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Abstract—In this paper, we consider a class of symmetry
groups associated to communication channels, which can infor-
mally be viewed as the transformations of the set of inputs that
“commute” with the action of the channel. These groups were
first studied by Polyanskiy in [1]. We show the simple result
that the input distribution that attains the maximum mutual
information for a given channel is a “fixed point” of its group. We
conjecture (and give empirical evidence) that the channel group
of the deletion channel is extremely small (it contains a number of
elements constant in the blocklength). We prove a special case of
this conjecture. This serves as some formal justification for why
the analysis of the binary deletion channel has proved much more
difficult than its memoryless counterparts.

Index Terms—channel symmetries, groups, deletion channel.

I. INTRODUCTION

Many natural models of communication errors, like those
captured by the class of discrete memoryless channels, are
by now well understood. Their capacity has been known since
Shannon’s original paper [2], and codes with efficient encoding
and decoding algorithms have been proved to achieve the
capacity (e.g., [3]). By contrast, other similarly natural error
models, like those captured by the binary deletion channel or
other synchronization channels, are much less well understood.
For example, the capacity of the deletion channel is unknown,
although several lower and upper bounds have been proved
[4]–[7]. In this paper, we work towards an answer to the
following question: can we give formal justification for why
the binary deletion channel is so much more difficult to
analyze than, say, the binary symmetric channel? In a talk
in 2008, Mitzenmacher [8] gave the following example to
illustrate the difference between the two. Consider the strings

s1 = 00000, s2 = 01010.

From the point of view of the binary deletion channel, these
two strings seem quite different: for example, deleting any
one bit from s1 will produce the same output, while deleting
different single bits from s2 will produce all different outputs.
On the other hand, from the point of view of the binary
symmetric channel, these two strings seem “equivalent,” in
the sense that there is no clear formal way to distinguish
them in terms of the consequences that bit flips have on them.
Mitzenmacher went on to say that “erasure and error channels
have pleasant symmetries; deletion channels do not” and that
“understanding this asymmetry seems fundamental” [8].

In this paper, we consider a symmetry group GCh associated
to any given communication channel Ch, which can informally
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be viewed as the set of transformations of the set of inputs that
“commute” with the action of the channel. These groups were
first studied in the context of nonasymptotic coding converse
bounds by Polyanskiy [1], but as far as we know, have never
been applied to the deletion channel. For a general class of
channels, we show the simple result that the distribution over
the inputs that maximizes the mutual information between
the input and output of a given channel is a “fixed point”
of the action of the channel’s group. This is analogous to
Polyanskiy’s results [1] on the invariance under these group
actions of the distributions which solve minimax problems
at the heart of finite-length channel coding converse results
[9]. These invariance theorems motivate the study of these
groups as a coarse measure of the “hardness” of a channel: for
channels with large symmetry groups, one can vastly simplify
capacity calculations, while for asymmetric channels, one gets
no such assistance.

We compare the cases of the binary symmetric channel
(BSC) and binary deletion channel (BDC). The case of the
BSC was already studied by Polyanskiy [1]; we mainly treat
it here to introduce our notation and for contrast with the case
of the BDC, which is our main focus. We conjecture (and
give empirical evidence) that the channel group of the BDC is
extremely small (it contains a number of elements constant in
n); this is in contrast with memoryless channels, whose group
size was shown by Polyanskiy [1] to grow at least like n! (by
virtue of a natural inclusion ι : Sn ↪−→ GCh for Ch memoryless).
We prove a special case of our conjecture: within the class of
symmetries given by permutations of the indices, GBDC has
only two elements.

Given the channel group, one can define the natural induced
notion of equivalence between strings: we say strings s1 and s2
are equivalent if they lie on the same orbit of the channel group
action on {0, 1}n, i.e. if there exists a group element mapping
s1 to s2. In this formal sense, the two example strings given
by Mitzenmacher are equivalent with respect to the binary
symmetric channel, but not with respect to the binary deletion
channel. More generally, given any code C for a channel,
applying any group element to all its codewords yields a new
code C′ that is “equivalent” to C in a formal sense: C and C′
have the same number of codewords, and the existence of a
decoder for C implies the existence of a decoder for C′ with
the same error probability, and vice versa.

A. Correction

A prior version of this manuscript incorrectly claimed that
channel groups were first defined in this work. We thank
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anonymous reviewers for their helpful comments, which led
the author to the work of Polyanskiy [1] where, as discussed
above, channel groups had already been defined and studied
in a different context. Moreover, the prior version contained
a theorem regarding the uniqueness of the channel group for
channel families forming homogeneous Markov chains; the
proof had a bug, so the result has been removed.

II. DEFINITIONS

A. Notation and Elementary Definitions

Throughout this paper, for X a set (alphabet), Xn denotes
the set of strings of n symbols from X ; we also let X ∗ =⋃∞
j=0 X j and X≤n =

⋃n
j=0 X j . For x ∈ Xn, we let xji ∈

X j−i+1 denote the substring of x starting at index i and ending
at j, inclusive; unless otherwise specified, we let xi := xii.
If X can naturally be viewed as a field, we use x ∈ Xn to
refer to the vector space element or the string interchangeably.
For x, y ∈ X ∗, we let xy denote their concatenation. For
x ∈ Xn, we let |x| = n denote the string length. All logs
(hence entropies, etc.) in this paper are of base equal to the
alphabet size unless otherwise specified.

To treat symmetry groups of general channels, it will be
useful to view a channel as acting on strings of arbitrary length.

Definition II.1. For Ω a probability space and X ,Y sets
(alphabets),1 a channel is a map Ch : X ∗ × Ω → Y∗. For
x ∈ X ∗, we write Chx for the random variable ω 7→ Ch(x, ω).

For completeness, we give definitions of memoryless chan-
nels, the binary symmetric channel and the binary deletion
channel in this notation.

Definition II.2. A channel Ch : X ∗×Ω→ Y∗ is memoryless
if x ∈ X implies Chx ∈ Y with probability 1, and for x ∈
Xn we have Chx

D
= (Ch1 x1) . . . (Chn xn), where D= denotes

equality in distribution and the Chi are independent copies of
Ch .

Definition II.3. Let X = Y = {0, 1}, p ∈ [0, 1], and Ω =
{0, 1}∞ (the infinite product space) with a Bernoulli(p)∞

measure (the infinite product measure). The binary symmetric
channel acts on an input x ∈ {0, 1}n as BSCp(x, ω) = x+ωn1 ,
where addition is elementwise and mod 2. The binary deletion
channel acts on an input x ∈ {0, 1}n as BDCp(x, ω) =
xi1xi2 . . . xik , where |x|−k is the hamming weight of (number
of ones in) ωn1 , and ij is the index of the jth zero in ω.

It will sometimes be useful to consider the action of the
channel only on strings of a particular length.

Definition II.4. Let Ch : X ∗×Ω→ Y∗ be a channel, n ∈ N,
and let Ch |n : Xn × Ω → Y∗ be the restriction of Ch to
the strings of length n. Suppose there exists k = k(n) ∈ N
such that the image of Ch |n is contained in Y≤k. In that case
let m = m(n) the minimal such k. Then the nth transition
matrix of Ch is the linear map Mn : RXn → RY≤m

giving
the transition probabilities of Ch |n.

1In this paper, we take all alphabets to be finite.

Finally we define the automorphism group of a set; the
channel symmetry groups we will study will be subgroups
of the automorphism group of the message set.

Definition II.5. Given a set A, the automorphism group of A,
denoted Aut(A), is the set of bijections from A to itself.

In the case where A is finite, we have Aut(A) ∼= S|A|, the
group of permutations of |A| elements.

B. Channel Symmetry Groups

Given a channel Ch over an alphabet X , we consider the
subgroup of elements of Aut(X ∗) which “commute with Ch.”

Definition II.6. Given a channel Ch : X ∗ × Ω→ Y∗, we let
the channel group of Ch be defined as

GCh = {g ∈ Aut(X ∗) : ∃h ∈ Aut(Y∗), (hCh g)x
D
= Chx,

|g(x)| = |x| ∀x ∈ X ∗},

where D= denotes equality in distribution, and by the conju-
gation (hCh g)x we mean the random variable Ω 3 ω 7→
h(Ch(g(x), ω)).

Remark II.7. In the case where X = Y, in many channels
of interest one can fix h = g−1 without loss of generality. In
that case GCh is exactly the set of bijections that commute (in
the sense of equality in distribution) with Ch .

The above definition is a special case of the one given in
Section VI.A of [1]; our definition differs from that one in the
following two ways:

1) In [1], the domain and range of the channels in question
are not required to have a product-like structure, or even
to be countable.

2) In [1], the group elements are not required to preserve
string length.

Both of these assumptions hold automatically for many chan-
nels and symmetries of interest. The first one will simplify our
proofs; the second one will allow us to have a well-defined
notion of how the group “grows” with the blocklength:

Definition II.8. For each n, consider the restrictions of the ele-
ments of GCh to {0, 1}n, to obtain a group GnCh ⊆ Aut({0, 1}n)
with a (not necessarily canonical) inclusion GnCh ↪−→ GCh. We
say that the size of the channel group GCh at blocklength n is
|GnCh|.

It’s an elementary exercise to check that II.6 indeed defines
a group in the formal sense; we include a proof in the appendix
for completeness:

Lemma II.9. The channel group GCh is a group.

Given the channel group GCh, we can define the natural
induced notion of equivalence between strings.

Definition II.10. Given two strings x, y ∈ X ∗ and a channel
Ch over the alphabet X ∗, we say x and y are equivalent with
respect to Ch, and write x ∼ y, if there exists g ∈ GCh such



that gx = y. We then define the equivalence class of x ∈ X ∗
as [x] = {x′ ∈ X ∗ : x′ ∼ x}.

It’s again an elementary exercise to check that this defines
an equivalence relation in the formal sense, and hence par-
titions the space of messages X ∗ into a new set of disjoint
equivalent classes (or orbits) (X ∗/∼) = {[x] : x ∈ X ∗},
called the quotient space of X ∗ by ∼ . We remark that, given
a code C = {Cn}n∈N for Ch, where Cn ⊆ Xn, and a group
element g ∈ GCh, we can define a new code gC = {gCn}n∈N,
where by gCn we mean {gc : c ∈ Cn}. The code gC can be
decoded on the channel Ch by applying g−1 to the received
message, and then using any decoder for C; by the definition
of GCh, this new decoder will have the same probability of
error as the decoder for C.

III. INVARIANCE THEOREM

As a simple general result, we show that, for a wide class of
channels, the distribution over the input strings that achieves
the maximum mutual information between input and output
is a fixed point of the action of the channel group. As was
mentioned, this is a similar flavor of result to Theorem 20
in [1], but in the setting of channel capacity instead of finite
blocklength performance minimax bounds. As we illustrate
in Section IV, the conditions of the following theorem apply
broadly.

Theorem III.1. Let Ch be a channel. Suppose the nth transi-
tion matrix Mn of Ch exists and is full-rank. If we have

D ∈ arg max
D′

I(X ′;Y ′), (VP)

where X ′ ∼ D′ and Y ′ = ChX ′, then gX
D
= X for X ∼

D for all g ∈ GCh. Above, the maximum is taken over all
probability distributions D′ supported on Xn.

We relegate the proof to the appendix. We remark that,
by Shannon’s Theorem [2], for memoryless channels Ch, if
D is the mutual-information-maximizing distribution from the
theorem above and X ∼ D, Y = ChX , then 1

nI(X;Y ) is
the capacity of Ch, for every n. Even for non-memoryless
channels like the deletion channel or other synchronization
channels, Dobrushin [10] proved that the capacity is given by
the limit of 1

nI(X;Y ) as n → ∞. Informally, Theorem III.1
shows that, when looking for the distribution that achieves
capacity, we can restrict attention to the distributions which
“respect the symmetries of the channel.” The following corol-
lary, which follows immediately from Theorem III.1, makes
this more concrete.

Corollary III.2. If D is the mutual-information-maximizing
distribution of Theorem III.1, then D is uniform when re-
stricted to the subsets of Xn that are equivalence classes with
respect to Ch .

In other words, if x, y ∈ Xn, x ∼ y with respect to Ch, and
X ∼ D, then P(X = x) = P(X = y). Hence maximizing the
mutual information over all distributions in Xn is equivalent
to maximizing it over the smaller quotient space (Xn/∼). In

particular, if we have a sufficiently large channel group, our
variational problem VP can reduce to a polynomial, or even
constant number of variables, as it’s easy to see occurs for
memoryless channels [1].

IV. EXAMPLES AND CONJECTURE

In this section, we compare the examples of the binary
symmetric channel and binary deletion channel, we give our
conjecture, and we prove a simple special case. The case of the
BSC was treated in [1], but here we re-derive what we need
for completeness and to introduce the ideas that will carry over
to the case of the BDC.

A. Binary Symmetric Channel [1]

In order for Theorem III.1 to apply, we need to show that
the BSC’s nth transition matrix Mn is full-rank.

Lemma IV.1. For every n and p ∈ (0, 1/2), the nth transition
matrix of the BSCp is full-rank.

Proof. This follows automatically from the fact that the tran-
sition matrix for a single bit M1 is clearly full-rank, and that
Mn = M⊗n1 by the memoryless property.

We now give two families of examples of elements in GBSC.
These examples were already given by Polyanskiy [1]. In each
case, we only specify the action of the group element on
strings of a particular length n. A general group element may
be formed by any choice a fixed-length transformation per
string length.

1) Any permutation of the indices. This is in fact a subgroup
of the channel group of any memoryless channel, as is
easily verified.

2) Translation by any element. Fix an element x ∈ {0, 1}n
and consider the transformation y 7→ y + x, where
addition is elementwise and mod 2. This is clearly an
element of GBSC with inverse equal to itself.

While there may be other families of transformations, just
the transformations of type (2) suffice to show that any two
strings of the same length are equivalent with respect to the
BSC . Namely, for y, z ∈ {0, 1}n, letting x = z − y, the map
w 7→ w+x maps y to z, and hence y ∼ z. Then [x] = {0, 1}n
for every x ∈ {0, 1}n and from Corollary III.2 we recover
the classical result that the maximum mutual information
in the BSC is achieved by a uniform distribution over the
input. Finally, we note that, just by considering transformations
of type (1), GBSC grows at least like n!, in the sense of
Definition II.8, and hence grows faster than any exponential
function. This will be in stark contrast with the case of the
BDC, which we now consider.

B. Binary Deletion Channel

We check the applicability of Theorem III.1 by showing that
the nth transition matrix of the BDC is full-rank.

Lemma IV.2. For every n and p ∈ (0, 1), the nth transition
matrix of the BDCp is full-rank.



Proof. For x ∈ {0, 1}n, let ~x ∈ R{0,1}n be the probability vec-
tor with a 1 in the coordinate corresponding to x, and zeros in
all other coordinates. It suffices to show that {Mn~x}x∈{0,1}n
are linearly independent. But note that, for y ∈ {0, 1}n, the
yth coordinate of Mn~x is nonzero if and only if x = y, and
hence they are clearly linearly independent.

As before, we now give two examples of elements of GBDC;
it’s trivial to verify that these are indeed in the channel group.

1) A flip of all bits. This is the same as translation by the
all-ones string.

2) A rotation about the center. This is the transformation
x1x2 . . . xn 7→ xnxn−1 . . . x1.

Each of these operations are of order 2 (they are their own
inverses), and they commute. Hence the group they generate
is of size 4. Amazingly, we conjecture that these are all the
symmetries of the BDC! More precisely, these symmetries
certainly generate a subgroup of GBDC; call this subgroup
G̃BDC. Then two strings x and y are equivalent with respect
to G̃BDC if there is g ∈ G̃BDC (i.e. either a flip of all bits
or a rotation around the center, or their composition, or the
identity) such that gx = y. We conjecture that any two strings
x, y ∈ {0, 1}n are equivalent with respect to GBDC if and only
if they are equivalent with respect to G̃BDC. This in particular
would imply the following concise statement.

Conjecture IV.3. The size of any equivalence class (orbit) of
{0, 1}n under the action of the channel group of the BDC is
at most 4, independently of n.

In other words, when searching for the distribution that
achieves capacity, while in the case of the BSC symmetry
suffices to solve the problem, in the case of the BDC it
essentially buys us nothing.

To justify our conjecture, we note that if two strings x, y ∈
{0, 1}n are equivalent with respect to the BDCd, then since
by definition of equivalence there is a group element such
that g−1 BDC1/2 y

D
= BDC1/2 x, in particular we must have

H(BDC1/2 y) = H(BDC1/2 x).2 In the data files available in
arXiv together with this paper, we show numerically that for
string lengths n up to 14, the equivalence classes under G̃BDC

coincide exactly with the sets of strings of equal entropy when
passed through the BDC1/2 .

We now prove a simple but significant special case of our
conjecture. Let Perm({0, 1}∗) be the subgroup of Aut({0, 1}∗)
of all h ∈ Aut({0, 1}∗) that act on {0, 1}n by a permutation
of the indices. Specifically, for h ∈ Aut({0, 1}∗), we have
h ∈ Perm({0, 1}∗) if and only if for all n ∈ N, there exists a
permutation πn : [n] → [n] such that for all x ∈ {0, 1}n, we
have

h(x) = xπn(1)xπn(2) . . . xπn(n).

We note that in the case of the BSC (and memoryless chan-
nels more generally [1]), we have GBSC ∩ Perm({0, 1}∗) =
Perm({0, 1}∗), and of course Perm({0, 1}∗) grows like n!,

2Here the choice of d = 1/2 is of course arbitrary; the channel group
should be invariant to the parameter, as long as d ∈ (0, 1).

in the sense of Definition II.8. By contrast, we prove the
following.

Proposition IV.4. If g ∈ GBDC ∩ Perm({0, 1}∗), then g is
either a rotation about the center, in the sense of (2), or the
identity.

Before proving the proposition, we prove a useful lemma.
We use the following notation: for i ∈ [n], we let nen(i) :=
{i− 1, i+ 1} ∩ [n] be the indices neighboring i.

Lemma IV.5. A symmetry h ∈ Perm({0, 1}∗) is either a
rotation about the center or the identity if and only if we have
the following local property for all n:

j ∈ nen(i) ⇐⇒ πn(j) ∈ nen(πn(i)) ∀i 6= j ∈ [n]. (LP)

Proof. Clearly if h is a rotation about the center or the identity,
then it satisfies (LP) for all n. For the other direction, we
proceed by induction on the blocklength n. For n = 1, 2, our
thesis holds trivially. For n ≥ 3, property (LP) implies the
following on the first n− 1 indices:

j ∈ nen(i) ⇐⇒ πn(j) ∈ nen(πn(i)) ∀i 6= j ∈ [n− 1],
(LP’)

which implies that πn([n−1]) is contiguous, and hence equal
to [n − 1] or [n] \ {1}. After a shift by −1 in the latter
case, we can identify the restriction π|[n−1] with a permutation
π̃n−1 : [n−1]→ [n−1]. Property (LP’) for πn clearly implies
property (LP) for π̃n−1. Hence by inductive hypothesis, π̃n−1
is either the identity or a rotation about the center. Going back
to πn, we have the following two cases:

1) If πn([n− 1]) = [n− 1], then π̃n−1 cannot be a rotation
about the center, or else condition (LP) is violated at i =
n. Hence π̃n−1 = πn|[n−1] is the identity and π(n) = n,
so πn is the identity as well.

2) If πn([n − 1]) = [n] \ {1}, then π̃n−1 cannot be the
identity, or else condition (LP) is violated at i = n. Hence
π̃n−1 = πn|[n−1] − 1 is a rotation about the center, and
since πn(n) = 1, so is πn.

This completes the proof.

Now we can prove the proposition.

Proof of Proposition IV.4. Let g ∈ GBDC ∩ Perm({0, 1}∗),
and let πn : [n] → [n] be the associated index permuta-
tions at each blocklength. Suppose for contradiction that g
is neither the identity nor a rotation about the center. Then
by Lemma IV.5, we must have n and i 6= j ∈ [n] such
that i and j are neighbors but πn(i) and πn(j) are not.
Assume without loss that j = i + 1 and (by composing
πn with a rotation about the center on the right if needed)
that πn(i) + 1 < πn(i + 1). Let k ∈ [n] be such that
πn(i) < πn(k) < πn(i + 1), and assume, again without loss
(by composing πn with a rotation about the center on the left
if needed), that k > i+ 1. Consider the string x which is all-
ones up to index i+1, inclusive, and all-zeros afterwards (see
Figure 1). We claim that |supp(BDCd x)| 6= |supp(BDCd gx)|
for any d.3 This of course automatically implies that there can

3Here and below supp denotes the support of the distribution.



Fig. 1: An example of the string x ∈ {0, 1}n used in our proof,
and the group element g acting on it via the permutation πn
of its indices. The question marks denote bits of g(x) which
we cannot determine just with our assumptions on g.

be no h ∈ Aut(Y∗) such that BDCd x
D
= hBDCd gx, yielding

a contradiction of g ∈ GBDC and proving the proposition. To
prove the claim, note first that, by a simple calculation, we
have |supp(BDCd x)| = (i + 2)(n − i): there is exactly one
possible subsequence of x for each valid choice of a number
of ones and a number of zeros in the output. Moreover since g
preserves string weight, x and g(x) have the same total number
of ones and zeros. Hence |supp(BDCd g(x))| ≥ (i+2)(n− i)
by the same argument: there is a (now not necessarily unique)
subsequence of g(x) for each valid choice of a number of
ones and a number of zeros in the output. To show that the
inequality is strict, it suffices to exhibit two indices s 6= t such
that g(x)s = g(x)t = 1, and such that deleting index s (and
nothing else) from g(x) will produce a different output than
deleting index t. A moment of thought reveals that s = πn(i)
and t = πn(i + 1) works, since they don’t lie in the same
contiguous block of ones by construction (see Figure 1).
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VI. APPENDIX

Proof of Lemma II.9. We verify the axioms:

1) Inclusion of 1. We trivially have 1 ∈ GCh.
2) Closedness under inverses. Suppose g ∈ GCh. Clearly

g−1 ∈ Aut(X ∗) and g−1 preserves string length. More-
over by assumption there exists h ∈ Aut(Y∗) such
that hCh gx

D
= Chx for all x ∈ X ∗. Multiplying

by h−1 on the left and letting x′ = gx, we have
Chx′

D
= h−1 Ch g−1x′. But {gx : x ∈ X ∗} = X ∗ since

g ∈ Aut(X ∗), so g−1 ∈ GCh.
3) Closedness under multiplication. Let g1, g2 ∈ GCh.

Clearly we have g1g2 ∈ Aut(X ∗), and g1g2 preserves
string length. Moreover, letting h1, h2 be such that
hi Ch gix

D
= Chx for all x ∈ X ∗, i = 1, 2, we have

h2h1 Ch g1g2x = h2(h1 Ch g1)(g2x)
D
= h2 Ch g2x
D
= Chx,

so g1g2 ∈ GD(Ch).

Proof of Theorem III.1. Fix a channel Ch over an alphabet
X and a group element g ∈ GCh. Suppose D is the mutual-
information-maximizing distribution of the statement of the
theorem, X ∼ D and Y = ChX. Then let X ′ = gX and
Y ′ = ChX ′. We will prove two claims: (1) that I(X;Y ) =
I(X ′;Y ′), and (2) that, under the assumptions of the theorem,
the mutual information I(X;Y ) is maximized by a unique
distribution of X. The combination of these two claims yields
X ′
D
= X, proving the theorem.

For the first claim, we show the stronger statement that,
for h as in Definition II.6, we have (g−1X ′, hY ′)

D
= (X,Y );

since X × Y 3 (x, y) 7→ (g−1x, hy) is a bijection, this then

https://www.eecs.harvard.edu/~michaelm/Talks.html


immediately gives (1). Indeed, we have

P((g−1X ′,hY ′) = (x, y))

= P(g−1gX = x, hCh gX = y)

= P(X = x, hCh gX = y)

= P(X = x)P(hCh gX = y|X = x)

= P(X = x)P(hCh gx = y)

= P(X = x)P(Chx = y)

= P(X = x)P(ChX = y|X = x)

= P(X = x,ChX = y)

= P((X,Y ) = (x, y)),

as desired.
For the second claim, if X ∼ DX , it suffices to show that

the function DX 7→ I(X;Y ) is strictly concave.4 But writing

I(X;Y ) = H(Y )−H(Y |X),

the second term is a linear function of DX (it can be written
H(Y |X) = Ex∼DX

H(Y |X = x)), and the first is a strictly
concave function (the entropy) of the distribution of Y (call
it DY ). Now we may obtain DY as a linear function of the
distribution of X , i.e. DY = MnDX (where Mn is the nth
transition matrix of Ch), and since Mn is full-rank, DX 7→ DY
is an injective linear function, hence DX 7→ H(Y ) is strictly
concave. This proves (2) and hence the theorem.

4Note that the full rank assumption on the transition matrix is necessary
here: while entropy is always a strictly concave function of the distribution,
mutual information is only a concave (and not necessarily strictly concave)
function of the input distribution.
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