
1

Collaborative Privacy for Web Applications
Yihao Hu Electrical and Computer Engineering

Boston University
yihaoh@bu.edu Ari Trachtenberg Electrical and Computer Engineering

Boston University
trachten@bu.edu Prakash Ishwar Electrical and Computer Engineering

Boston University
pi@bu.edu

Abstract

Real-time, online-editing web apps provide free and convenient services for collaboratively editing,
sharing and storing files. The benefits of these web applications do not come for free: not only do service
providers have full access to the users’ files, but they also control access, transmission, and storage
mechanisms for them. As a result, user data may be at risk of data mining, third-party interception,
or even manipulation. To combat this, we propose a new system for helping to preserve the privacy
of user data within collaborative environments. There are several distinct challenges in producing such a
system, including developing an encryption mechanism that does not interfere with the back-end (and often
proprietary) control mechanisms utilized by the service, and identifying transparent code hooks through
which to obfuscate user data. Toward the first challenge, we develop a character-level encryption scheme
that is more resilient to the types of attacks that plague classical substitution ciphers. For the second
challenge, we design a browser extension that robustly demonstrates the feasibility of our approach, and
show a concrete implementation for Google Chrome and the widely-used Google Docs platform. Our
example tangibly demonstrates how several users with a shared key can collaboratively and transparently
edit a Google Docs document without revealing the plaintext directly to Google.

I. INTRODUCTION

Collaborative web applications (apps) such as the Google productivity suite (Docs, Sheets, and Slides)
enable multiple users to simultaneously edit a number of common documents. To enable server-side
features, such as compression or version control, the contents of these documents are typically available
in plaintext to the app provider. As a result, the provider, affiliated third parties, or malicious parties who
have infiltrated the provider, may also be able to mine the plaintext for behavioral advertising, social
engineering, or even identity theft.

To help preserve their privacy, some users encrypt their data client-side, allowing only users who
know a shared private key to read the plaintext. However standard encryption often inhibits the human
usability experience [21, 26] and its block or streaming encoding is likely to impair or completely break
the collaborative functionality provided by a web service. Likewise, anonymization overlays like Tor [6]
or private browsing may only superficially obfuscate the connection between users and data, as the data
itself may very well contain deanonymizing features.

In contrast to these existing approaches, we propose a transparent and light-weight encryption layer
between clients and providers that protects user data without breaking collaborative features. Users with
access to the document secret may view and edit the document within the collaborative framework as if no
encryption layer is present. On the other hand, users who do not know the document secret, and this may
include the app provider, see obfuscated text. This layer is implemented through browser extension and it
makes extensive use of the standard XMLHttpRequest API [7] used by a variety of web applications

ar
X

iv
:1

90
1.

03
38

3v
2

 [
cs

.C
R

]
 1

7
N

ov
 2

01
9

(e.g., Google productivity suite, Conceptboard, MeetingWords, Collabedits, Codepen, etc. [1, 3, 5]) to
transmit user edits.

Our approach is based on a novel character-level variation of the venerable polyalphabetic substitution
cipher [18]. The benefit of encrypting without the need for context, and at the smallest unit of information
of many collaborative apps (i.e., one Unicode character), is that our approach maintains functionality and
provider bandwidth usage while avoiding heavy-duty reverse-engineering of app-related code or network
protocols (which may be obfuscated).

Though the substitution cipher itself is vulnerable to a number of well-known attacks, such as statistical
attacks and chosen plaintext attacks [22], we provide approaches for strengthening the cipher through
standard mitigations approaches such as homophony and mapping randomization in addition to novel
approaches based on range extension. In the latter case, the plaintext is extended from the typically narrow
band of the Unicode character space (e.g., those associated with the English and/or Greek alphabets) to the
entirety of the Unicode space in a manner than helps equalize character and multi-character distributions
in order to complicate statistical attacks. Finally, we demonstrate the effectiveness of our system through
the implementation of a Chrome browser extension that showcases its use in preserving privacy for the
popular Google Docs collaborative platform.

The following are our main contributions:
• We identify a robust mechanism for encrypting/decrypting user data within collaborative environments

that utilize the XMLHttpRequest API without affecting server-side control traffic.
• We develop and analyze a novel character-level variation of the polyalphabetic substitution cipher

that is more resilient to classical attacks on the cipher.
• We concretely demonstrate an integration of the two previous contributions as a prototype privacy-

preserving Chrome extension for managing Google Docs.
We begin in Section II with a review of some of the related work from the literature. Next we present

the architecture of our system in Section III, including descriptions of our software interface, followed by
our new character-level encryption scheme in Section IV. Section V describes our prototype together with
screenshots of it in action. We conclude in Section VI with some final thoughts, including limitations of
our approach.

II. RELATED WORK

We next outline several representative (but hardly exhaustive) approaches to web-based privacy preser-
vation from the literature. Our approach is specifically attuned to online collaborative environments, and
our use of a memoryless character-level encryption is thus one key point of departure with the related
work below.

a) M-Aegis: M-Aegis [13] aims to protect data from cloud providers by using a transparent window
that sits atop an existing application and encrypts input data in transit. Our approach differs from M-Aegis
in a number of ways. First, M-Aegis focuses on native Android apps, whereas our approach focuses
on browser-hosted apps and is not operating-system dependent. Rather than mimicking portions of an
app’s interface with a GUI overlay, we hook directly into the web application to intercept user input as
transparently as possible. Moreover, in real-time collaborative environments, edits may occur character-by-
character and at different locations in a document. Block-based schemes, like those utilized by M-Aegis,
require the ability to discern the context of edits in and re-encrypt on the fly.

b) MessageGuard: Another closely related work is MessageGuard [17], which implements a system
that layers end-to-end encryption on top of existing web applications, using the browser as a global control
point and deploying as either a browser extension or a bookmarklet. MessageGuard uses the iFrame
HTML element as a middleware overlay between the user and web app, modifying data before it reaches

2

the application. We, on the other hand, intercept data between the application and server, modifying it in
transit. In this manner, our users’ interaction with the app does not change, meaning that their experience
is preserved.

c) Fully-homomorphic Encryption: There are also a number of methods of ensuring data confiden-
tiality with the help of the cloud provider, most notably based on the use of fully-homomorphic encryption
(see, for example, [10, 11, 23, 25]), although there is a wealth of additional literature within their citations
and reverse-citations).

These methods aim to have the server agnostically compute functions of a user’s data, and they are aimed
toward an honest-but-curious provider. Our approach does not require any server-side modifications while
maintaining transparency to the user or multiple collaborating users. We also avoid the heavy computational
machinery required for these schemes.

d) Classical Encryption: More generally, there are quite a number of tools that aim to encrypt user
data, as typified by PGP [27] and S/MIME [16]. These tools are all meant for one operating user at a
time, rather than collaborating users, and they are not designed up-front to function within the back-end’s
existing processing methods.

III. SYSTEM ARCHITECTURE

Our proposed system has two fundamental components:
1) A browser interface, which intercepts and modifies data that enters or leaves the app within the

browser. Our specific prototype extension makes use of standard Chrome features to insert interface
code between the app and the provider, and, thus, it may be expected to persist over several browser
revisions. Indeed, these features are also common in the popular Firefox browser, and our system
should be portable to it as well.

2) a character by character collaborative encryption scheme that runs within the interface to encrypt
and decrypt data streams using an extension of the substitution cipher.

We next present details of our architecture, starting in Section III-A with an overview of our threat model.
Section III-B describes the browser interface together with the software hooks that enable it. Thereafter,
Section IV describes the collaborative encryption scheme, together with analyses and approaches to
strengthening its security.

A. Threat Model

We assume that the collaborating users have an out-of-band method for sharing a common secret key
for encryption and decryption, and the strength of our encryption scheme is based on some standard
assumptions about the statistical properties of the text being edited (elaborated in Section IV within each
relevant subsection), which are known to the attacker.

1) In Scope: Our threat model includes an honest-but-curious cloud collaborative service provider or
third party that observes and mines data at rest on the service’s servers. Third parties could include
attackers with access to the provider’s data servers, partners in a business relationship with the provider
or law enforcement agencies.

2) Out of Scope: Since we only focus on the collaborative real-time editors, threats to other kinds of
app, such as Facebook Messenger and Emails, are not considered in this paper. Moreover, we primarily
protect against attacks at rest on the service provider’s servers, and thus do not handle:
• Browser attacks - we assume that the browser reliably executes both the application and our browser

extension, even though the provider might also provide the browser (e.g. Google and the Google
Chrome browser).

3

• Side-channel attacks - either by the provider or by a “man-in-the-middle” attacker. These include
active attacks based on statistically correlating key-strokes or client-server communication with user
activities based on fine-grained timing. We also do not consider information leakage from formatting,
style, table structure, or other “area affects”, and, instead, focus on text alone. We believe that these
side-channel attacks should be addressed by orthogonal mechanisms.

• The client-side app - although we do not assume the app is trustworthy, we do assume that the
implementer of our framework can reverse engineer the application’s protocols to the level of
identifying the paths through which input data is transported. Our approach does not cover providers
maintaining concealed channels for transferring this data or encrypted metadata, which we would
not be expected to access.

B. Browser Interface
Our approach uses a browser extension-based content script [2, 4] to inject JavaScript payloads into

web applications. The payloads hook specific functions of JavaScript objects that serve as interfaces for
app data. With hooks in place, we can filter and modify the data, which contains event messages from an
app’s proprietary protocol.

We have implemented our framework as a browser extension that provides application data interception
and modification functionality for the Google Chrome browser. Content scripts typically can access the
Document Object Model (DOM) of targeted pages, but cannot use variables or functions defined by web
pages or by other content scripts [2]. However, by utilizing features in the environment of the browser, we
are able to interact with web scripts and implement hooks on typical sources and sinks of web application
data.

The ability to run code on a web page is only part of the challenge of collaborative encryption. Editors
that are not HTML-backed editors (like the Google Docs framework). often generate their client graphical
interface through obfuscated JavaScript. As such, a successful prototype must also identify an appropriate
hook through which to intercept communications between the client and the service provider. When these
frameworks use the XMLHttpRequest Application Program Interface (XHR), however, one may pick
out and overwrite the XMLHttpRequest.send and XMLHttpRequest.open methods to intercept
and modify the entire client-provider data stream.

We next describe some of the details involved with this prototype implementation, stressing that our
content script hooking exploits a stable feature of the browser (dating back at least to at Chrome 9.0,
circa 2011).

1) Content Scripts: Content scripts run JavaScript code within a specific web page context. In Chrome,
these scripts may be injected either before the DOM is constructed (document_start mode), after
the DOM is complete (document_end mode), or right after the window’s onload handler is called
(document_idle mode) [2]. An enabling feature of these scripts is that, in document_start mode,
they can insert code before the DOM is constructed. The result is that, by design, the inserted code
overshadows corresponding methods that are loaded through the web page.

As a general template, the script modeled in Figure 1 can be injected into a web page, before the DOM
is constructed, to overshadow an existing overrideFunction. In our prototype example, we combine
two payload injections into a Google Docs page to produce an encryption middleware:
• Outgoing Payload

- A script that overwrites XMLHttpRequest.send.
• Incoming Payload

- A script that overwrites XMLHttpRequest.open and decrypts (with a user-supplied key) initial
page content that has been retrieved from the service provider.

4

var code = overrideFunction() {
...//Payloads to be injected

};
var script = document.createElement("script");
script.textContent = "(" + code + ")();";
(document.head ||

document.documentElement).appendChild(script);

Fig. 1. Injection template.

XMLHttpRequest.prototype.realSend = XMLHttpRequest.prototype.send;
var newSend = function(outgoing_data) {

if (outgoing_data.contain(new_entered_chars)){
encrypt_algorithm(outgoing_data.new_entered_chars, key);

}
this.realSend(outgoing_data);

};
XMLHttpRequest.prototype.send = newSend;

Fig. 2. Outgoing data interception and modification.

2) Outgoing Payload: The outgoing interception payload queries the user for an encryption key and
then injects a JavaScript snippet similar to that in Figure 2 into the DOM of the underlying page. When
this snippet redefines the XMLHttpRequest.send method, the new method is subsequently applied to
all XMLHttpRequest uses and is executed every time XMLHttpRequest.send is called. In effect, the
overshadowing method acts as a “man in the middle” and allows direct access to the outgoing data so
that it may be viewed and modified before being sent out with the original XMLHttpRequest.send.

The outgoing_data is sent in an incremental fashion, every time changes (such as keystrokes or
formatting modifications) are made within the editing window. In our current prototype, we focus only
on modifying keystrokes.

3) Incoming Payload: The incoming payload requests a decryption key from the user, and then initially
decrypts the current state of the document from the service backend using the JavaScript snippet resembling
Figure 3. This code is based on the observation that, rather than using XMLHttpRequest.open to
access the existing document, Google Docs loads the document content into a page property, and our
redefinition of the getter function of this property allows the Server-stored ciphertext to be intercepted
and decrypted into plaintext before being displayed.

Once the initial state has been established, the incoming payload decrypts updates incoming content from

Object.defineProperty(this, "target", {
get: function(){

var text = saved_file;
decrypt(text, key);
return text;

},
set: function(val){

saved_file = val;
}});

Fig. 3. Decoding data stored on the service.

5

var realOpen = XMLHttpRequest.prototype.open;
var newOpen = function(){

Object.defineProperty(xhr, "responseText", {
get: function(){

if (xhr.readyState===4){
var incoming_data = xhr.response;
if (incoming_data.contains(new_inputs))
decrypt(incoming_data.new_inputs);
return incoming_data;

} }
});
realOpen.apply(this, arguments);

};
XMLHttpRequest.prototype.open = newOpen;

Fig. 4. Decoding incoming user updates.

the provider in the fashion of Figure 4. Similarly to the overshadowed XMLHttpRequest.send in the
outgoing payload, this snippet acts as a “man in the middle” to intercept and decrypt incoming data, where
incoming_data here carries only updates to the document. The only difference with the overshadowed
XMLHttpRequest.send is that the incoming data is loaded into the property responseText, from
which the web app loads updates to the editing window. Therefore, once the getter method is redefined,
the incoming data can be successfully intercepted, identified, and modified before being returned to the
web app for further processing.

IV. COLLABORATIVE ENCRYPTION

Traditional encryption schemes aim to “confuse and diffuse” a plaintext [20] into a ciphertext, so that a
small perturbation in the plaintext produces an unpredictable “avalanche” [9] of changes in the ciphertext.
As an overlay for a collaborative system, however, this model has some significant drawbacks.

Consider, for example, several users editing a shared document online. If one user changes an “e” to
an “a” somewhere in the document, the cloud back-end propagates only this change to the other users,
and not an entirely new copy of the document, in order to limit communication overhead. From the
perspective of an overlay, however, if the one letter change completely affects an encryption block, then,
in effect, the back-end must update all users with the entire block that was changed upon every edit, and
the collaboration is very inefficient.

As such, for our platform we seek a “locally-encodable” encryption scheme that manages two seemingly
contradictory demands:

1) Minimize the number of ciphertext characters affected by a small change to the plaintext.
2) Make it difficult to determine a plaintext, or even parts of a plaintext, from a given ciphertext.
The second demand is typical of encryption protocols, and can be defined in a number of ways, most

notably based on computational or information-theoretic assumptions. The first demand is specific to our
collaborative context, and we next develop several approaches for meeting it.

The overarching basis for our approach will be the classical substitution cipher, as formalized and
described in Section IV-A. It is well known that the substitution cipher leaks statistical information about its
plaintext and is also not robust to a (chosen or known) plaintext attack. For the issue of statistical leakage,
we propose two approaches based on spreading the plaintext alphabet over a larger ciphertext alphabet.
In Section IV-B, we consider the approach of apportioning the plaintext alphabet into many equal-sized
blocks in the ciphertext alphabet, a practical scheme with a challenging analysis. In Section IV-C, on the

6

other hand, we evaluate apportioning the plaintext into varying-sized blocks in the ciphertext alphabet,
resulting in a more complicated implementation with a simpler analysis. Finally, in Section IV-D we
consider mitigations for plaintext attacks.

A. Substitution - a simple approach

We formalize the first demand of our locally-encodable encryption as Definition 1, based on an
encryption function Ek : Σ∗ −→ Σ∗ indexed by a key string k ∈ Σ∗ (which is the encryption secret
shared by collaborating users) and mapping plaintext strings over an alphabet Σ into ciphertext strings
over the same alphabet.

Definition 1. An encryption function E is locally-encodable if, for some constants c ≥ 1 and all k, s, s′ ∈
Σ∗,

δ (Ek(s),Ek(s′)) ≤ c δ(s, s′),

where δ(x, y) is the Levenshtein edit distance metric [15], denoting the minimum number of insertions,
deletions, and/or single character transpositions needed to transform string x into string y.

When c is the ciphertext length, Definition 1 generalizes any deterministic, fixed-length encryption
algorithm. Likewise, c < 1 is disallowed because it prohibits unique decryption, in that two different
plaintexts might map to the same ciphertext.

From the perspective of interfacing cleanly with existing collaborative environments, we desire a position
encryption is one that is position independent.

Definition 2. Encryption E is position-independent if:

Ek(s) = Ek(s0) + Ek(s1) + Ek(s2) + . . .+ Ek(sn),

where + denotes concatenation and s = s0 + s1 + . . .+ sn.

Position-independent encryptions are useful because they can be calculated without needing to consider
the entire text. More precisely, the encryption can be calculated based on individual characters being
edited.

Consider, for example, a plaintext s = philosophical in a document that is being edited collabora-
tively, and suppose the string is encrypted with a position-independent scheme as Ek(s) = KSROLHLKSRXZO
on the server. Changing the plaintext by transposing the “c” to a “g” and deleting first “h” corresponds
to modifying the ciphertext by transposing Ek(c) = X to Ek(g) = T and deleting Ek(h) = S. The
implementational consequence of this is that, when looking at the event messages that are being sent
between users, we just need to identify the actual letters being transmitted, and not other metadata, such
as their position in the text.

It is not hard to see that the simple substitution cipher, which maps strings based on a one-to-
one correspondence between input and output character spaces, is an encryption scheme that is both
locally-encodable (c = 1) and position-independent. One of its well-known drawbacks is that, despite the
theoretically large work-factor to break it (95! for printable ASCII characters), the cipher readily yields
to classical statistical analysis, since it preserves the character distribution of its source and leaks exact
information about where a given string is being changed.

Figure 5 shows a histogram of the characters found in Mark Twain’s The Adventures of Tom Sawyer [24]
as a baseline for subsequent examples. One can clearly see the dominance of characters such as the space
(SP) and letter e, which can thus be identified in the substitution-encrypted text.

7

0	

0.0
5	

0.1
	

0.1
5	

0.2
	

SP	
 e	
 t	
 a	
 o	
 i	
 n	
 h	
 s	
 r	
 l	
 d	
 u	
 CR	
 LF	

Em
pi
ric

	
 P
ro
ba

bi
lit
y	

Character	

Fig. 5. Histogram of characters in Gutenberg’s translation of Mark Twain’s “Tom Sawyer”. SP, CR, and LF denote a space,
carriage-return, and linefeed, respectively.

B. Alphabet Extension

To combat frequency analysis, it is possible to embed the range of usable characters (say, the 95
printable ASCII characters) within the larger Unicode space that is supported by many web applications.
For JavaScript engines, it is convenient to use the Unicode characters in the range 0x0020 to 0xD7FF,
since many JavaScript engines encode strings as sequences of 16-bit Unicode Transformation Format
(UTF-16) code units, where each character is represented by a single code unit.

1) Encryption: One way of achieving this embedding is to divide the available Unicode region into
non-intersecting 95-character blocks (corresponding to printable ASCII characters), and assigning to each
block a pseudorandom permutation seeded by the block’s ID and the encryption key (i.e., the password
shared by the various users). To encrypt a printable character, one uniformly randomly picks a 95-character
block from the Unicode range, and uses the corresponding permutation to produce a Unicode character.

As an example, consider the extension algorithm encoding a plaintext character b. The user picks a
95-character Unicode block in a random (and not necessarily reproducible) way; in this case, she may
choose the second block, with Unicode characters in the range 0x007F-0x00DD. A concatenation of the
block ID (2) and a shared password is then used to seed a pseudorandom number generator (PRNG) that
produces a permutation of the Unicode characters in the range; there are a number of well-known and
efficient methods for producing such a random permutation of k integers, dating back (at least) to Hall
and Knuth (see [12, 14, 19] for some implementations). Since our plaintext b is the 66th printable ASCII

8

character, we replace it with the 66th element of our pseudorandom permutation, in this case <<, which
is our ciphertext character.

2) Decryption: To decrypt a ciphertext, a second (authorized) user identifies the Unicode block in
which the encrypted character is found, and seeds a PRNG with a concatenation of the resulting block
ID and the shared password. This PRNG is then used to produce a pseudorandom permutation, the same
one produced by the encrypting user, which is inverted to produce the original plaintext character.

In our earlier example, the second user would identify ciphertext << as belonging to Unicode block
0x007F-0x00DD, which has block ID (2). She would concatenate this ID with her shared password
to seed a PRNG and produce the permutation found in that block on the figure. The permutation is a
one-to-one correspondence between printable ASCII characters and Unicode characters in the range, so
it is readily inverted to produce the plaintext b.

3) Unigram analysis: This approach naturally increases the entropy of the resulting ciphertext over
simple substitution, as expressed by the following straightforward lemma (we use the notation M to
denote the plaintext alphabet, and C to denote the ciphertext alphabet).

Lemma 1. Extending the base alphabet from |M| to |C| characters in this manner increases character
entropy by log2

(
|C|
|M|

)
bits.

The plaintext unigram entropy is given by H(P) = −
∑
i∈M pi log2(pi). The encoding process uni-

formly distributes characters among the γ = |C|
|M| blocks, meaning that the probability of seeing a character

ε corresponding to i (according to the random permutation of its block) in the ciphertext alphabet is
Pr(ε) = pi

γ . Computing the resulting entropy of the ciphertext C produces:

H(C) = −
∑
ε∈C

Pr(ε) log2 (Pr(ε)) = −γ
∑
i∈M

pi
γ

log2

(
pi
γ

)
= H(P) + log2(γ).

In the specific case of graphic Unicode characters consistently accessible via JavaScript (i.e., 0x0020
to 0xD7FF), we add roughly 9 bits of entropy to the ciphertext. Extending to 1, 112, 064 valid code points
of UTF-8 provides approximately 13 bits of extra entropy.

In the sorted empirical entropies of the blocks produced by this extended encoding of “Tom Sawyer”.
For example, all blocks have a reasonably high entropy within roughly 0.2 bits of the input text’s entropy
of 4.61 bits, and the overall ciphertext entropy is roughly 13.73, which is about 9 bits more than the input
text entropy.

The problem with this scheme becomes evident by examining the histogram of input characters mapped
to a specific block, wherein uneven distribution of plaintext characters may carry over to ciphertext
characters; for example, one may readily identify that the most common ciphertext characters will be
mapped from a space character and the letter “e”.

4) Greedy Entropy Maximization: Within the alphabet extension scheme of Section IV-B there is
flexibility about which Unicode block range to use in producing a ciphertext character. Though a random
choice produces a high overall entropy, it might be more advantageous to flatten the histogram of characters
mapped into each block.

A joint optimization of entropy across the entire plaintext message is inappropriate for our application,
which requires online encryption one character at a time, but a greedy entropy maximization is feasible.
In this approach, we maintain the histograms of each Unicode block in memory. When a new character
needs to be mapped, we consider its effect on the entropy of each Unicode block and add it to the block

9

0

0.0
1

0.0
2

0.0
3

a v - I c u T LF p f . SP

Em
pi

ric
 P

ro
ba

bi
lit

y

Character

Fig. 6. Histogram of plaintext characters mapping to Unicode characters 0x18DF0 - 0x18E4F in the entropy maximization cipher.

for which it most raises the entropy, breaking ties uniformly at random. This has the effect of significantly
flattening the distribution of characters.

Indeed, Figure 6 shows that the first 200k of characters from the same text under heuristic produces a
flat distribution for a given block , with correspondingly high entropies for each block.

a) Local decodability for c > 1: By increasing the constant c in the locally-decodable definition,
it is possible to even further reduce the amount of information leaked by an edit, at the expense of
significantly increasing the implementational complexity of the system. In this scenario, one user edit
results in a constant number of edits in the ciphertext. A consequence of this approach is that the overlay
has to be able to produce edit events de novo, which is fragile to updates in the underlying web application.

b) Security: Our encryption scheme relies on two elements for its security. First, by greedily max-
imizing entropy, we end up significantly flattening the distribution of characters mapped into a given
block, complicating character-based frequency analysis. Second, the pseudo-random permutation choices
per block provide some separability, in that decoding the permutation of one block does not directly
lead to the decoding of another block (although it may provide side-information with which to mount an
attack).

C. Information Theoretic Optimization

Thus far, we have utilized fixed-length blocks, each encrypting (through substitution) the entire range of
usable plaintext characters and a heuristic greedy entropy maximization method to flatten the block-wise

10

unigram distribution. However, variable-length blocks, with lengths adapted to the probability distribution
of plaintext characters, can provide even better defense against statistical attacks because the unigram
distribution of ciphertext characters can be made arbitrarily close to uniform.

1) Variable-length block algorithm: Let M denote the plaintext alphabet of size m. Each plaintext
character i ∈ M is first mapped (independently of other plaintext characters) uniformly at random to
a ciphertext character Xi ∈ Ci, where C1, . . . , Cm are m disjoint ciphertext sub-alphabets (one for each
plaintext character) and C := ·∪mi=1Ci is the entire ciphertext alphabet. Let σC denote a permutation on
C. Our randomized homophonic substitution cipher can be described by the encryption function which
i −→ σC(Xi), which is invertible with knowledge of σC . Here, the permutation represents a shared secret
key which is available to both the encryption and decryption algorithms, but not the attacker.

In order to simplify the exposition, we shall assume that the plaintext stochastic process Z1, . . . , Zn
is first-order stationary, meaning that the unigram (i.e., marginal) distribution of individual plaintext
characters is the same at all positions within the plaintext sequence. While this assumption may not hold
exactly in practice, it is a fairly weak technical assumption to make since it still allows the process to be
non-stationarity (of higher orders) and also have strong temporal dependencies (memory). Moreover, it
can be made to hold to any desired degree by encrypting a suitably long sequence of consecutive plaintext
characters at once as a group and permuting the sequential ordering of characters within the group using
another shared secret key. For simplicity, however, we will assume that the first-order stationarity condition
holds without such grouping and sequential ordering permutation.

2) Unigram distribution: Since the encryption process operates in a character-wise and statistically
time-invariant manner, the ciphertext character process is also first-order stationary. If the unigram (first-
order) probability mass function (pmf) of the plaintext is Pr(Z1 = i) = pi, i ∈ M, then the unigram
(first-order) pmf of the ciphertext is given by qj := Pr(σC(XZ1

) = j) = pi
|Ci| , for all i ∈ M and

j ∈ σC(Ci).
∀i ∈M and all j ∈ σC(Ci), qj := Pr(σC(XZ1

) = j) =
pi
|Ci|

.

This is because in order to get ciphertext character j, the plaintext character i that corresponds to it must
be generated (this happens with probability pi) and then the particular ciphertext character within the bin
Ci from which j arises (under permutation σC) must be picked (this happens with probability 1/|Ci|).

Proposition 1. If the unigram pmf over plaintext characters and the ciphertext sub-alphabet sizes are
such that for all i ∈ M, |Ci| = pi · |C|, then the unigram distribution of ciphertext characters is exactly
uniform over the ciphertext alphabet, i.e., qj = 1/|C| for all j ∈ C.

If the plaintext unigram probabilities pi are all rational numbers, then the ciphertext unigram probabilities
qj can be made exactly uniform over the ciphertext alphabet C using a sufficiently large, but finite, |C|.
In practice, the plaintext unigram probabilities would be estimated empirically as normalized character
counts (frequencies) in some corpus of documents. The estimated probabilities would therefore be rational
numbers. If, on the other hand, even one pi is irrational, exact uniformity cannot be attained with any finite
|C|. However, one can always approximate any irrational fraction with a rational one with a sufficiently
large denominator. Thus, the ciphertext unigram distribution can be made as close to uniform as desired by
making |C| sufficiently large. In practice, if pi · |C|, i ∈M are not integers, we would drop the fractional
parts and distribute (in some manner) any remaining characters in the ciphertext alphabet among the
plaintext alphabet characters.

11

In different scenarios, the plaintext distribution may be known to both the users and the attacker, or only
to the various users, or to none. Similarly, the sizes of the ciphertext sub-alphabets |C1|, . . . , |Cm| may be
known to both the users and the attacker or only the users. However, the overall ciphertext alphabet C will
be known to both the users and the attacker. In what follows, we assume that the users know everything
and with the exception of the secret key, the attacker also knows everything.

If the unigram ciphertext distribution qj can be made exactly uniform, then no statistical test based
only on observed ciphertext (ciphertext-only attack) will be able to tease the plaintext characters apart
(with confidence better than a random guess) using only a unigram frequency analysis. On the other hand
if the qj’s are not exactly uniform, and they are all distinct for different j and known to the attacker,
then as n becomes very large, a ciphertext-only attack may be able break the cipher with overwhelming
probability. However, the closer that the qj’s are to being uniform, the longer that the attacker will have to
wait to gather enough ciphertext characters before being able to break the cipher with sufficient confidence.

3) Unigram sample complexity analysis: In order to gain quantitative insight into how long the cipher-
text needs to be before it can be broken with some desired degree of confidence via unigram analysis and
how this minimum length increases with increasing ciphertext alphabet size |C|, we consider the following
simpler task for the attacker: in a binary plaintext alphabet M = {0, 1}, decide whether a particular
ciphertext character j corresponds to the plaintext character 0 or the plaintext character 1. Let nj denote
the number of ciphertext characters that equal j in a message of length n. For analytical tractability, here we
will assume that the plaintext process is stationary and memoryless, i.e., it is a sequence of independent
and identically distributed (iid) characters. Then nj will have a binomial distribution for n trials with
success probability equal to q0, if j corresponds to plaintext character 0, and success probability q1, if j
corresponds to plaintext character 1. The attacker’s task of deciding 0 or 1 based on nj and knowledge
of n, q0, q1 is a simple Bayesian binary hypothesis testing problem that has been extensively studied in
the literature.

Indeed, for sufficiently large n, the error probability Pe(n) of the optimum plaintext decoding (ı.e.,
based on the Maximum A posteriori Probability [MAP] rule) approximates e−nD(r||q0), where D(u||v)
denotes the Kullback-Leibler (KL) divergence [8, Section 11.9]. We have the following result whose proof
may be found in Section 11.9 of [8].

Proposition 2. [8] If M = {0, 1} and the plaintext process is stationary and memoryless, then for each
ciphertext character j ∈ C, the error probability Pe(n) of the optimum plaintext decoding rule (i.e., , the
MAP rule) goes to zero exponentially fast with the ciphertext size n:

lim
n→∞

− 1

n
lnPe(n) = D(r||q0) = D(r||q1)

where
r(q0, q1) :=

ln(1− q0)− ln(1− q1)

ln(1− q0)− ln(1− q1) + ln q1 − ln q0
∈ [0, 1]

is a probability and D(u||v) := u ln(u/v) + (1 − u) ln((1 − u)/(1 − v)) denotes the Kullback-Leibler
(KL) divergence between the binary probability distributions (u, (1− u)) and (v, (1− v)).1

Thus for all n sufficiently large, Pe(n) ' e−nD(r||q0). In order to achieve a target decoding error
probability of ε or less, we require a message of length n ≥ n|C| = (ln(1/ε))/D(r(q0, q1)||q0) characters.
If there was no ciphertext alphabet expansion, i.e., |C| = |M| = 2, then the minimum number of

1To be technically precise, D(u||v) is finite if u = 0 (resp. 1) whenever v = 0 (resp. 1) and is infinity otherwise. Also 0 ln(0)
is treated as zero.

12

samples needed to attain a decoding error probability of ε is given by n|M| = (ln(1/ε))/D(r(p0, p1)||p0).
Therefore, for each ε, we need n|C|

n|M|
times more ciphertext samples compared to the case when there is

no alphabet expansion.

Theorem 1. If |M| = 2 and the plaintext process is iid, then the ratio of the length of ciphertext needed
to break the cipher (via unigram analysis) with ciphertext alphabet expansion to the length needed without
alphabet expansion is given by:

n|C|

n|M|
=
D(r(p0, p1)||p0)

D(r(q0, q1)||q0)
.

4) Example: Consider as a toy example the non-uniform plaintext unigram distribution given by
p0 = 0.1 and p1 = 1 − p0 = 0.9, and the ciphertext alphabet size is |C| = 512 (giving a ciphertext to
plaintext size ratio equal to that of UTF-16 Unicode to ASCII). Then taking |C0| = d0.1×512e = 52 and
|C1| = 512−|C0| = 460, we get q0 = 0.1/52 = 1.9231×10−3 and q1 = 0.9/460 = 1.9565×10−3 which
is more uniform. Of course, in this particular example if |C| was a multiple of 10, then the distribution
would be exactly uniform, i.e., q0 = q1 = 1/|C| and the cipher will be unbreakable even via multigram
analysis (for an iid plaintext process). Continuing, we have r(p0, p1) = 0.5, D(r(p0, p1)||p0) = 0.5108
and r(q0, q1) = 1.9398×10−3, D(r(q0, q1)||q0) = 7.2221×10−10. This makes n|C|

n|M|
= 7.0731×106, i.e.,

the ciphertext length needed to break a single character (at any confidence level) with a 256-fold ciphertext
alphabet expansion is about 7 million times that needed to break a single character (to the same confidence
level) without ciphertext alphabet expansion. Specifically, for ε = 0.01 (99% confidence), n|M| = 9 and
n|X | = 63 million. We would like to emphasize that these numbers are just for the toy example where
the plaintext alphabet has only two characters and the unigram distribution of the two characters is highly
non-uniform. These numbers can be expected to be much more larger in practice because typical plaintext
alphabet sizes are much larger than 2 (95 for ASCII) and the unigram plaintext distribution is much less
skewed.

D. Plaintext Attacks

A known or chosen plaintext (with a corresponding ciphertext) significantly reduces the complexity
of breaking a substitution cipher by providing some of the plaintext-ciphertext substitutions that form
the encryption key; language and context may be used to infer the remaining substitutions. Utilizing
a polyalphabetic cipher, as described in this work, improves the resilience of the cipher, since less
information is revealed with each substitution. In other words, if the letter character a is mapped uniformly
at random to one of ten ciphertext characters, then revealing one of these plaintext-ciphertext connections
only reveals one tenth of the occurrences of a. This mapping can be modified in some coarse manner,
say based on the month in which the text is produced or the name of the original author of the work, in
order to limit the usability of known plaintexts.

The cipher can be made even more resilience by encrypting one plaintext character with more than one
ciphertext character, and, indeed, this does not break our collaborative encryption model or our prototype
implementation, although it is possible that location-sensitive processing could suffer. Though character-
level encryption is inherently weaker than block- or stream-based encryption, we stress that the proposed
approach provides a measurable increase in privacy, where currently none exists, without requiring server-
side or browser rewriting, and that the encryption can be strengthened further at the expense of efficiency.

13

Fig. 7. A collaborator running our browser extension (with correct password) edits a Google Doc. The app functions normally
with its collaborative features. However, data specifying the document’s text contents is intercepted and modified in transit to/from
Google’s servers according to our encryption. Only users utilizing the correct password can view the original contents.

V. PROTOTYPE

We demonstrate our proposed encryption framework through the Google Docs platform on the Google
Chrome. Google Docs is a collaborative document editing service provided by Google. Two or more
users can edit a document’s state (i.e., text, formatting, and figures) together in real-time using only a
modern web browser. Data resides on Google’s servers, and any collaborative edits pass through Google’s
infrastructure before being forwarded to other collaborators.

A. Mechanism

For Google Docs, document data is structured as a series of event messages, each of which has an
associated opcode and a set of fields specific to that opcode. The client-side app parses these messages,

14

Fig. 8. An undesired third party (or the provider) views the Google Docs document as a guest without a correct private key. Since
the document has been configured to allow public viewing, Google Docs permits access. However, in the absence of the extension
and a valid password, document text is indecipherable to the third party.

which specify document contents, layout, and formatting, to render a document for the user.
With our architecture we were able to intercept both sources of information using the techniques in

Section III-B. First our implementation involves hooking the XMLHttpRequest prototype for all frames
originating from Google’s relevant servers, providing access to the incoming and outgoing XHR data
streams. By examining the effects on document state of messages with particular opcodes, we found that
events with opcode is specify one or more character insertions. By filtering for is events, we captured
collaborative edits of a document’s text contents.

We then exploited the document_start feature to gain control of the DOCS_modelChunk variable
at app load-time and inspected the series of event messages it contained. We found that these messages
captured the cumulative document state of all previous collaborative edits. The messages followed the same

15

format as those of the XHR stream, but state changes were combined across messages where possible.
Filtering for is events again provided enough specificity to capture all document state information
concerning text contents, because messages specifying formatting state such as text size, color, and layout
have an opcode other than is.

B. Performance Evaluation

We focused our evaluation of the project demonstration on users’ experience in both qualitative and
quantitative way.

Qualitatively, our prototype extension does not modify formatting (bold type, font size, line spacing,
etc.) as well as the Google Docs GUI. This enables users to edit and collaborate as if the encryption layer
does not exist. The only discrepancy is spelling corrections (which are handled server-side) are disabled
as servers only store ciphertext. If the user mistypes a word, the word would not have an red underline
or any suggestion for correction.

On the quantitative side, we measured the delays our extension would cause due to encryption, recording
the time between the start and the end of overridden XMLHttpRequest call. The resulting delay is linearly
proportional to the number of characters being encrypted, fitting the equation t = 0.0017n+6.0876, where
n is the number of character edits, and time t is measured in milliseconds and measures both outgoing
and incoming data stream. Since large numbers of character edits happen only during the process of
copy-and-paste and loading of the page, most users will experience an average of 6ms delay during their
active editing. Because the delay is not significant, we conclude that such delay does not affect the overall
users’ experience.

VI. CONCLUSIONS

We have presented a client side encryption system for real time collaborative editing web app. The
system consists of an encryption interface as well as a novel variant of the polyalphabetic substitution
cipher, designed to seamlessly encrypt and decrypt data without interfering with app functionality or
the users’ experience within the web app. In this way, the users’ data privacy is preserved both during
transmission and at rest with the provider.

We have implemented a prototype of our system for the Google Docs collaborative word processing
web application within the framework of the Google Chrome web browser. We believe that our choice
of prototyping framework serves as a reasonable template for other major browsers and web apps, and
that our design can be straightforwardly extended to any real-time collaborative editor which uses the
standard XHR interface for client-server communication, including such well-used products as the Google
productivity suite (Docs, Slides, Sheets), Conceptboard, MeetingWords, Collabedit, Codepen [1, 3, 5].

For potential extensions to this work, minor modifications need to be made in order for the extension
to work with different browsers. Moreover, an automated process of recognizing formatting of event
messages can be developed in order to avoid manual analysis for different web apps. Finally, with respect
to encryption, a motivated provider could identify and blacklist features of our approach, such as the
utilization of a broad range of the Unicode spectrum.

ACKNOWLEDGMENTS

The authors acknowledge John Navon and John Moore for work on an earlier versions of this work,
and Manuel Egele for early proofreading and feedback. This work was also supported, in part, by the
National Science Foundation under Grant No. CCF-1563753.

16

REFERENCES

[1] Conceptboard - visual project collaboration made easy. http://conceptboard.com/.
[2] Content Scripts. https://developer.chrome.com/extensions/content scripts.
[3] Meetingwords: Collaborative text editing. http://meetingwords.com.
[4] Mozilla development network: Content scripts. https://developer.chrome.com/extensions/content scripts.
[5] Online text editor - collabedit. http://collabedit.com.
[6] Tor: Anonymity online. https://www.torproject.org/.
[7] Xmlhttprequest living standard. https://xhr.spec.whatwg.org/.
[8] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.
[9] H. Feistel. Cryptography and computer privacy. Scientific american, 228:15–23, 1973.

[10] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
[11] S. Halevi and V. Shoup. Helib-an implementation of homomorphic encryption, 2014.
[12] M. Hall and D. E. Knuth. Combinatorial analysis and computers. American Mathematical Monthly, pages 21–28, 1965.
[13] B. Lau, S. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva. Mimesis Aegis: A Mimicry Privacy Shield–A System’s

Approach to Data Privacy on Public Cloud. In Proceedings of the 23rd USENIX conference on Security Symposium, pages
33–48. USENIX Association, 2014.

[14] D. H. Lehmer. Teaching combinatorial tricks to a computer. In Proc. Sympos. Appl. Math. Comb. Anal., volume 10, pages
179–193, 1960.

[15] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10,
pages 707–710, 1966.

[16] B. Ramsdell. S/mime version 3 message specification. 1999.
[17] S. Ruoti, K. Seamons, and D. Zappala. Layering Security at Global Control Points to Secure Unmodified Software. In 2017

IEEE Secure Development Conference, pages 42–49. IEEE, 2017.
[18] B. Schneier. Applied cryptography: protocols, algorithms, and source code in C. john wiley & sons, 2007.
[19] R. Sedgewick. Permutation generation methods. ACM Computing Surveys (CSUR), 9(2):137–164, 1977.
[20] C. E. Shannon. Communication theory of secrecy systems*. Bell system technical journal, 28(4):656–715, 1949.
[21] S. Sheng, L. Broderick, C. A. Koranda, and J. J. Hyland. Why Johnny still can t encrypt: evaluating the usability of email

encryption software. In Symposium On Usable Privacy and Security, 2006.
[22] A. Sinkov and T. Feil. Elementary cryptanalysis, volume 22. MAA, 2009.
[23] D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT 2010, pages 377–394. Springer, 2010.
[24] M. Twain. The adventures of tom sawyer. https://www.gutenberg.org/ebooks/74.txt.utf-8.
[25] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In Advances in

cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.
[26] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation of pgp 5.0. In Usenix Security, volume 1999,

1999.
[27] P. R. Zimmermann and P. R. Zimmermann. The official PGP user’s guide, volume 265. MIT press Cambridge, 1995.

17

