the sparsest connected graphs, known as the

path graphs. In a path graph, the i-th node for 1 < i < N−1
is connected to two of its neighbors: the (i− 1)-th node and

the (i+1)-th node forming a path. The results are presented

in Table I.

In particular, the generic root count of Table I presents

the results of experiments using a numerical polynomial

homotopy continuation method (NPHC). The NPHC method

guarantees that one will obtain all isolated complex solutions

for a system of polynomial equations by following the

following strategy [40], [41]: to solve a system of polynomial

equations, one starts with an upper bound on the number of

complex solutions of the system. Then, another system is

created such that the system has exactly the same number

of complex solutions as the upper bound, and it is easy to

solve. Finally, each solution of this new system is evolved

over a single parameter towards the system to be solved.

In particular, we have used the computational packages

HOM4PS-3.0 of [42] and [43], as well as Bertini of [44],

[45].

Second, we compare the performance of optimisation

methods suggested in Theorem 3 on formulations (F1) and

(F3) in Table II. (F3) turns out to perform better than (F1),

due to the numbers of variables being similar in (F3) and

(F1), while the degrees of some of the monomials in (F3)

are lower than in (F1).

More specifically, Table II presents the dimensions of

SDP relaxations obtained using SparsePOP of [38] at the

first applicable level of the hierarchy of Theorem 3 for

generic parameter-values for the Kuramoto model on the

path graph. Note that at r = 1, the hierarchies of [38]

and [36] coincide. The m × n constraint matrix A of the



Table I
COMPARISON AMONG DIFFERENT BOUNDS ON THE NUMBER OF EQUILIBRIA AND THE ACTUAL NUMBER OF COMPLEX SOLUTIONS FOR GENERIC

PARAMETER-VALUES FOR THE KURAMOTO MODEL ON THE PATH GRAPH.

Nodes 3 4 5 6 7 8 9 10 11 12 13 14 15

Bézout’s 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456
Bi-h. Bézout’s 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600
BKK for (F1) 8 24 80 256 832 2688 8704 28160 91136 294912 954368 3088384 9994240
BKK for (F3) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Generic root count 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

SDP relaxation is described by the product mn (dim. of

A) and the number of non-zero entries therein (nnz. of

A). These measures influence the memory requirements of

any solver. Additionally, we list the maximum ni among

ni×ni positive semi-definite blocks (max. PSD block), which

influence the run-time of primal-dual interior-point methods

such as SeDuMi [46].

VII. DISCUSSION AND CONCLUSION

In this article, we have reformulated the stationary equa-

tions of the Kuramoto model to polynomial equations in

three different ways. One of the reformulations is novel. The

so-called half-angle transform has been used across several

fields, but has not been applied to the Kuramoto model, as

far as we know. Finally, one of the reformulatins is implicit

in much related work on the Kuramoto model. All three

allow for the use of results from semi-algebraic and algebraic

geometry.

In terms of structural results, we have provided a pre-

scription to compute an upper bound on the number of

equilibria of the model for a given graph topology, which

we called the BKK bound. For the complete graph with

arbitrary (and inhomogeneous) coupling strengths and natural

frequencies, this bound matches the best previously available

upper bound,
(

2(N−1)
N−1

)

. We have demonstrated, however, for

sparser graphs such as path graphs, the BKK bound for a

new polynomial formulation is significantly lower than bi-

homogeneous Bézout’s bound, as well as the BKK bound

for the traditional polynomial formulation.

We also provide constructive results. We show how to use

the reformulations with the so-called method of moments,

which has been developed in semi-algebraic geometry, and

which makes it possible to optimise over the stationary

equations and a variety of further equalities and inequalities.

We also demonstrate the computational trade-offs of using

the three reformulations. This may often be preferable to

the use of homotopy continuation methods. Where homotopy

continuation methods are used, the BKK bound can be

considered as means of constructing a starting system in

solving the stationary equations. The bound also provides

a concrete stopping criterion to any stochastic method for

solving the non-linear equation.

Considering that systems with sine and cosine of angles

and difference of angles are not unique to the Kuramoto

model, this can have far-reaching implications. For instance,

we point out a remarkable parallel between upper bounds

for the equilibria of the Kuramoto model and those for the

equilibria of the complete power flow equations [47], [48].

We should also like to point out that BKK-like results have

been shown for affine spaces as well [49]–[52], which could

perhaps be used.
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