
Secure Linear MDS Coded Matrix Inversion

Neophytos Charalambidesµ, Mert Pilanciσ, and Alfred O. Hero IIIµ
.µEECS Department University of Michigan .σEE Department Stanford University

Email: neochara@umich.edu, pilanci@stanford.edu, hero@umich.edu

Abstract— A cumbersome operation in many scientific fields,
is inverting large full-rank matrices. In this paper, we propose
a coded computing approach for recovering matrix inverse
approximations. We first present an approximate matrix inver-
sion algorithm which does not require a matrix factorization,
but uses a black-box least squares optimization solver as a
subroutine, to give an estimate of the inverse of a real full-rank
matrix. We then present a distributed framework for which our
algorithm can be implemented, and show how we can leverage
sparsest-balanced MDS generator matrices to devise matrix
inversion coded computing schemes. We focus on balanced Reed-
Solomon codes, which are optimal in terms of computational
load; and communication from the workers to the master server.
We also discuss how our algorithms can be used to distributively
compute the pseudoinverse of a full-rank matrix, and how the
communication is secured from eavesdroppers.

I. INTRODUCTION

Inverting a matrix is a common operation in numerous
applications in domains such as social networks, numerical
analysis and integration, machine learning, and scientific
computing [3], [4]. It is one of the most important operations,
as it reverses a system. A common way of inverting a matrix
is by performing Gaussian elimination, which in general
takes O(N3) operations for square matrices of order N . In
high-dimensional applications, this is cumbersome.

An operation of equivalent complexity, is multiplying two
N × N matrices. The equivalency can be shown through
the Schur complement. There is a plethora of efficient
and elegant matrix multiplication algorithms, which imply
matrix inversion algorithms. The most popular and practical
algorithm; of complexity O(N2.807), is due to Strassen [5].
Many other inversion algorithms assume specific structure
on the matrix, require a matrix-matrix product, or use a
matrix factorization [6]. Methods for matrix inversion or
factorization are often referred to as direct methods, in
contrast to iterative methods, which gradually converge to
the solution [7], [8]. The most computationally efficient
direct methods compute some form of the inverse, and are
asymptotically equivalent. These have complexity O(Nω),
for ω < 2.373 the matrix multiplication exponent [9].

Distributed computations in the presence of stragglers
(workers who fail to compute their task or have longer re-
sponse time than others) have gained a lot of attention in the
information theory community. Coding-theoretic approaches
have been adopted for this [10], [11], and fall under the
framework of coded computing (CC). Data security is also

A preliminary version considered fractional repetition codes [1]. All
missing proofs can be found in [2], as well as an encoding matrix illustration.
This work was partially supported by grant ARO W911NF-15-1-0479.

an increasingly important issue in CC [12]. Despite the fact
that multiplication algorithms imply inversion algorithms and
vice versa, in the context of CC; matrix inversion has not
been studied as extensively as coded matrix multiplication
(CMM) [13]. The main reason for this is the fact that the
latter is non-linear as an operator, which prohibits it from
being parallelizable. We point out that distributed inversion
algorithms do exist, though these make assumptions on the
matrix, are specific for distributed and parallel computing
platforms, and require a matrix factorization; or heavy and
multiple communication instances. In this work, we give a
remedy to this, by approximating the columns of A−1, and
using an encoding technique which has been leveraged in
gradient coding (GC) [14] to mitigate stragglers. We do not
make any of the aforementioned assumptions.

Recall that the CC network is centralized, and is comprised
of a master server who communicates with n workers. The
idea behind our approximation is that the workers use a
least squares solver to approximate multiple columns of
A−1. While other iterative procedures are applicable, we
present simulation results with steepest descent (SD) and the
conjugate gradient method (CG). By locally approximating
the columns in this way, the workers can linearly encode the
blocks of Â−1.

The non-linearity of matrix inversion prohibits linear or
polynomial encoding of the data before the computations
are to be carried out. Consequently, most CC approaches
cannot be directly utilized. GC is the appropriate CC set up
to consider [15], precisely because the encoding takes place
once the computation which has been carried out, in contrast
to most CMM schemes where the encoding is done by the
master, before the data is distributed.

Once the workers complete their computations, they en-
code them by computing a linear combination with coeffi-
cients determined by a sparsest-balanced maximum distance
separable (MDS) generator matrix. This provides: 1) min-
imum redundancy per job across the network, 2) optimal
communication from the workers to the master server. We
focus on balanced Reed-Solomon (BRS) code generator
matrices [16], [17]. Once a sufficient number of workers has
responded, the master is able to recover the approximation
Â−1. We leverage the structure of sparsest-balanced gen-
erator matrices to optimally allocate tasks to the workers,
while linear encoding results in minimal communication
load from the workers to the master. The ideas discussed
above are also extended to distributed approximation of the
pseudoinverse A† for A full-rank, through a two or three-

ar
X

iv
:2

20
7.

06
27

1v
2

 [
cs

.I
T

]
 2

0
D

ec
 2

02
2

round communication CC approach. We also present how the
communication between the master and the workers can be
made secure, guaranteeing security against eavesdroppers.

The paper is organized as follows. In Section II we
recall basic facts regarding matrix inversion, least squares
approximation, and finite fields. In Section III we present the
matrix inverse and pseudoinverse approximation algorithms
we utilize in our schemes. The main contribution is presented
in Section IV. We first review BRS codes and then show
how our inversion algorithm can be incorporated in linear
CC schemes1 derived from MDS sparsest-balanced generator
matrices, with a focus on BRS generator matrices. We then
discuss how our pseudoinverse algorithm can be carried
out distributively. Concluding remarks and future work are
presented in Section V.

A. Related Work

We point out two articles [18], [19] which have similarities
to the matrix inverse approximation approach presented in
this paper. Firstly, our approach to inverting A is similar
in nature to [18], which uses stochastic gradient descent
to approximate matrix factorizations distributively. Secondly,
the formulation of our underlying optimization problem:
minimize ‖AB − IN‖2F by estimating the columns of B,
is equivalent to the problem studied in [19], which deals
with approximating linear inverse problems in the presence
of stragglers. The drawbacks of the CCS provided in [19],
is that it is geared towards specific applications (e.g. per-
sonalized PageRank), makes assumptions on the covariance
between the signals comprising the linear system and the
accuracy of the workers, and assumes an additive decomposi-
tion of A. Furthermore, the approximation algorithm in [19]
is probabilistic, and considers the response of all workers,
treating stragglers as soft errors instead of erasures. We on
the other hand make no assumption on A other than the fact
that it is non-singular, and our algorithm is not probabilistic.

The CC literature is vast, and has drawn ideas from many
fields, e.g. graph theory, information theory, and optimiza-
tion. We briefly discuss the most similar coding approaches
to the one we propose, i.e. polynomial based codes.

Polynomial codes date back to 1960, with the invention
of Reed-Solomon (RS) codes [20]. Variants of these codes
have found application in many fields, and are still an active
research area. In CC, polynomial codes have been used to
devise CMM [21]–[25], as well as GC schemes [14], [26].

To multiply matrices A and C, the “MatDot” CMM
scheme [22], [23] uses an evaluation of a matrix polynomial
as an encoding, whose coefficients are outer-products of the
columns and rows of A and C respectively. Once a sufficient
number of evaluations are sent back to the master server,
she can apply a polynomial interpolation algorithm or RS
decoding, in order to recover the coefficient which is equal
to the product AC. The polynomial codes proposed in [13],
[24] instead encode blocks of the rows and columns of A and
C respectively. The workers then compute the product of the

1For brevity, we abbreviate ‘coded computing scheme’ to CCS.

encodings they receive and send it back. Once sufficiently
many jobs are received, an inversion of a Vandermonde
matrix suffices for the decoding step.

The GC scheme from [14] is based on BRS codes. The
main difference to our work, is that in GC the objective
is to construct an encoding matrix G and decoding vectors
aI ∈ Ck, such that a>IG = ~1 for any set of non-straggling
workers I. The way BRS codes are exploited in [14] is
that we have the decomposition GI = HIP, for HI a
Vandermonde matrix, and the first row of P is equal to ~1.
Therefore, a>I is the first row of H−1

I . The matrix subscripts
I, denote the submatrices of G and H, consisting only of
the rows indexed by I. Further details on this CCS and how
it differs from ours can be found in [2] Appendix 2.

The state-of-the art CC framework is “Lagrange Coded
Computing” (LCC), which is used to compute any arbitrary
multivariate polynomial of a given dataset [11], [27]. LCC
is based on Lagrange interpolation, and it achieves the opti-
mal trade-off between resiliency, security, and privacy. The
problem we are considering is not a multivariate polynomial
in terms of A. To securely communicate A to the workers,
we encode it through Lagrange interpolation. Though similar
ideas appear in LCC, the purpose and application of the
interpolation is different. Furthermore, LCC is a point-based
approach [25] and requires additional interpolation and linear
combination steps after the decoding takes place.

II. PRELIMINARY BACKGROUND

The set of N × N non-singular matrices is denoted by
GLN (R). Recall that A ∈ GLN (R) has a unique inverse
A−1, such that AA−1 = IN . The simplest way of comput-
ing A−1 is by performing Gaussian elimination on

[
A|IN

]
,

which gives
[
IN
∣∣A−1] in O(N3) operations. In Algorithm

1, we approximate A−1 column-by-column. We denote the
ith row and column of A respectively by A(i) and A(i).

For full-rank rectangular matrices A ∈ RN×M where
N > M , one resorts to the left Moore–Penrose pseudoin-
verse A† ∈ RM×N , for which A†A = IM . In Algorithm 2,
we present how to approximate the left pseudoinverse of A,
by using the fact that A† = (A>A)−1A>; since A>A ∈
GLN (R). The right pseudoinverse A† = A>(AA>)−1

of A ∈ RM×N where M < N , can be obtained by a
modification of Algorithm 2.

In the proposed algorithms we approximate N instances
of the least squares minimization problem

θ?ls = arg min
θ∈RM

{
‖Aθ − y‖22

}
(1)

for A ∈ RN×M and y ∈ RN . In many applications N �M ,
where the rows represent the feature vectors of a dataset. This
has the closed-form solution θ?ls = A†y.

Computing A† to solve (1) directly is intractable for large
M , as it requires computing the inverse of A>A. Instead,
we use gradient methods to get approximate solutions, e.g.
SD or CG, which require less operations, and can be done
distributively. One could use second-order methods; e.g.
Newton–Raphson, Gauss-Newton, Quasi-Newton, BFGS, or

Krylov subspace methods instead. This is not the focus of
our work. We denote the iteration count of these methods
with a superscript [t], for t = 1, 2, 3,

Our schemes are defined over the finite field of q elements,
Fq . We denote its cyclic multiplicative subgroup by F×q =
Fq\{0Fq}. For implementation purposes, we identify finite
fields with their realization in C as a subgroup of the circle
group, since we assume our data is over R. All operations
can therefore be carried out over C. Specifically, for β ∈ F×q
a generator, we identify βj with e2πij/q, and 0Fq with 1. The
set of integers between 1 and ν is denoted by Nν .

A. Balanced Reed-Solomon Codes
A Reed-Solomon code RSq[n, k] over Fq for q > n > k,

is the encoding of polynomials of degree at most k−1, for k
the message length and n the code length. It represents our
message over the defining set of points A = {αi}ni=1 ⊂ Fq

RSq[n, k] =
{[
f(α1), f(α2), · · · , f(αn)

] ∣∣∣
f(X) ∈ Fq[X] of degree 6 k − 1

}
where αi = αi, for α a primitive root of Fq . Hence, each αi
is distinct. A natural interpretation of RSq[n, k] is through
its encoding map. Each message (m0, ...,mk−1) ∈ Fkq is
interpreted as f(x) =

∑k−1
i=0 mix

i ∈ Fq[x], and f is evaluated
at each point of A . From this, RSq[n, k] can be defined
through a generator matrix

G =


1 α1 α2

1 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2
...

...
...

. . .
...

1 αn α2
n . . . αk−1

n

 ∈ Fn×kq ,

thus, RS codes are linear codes over Fq . Furthermore, they
obtain the Singleton bound, i.e. d = n − k + 1 where d is
the code’s distance, which means they are MDS.

Balanced Reed-Solomon codes [16], [17] are a family of
linear MDS error-correcting codes with generator matrices
G that are:
• sparsest: each row has the least possible number of

nonzero entries
• balanced: each column contains the same number of

nonzero entries
for the given code parameters k and n. The design of these
generators are suitable for our purposes, as:

1) we have balanced loads across homogeneous workers,
2) sparse generator matrices means we have reduced com-

putational tasks across the network,
3) the MDS property permits an efficient decoding step,
4) linear codes produce a compressed representation of the

encoded blocks.

III. APPROXIMATION ALGORITHMS

A. Proposed Inverse Algorithm
Our goal is to estimate A−1 =

[
b1 · · · bN

]
, for A a

square matrix of order N . A key property to note is

AA−1 = A
[
b1 · · · bN

]
=
[
Ab1 · · · AbN

]
= IN

which implies that Abi = ei for all i ∈ NN , where ei are
the standard basis column vectors. Assume for now that we
use any black-box least squares solver to estimate

b̂i ≈ arg min
b∈RN

{
fi(b) := ‖Ab− ei‖22

}
(2)

which we call N times, to recover Â−1 :=
[
b̂1 · · · b̂N

]
.

This approach may be viewed as solving

Â−1 ≈ arg min
B∈RN×N

{
‖AB− IN‖2F

}
.

Alternatively, one could estimate the rows of A−1. Algo-
rithm 1 shows how this can be performed by a single server.

Algorithm 1: Estimating A−1

Input: A ∈ GLN (R)
for i=1 to N do

approximate b̂i ≈ arg minb∈RN
{
‖Ab− ei‖22

}
end
return Â−1 ←

[
b̂1 · · · b̂N

]
In the case where SD is used to approximate b̂i from

(2), the overall operation count is O(TiN2); for Ti the total
number of descent iterations used. An upper bound on the
number of iterations can be determined by the underlying
termination criterion, e.g. the criterion fi(b̂[t])− fi(b?) 6 ε
is guaranteed to be satisfied after T = O(log(1/ε)) iterations
[28]. The overall error of Â−1 may be quantified as
• err`2(Â−1) := ‖Â−1 −A−1‖2
• errF (Â−1) := ‖Â−1 −A−1‖F

• errrF (Â−1) := ‖Â−1−A−1‖F
‖A−1‖F =

N∑
i=1
‖Ab̂i−ei‖2

‖A−1‖F
which we refer to as the `2-error, Frobenius-error and rel-
ative Frobenius-error respectively. The corresponding pseu-
doinverse approximation errors are defined accordingly.

To compute Â−1 distributively, each of the n servers are
asked to estimate T -many b̂i’s in parallel. When using SD,
the worst-case runtime by the workers is O(T · TmaxN

2), for
Tmax the maximum number of iterations of SD among the
workers. If CG is used, each worker needs no more than NT
CG steps to exactly compute its task; i.e. O

(
TN σmax(A)

σmin(A)

)
operations, which is the worst case runtime [6], [29].

Bounds on errF (Â−1) and errrF (Â−1) can be established
for both algorithms, specific to the black-box least squares
solver being utilized. This is left for future work.

B. Proposed Pseudoinverse Algorithm

Similar to the inverse, the pseudoinverse of a matrix
also appears in a variety of applications. Computing the
pseudoinverse of A ∈ RN×M for N > M is even more
cumbersome, as it requires inverting the Gram matrix A>A.
For this subsection, we consider a full-rank rectangular
matrix A.

One could naively attempt to modify Algorithm 1 in order
to retrieve Â† such that Â†A ≈ IM , by approximating the

rows of A†. This would not work, as the underlying opti-
mization problems would not be strictly convex. Instead, we
use Algorithm 2 to estimate the rows of B−1 := (A>A)−1,
and then multiply the estimate B̂−1 by A>. This gives us
the approximation Â† := B̂−1 ·A>.

The drawback of Algorithm 2 is that it requires two
additional matrix multiplications, A>A and B̂−1A>. We
overcome this barrier by using a CMM scheme twice, to
recover Â† in a two or three-round communication CC
approach. These are discussed in IV-F.

Algorithm 2: Estimating A†

Input: full-rank A ∈ RN×M where N > M
B← A>A
for i=1 to M do

ĉi ≈ arg minc∈R1×M

{
gi(c) := ‖cB− e>i ‖22

}
b̂i ← ĉi ·A>

end

return Â† ←
[
b̂>1 · · · b̂>M

]>
. Â†(i) = b̂i

C. Numerical Experiments

The accuracy of the proposed algorithms was tested
on randomly generated matrices, using both SD and CG
[6] for the subroutine optimization problems. The depicted
results are averages of 20 runs, with termination criteria
‖∇fi(b[t])‖2 6 ε for SD and ‖b[t]

i − b
[t−1]
i ‖2 6 ε for

CG, for the given ε accuracy parameters. The criteria for
Â† were analogous. We considered A ∈ R100×100 and A ∈
R100×50. The error subscripts represent A = {`2, F, rF},
N = {`2, F}, F = {F, rF}. We note that significantly
fewer iterations took place when CG was used for the same
ε, though this depends heavily on the choice of the step-size.
Thus, there is a trade-off between accuracy and speed when
using SD vs. CG, for such termination criteria.

Average Â−1 errors, for A ∼ 50 · N (0, 1) — SD
ε 10−1 10−2 10−3 10−4 10−5

errA O(10−2) O(10−5) O(10−7) O(10−9) O(10−12)

Average Â−1 errors, for A ∼ 50 · N (0, 1) — CG
ε 10−3 10−4 10−5 10−6 10−7

errN O(10−3) O(10−5) O(10−8) O(10−11) O(10−12)

errrF O(10−3) O(10−5) O(10−7) O(10−10) O(10−12)

Average Â† errors, for A ∼ N (0, 1) — SD
ε 10−1 10−2 10−3 10−4 10−5

err`2 O(10−4) O(10−6) O(10−8) O(10−10) O(10−12)

errF O(10−5) O(10−7) O(10−9) O(10−11) O(10−13)

Average Â† errors, for A ∼ N (0, 1) — CG
ε 10−3 10−4 10−5 10−6 10−7

err`2 O(10−4) O(10−6) O(10−8) O(10−10) O(10−12)

errF O(10−2) O(10−3) O(10−8) O(10−10) O(10−12)

IV. CODED MATRIX INVERSION

In this section, we focus on CC and give a linear scheme
based on BRS codes [14], [16], [17] which makes Algorithms
1 and 2 resilient to stragglers. We present the proposed
scheme for Algorithm 1, and then show how to combine
Polynomial CMM [13]; to distributively perform Algorithm
2. While there is extensive literature on matrix-matrix,
matrix-vector multiplication, and computing the gradient in
the presence of stragglers, there is limited work on comput-
ing or approximating the inverse of a matrix [19].

First, we argue why all of A needs to be known by each
of the workers, in order to recover entries or columns of
its inverse. We then show how Lagrange interpolation can
be utilized to securely share A among the workers. We
then discuss what are the computational tasks the workers
are requested to compute, which are blocks of Â−1; and
correspond to the subroutine problems of Algorithms 1, 2.

Then, we briefly review BRS codes, how the workers
encode their computations in our proposed CCS, and how
the master then decodes the received computations. Opti-
mality of BRS generator matrices in terms of allocated tasks
and encoded communication loads are also established, in
Lemma 3 and in IV-E respectively.

We note that when assuming finite-point arithmetic, the
CCS we propose introduces no numerical nor approximation
errors. The approximation in our procedure, is a consequence
of using iterative solvers to estimate (2). Therefore, if the
workers can recover the optimal solutions to the underlying
minimization problems, our approach would be exact.

A. Encrypting and Communicating A

A bottleneck when computing the inverse of a matrix; or
estimating its columns, is that the entire matrix needs to be
known. A single change in the matrix’s entries may result
in a non-singular matrix. Below, we illustrate a simple such
example. If we change A2,3 of A for which rank(A) = 3:

A =

8 2 5
2 2 5
3 7 5

 A• =

8 2 5
2 2 2
3 7 5

 (3)

we get A• for which rank(A•) = 2. This conveys how
sensitive Gaussian elimination is [30].

In the case where only one column is not known, one can
determine the subspace in which the missing column lies
in, but without the knowledge of at least one entry of that
column, it would be impossible to recover that column. Even
with such an approach or a matrix completion algorithm, the
entire A is determined before we proceed to inverting A, or
performing linear regression to solve Ab = ei. Problems
similar to the one illustrated in (3) are extensively studied in
conditioning and stability of numerical analysis [6], and in
perturbation theory. This is not a focus of our work.

Furthermore, by the data processing inequality [31, Corol-
lary pg.35], the above imply that no less than N2 information
symbols can be delivered to each worker, while hoping to
approximate a column of A−1, if no assumption is to be
made on the structure of A. Hence, we cannot deliver a

representation of A with less than N2 symbols. This is a
consequence of the fact that a dense vector is not recoverable
from underdetermined linear measurements. We can however
send an encoded version of A to the workers consisting of
N2 symbols, determined by a modified Lagrange polyno-
mial, which guarantees security against eavesdroppers.

Similar cryptographic protocols date back to Shamir’s
secret sharing scheme [32], which is also based on RS codes.
More recently, this idea has extensively been exploited in
LCC [11]. The way it is used in LCC differs from ours, as
we need knowledge of the entire matrix A.

Let k be a positive factor of N and T = N
k .2 Select a

set of distinct interpolation points B = {βj}nj=1 (F×q , for
q > n.3 To construct this set, sample β ∈ F×q ; any one of the
φ(q−1) primitive roots of Fq (φ is Euler’s totient function),
which is a generator of the multiplicative group (F×q , ·), and
define each point as βj = βj . We then generate a random
multiset H = {ηj}kj=1 ∈ 2F

×
q of size k, i.e. repetitions in H

are allowed, which we will use to remove the structure of
the Lagrange coefficients, as the adversaries could use them
to reveal β.

The element β and set H−1 := {η−1
j }kj=1, are broadcasted

securely to all the workers through a public-key cryptosys-
tem, e.g. RSA. Matrix A is then partitioned into k blocks

A =
[
A1 · · · Ak

]
where Ai ∈ RN×T , ∀i ∈ Nk. (4)

Next, A is encoded through the univariate polynomial

f(x) =

k∑
j=1

Aj · ηj

∏
l 6=j

x− βl
βj − βl

 (5)

for which f(βj) = ηjAj . This is then shared with the
workers, who recover A as follows:

A =
[
η−1

1 f(β1) · · · η−1
k f(βk)

]
∈ RN×N .

The coefficients of f(x) are comprised of NT symbols, thus,
the polynomial consists of a total of N2 symbols.

Proposition 1. The encryption of A through f(x), is as
secure against eavesdroppers as the public-key cryptosystem
which was used to broadcast β and H−1.

For an additional security layer, the interpolation points
of B could instead be defined as βj = βπ(j), for π ∈ Sn
a random permutation. In this case, π−1 also needs to be
securely broadcasted, so that the workers can determine B.

B. Computational Tasks

For Algorithms 1 and 2, any CCS in which the workers
compute an encoding of partitions of the resulting computa-
tion E =

[
E1 · · · Ek

]
could be utilized. It is crucial that

2If k - N , append 0N×1 to the end of the first k̃ = rem(N, k) blocks
which are each comprised of T̃ = bN

k
c columns of A, while the remaining

k− k̃ blocks are comprised of T̃ + 1 columns. Now, each block is of size
N × (T̃ + 1).

3For the encoding of A, k points suffice, and we only need to require
q > k. We select B of cardinality n and require q > n, in order to also
use B in our CCS.

the encoding takes place on the computed tasks {Ei}ki=1 in
the scheme, and not the assigned data or partitions of the
matrices that are being computed over (e.g. [24]), otherwise
the algorithms could potentially not return the correct results.
This also means that utilizing such encryption approaches
(e.g. [11]) for guaranteeing security against the workers, is
not an option. Such schemes leverage the linearity of matrix
multiplication. We face these restrictions due to the fact that
matrix inversion is a non-linear operator.

The computation tasks Ei correspond to a partitioning
Â−1 =

[
Â1 · · · Âk

]
, of our approximation from Algorithm

1. We propose a linear encoding of the computed blocks
{Âi}ki=1 in IV-C. Along with the proposed decoding step,
we have a MDS CCS for matrix inversion.

We consider the same parameters as in IV-A, in order to
reuse B in our CCS. Each Âi is comprised of T distinct but
consecutive approximations of (2), i.e.

Âi =
[
b̂(i−1)T+1 · · · b̂iT

]
∈ RN×T ∀i ∈ Nk,

which could also be approximated by iteratively solving

Âi ≈ arg min
B∈RN×T

{∥∥AB−
[
e(i−1)T+1 · · · eiT

]∥∥2

F

}
.

We assume the workers are homogeneous, i.e. they have
the same computational power. Therefore, equal computa-
tional loads are assigned to each of them. Without loss of
generality, we assume that the workers use the same algo-
rithms and parameters for estimating the columns {b̂i}Ni=1.
Therefore, workers allocated the same tasks are expected to
get equal approximations in the same amount of time.

C. Balanced Reed-Solomon Codes for CC

Recall that we leverage BRS generator matrices for our CC
inversion scheme. For simplicity, we will consider the case
where d = s+1 = nw

k is a positive integer4, for n the number
of workers and s the number of stragglers. Furthermore, d
is the distance of the code and ‖G(j)‖0 = d for all j ∈ Nk;
‖G(i)‖0 = w for all i ∈ Nn, and d > w since n > k. For
decoding purposes, we require that at least k = n−s workers
respond. Consequently, d = s+1 implies that n−d = k−1.
For simplicity, we also assume d > n/2.

For conventional reasons we use the transpose of BRS
generator matrices, so from here on we consider such gen-
erator matrices G ∈ Fn×kq . In our setting, each column of
G corresponds to a computational task of Â−1; i.e. a block
Âi, and each row corresponds to a worker.

Our choice of such a generator matrix G ∈ Fn×kq solves
the minimization problem

arg min
G∈Fn×k

q

{
nnzr(G)

}
s.t. ‖G(i)‖0 = w, ∀i ∈ Nn

‖G(j)‖0 = d, ∀i ∈ Nk
rank(GI) = k, ∀I : |I| = k

(6)

4The case where nw
k
∈ Q+\Z+ is analysed in [14], and also applies to

our approach. We restrict our discussion to the case where nw
k
∈ Z+.

which determines an optimal task allocation among the
workers of our CCS.

Under the above assumptions, the entries of the generator
matrix of a BRSq[n, k] code meet the following:
• each column is sparsest, with exactly d nonzero entries
• each row is balanced, with w = dk

n nonzero entries
where d equals to the number of workers who are tasked to
compute each block, and w is the number of blocks which
are computed by each worker.

Each column G(j) corresponds to a polynomial pj(x),
whose entries are the evaluation of the polynomial at each
of the points of the defining set A defined in II-A, i.e.
Gij = pj(αi) for (i, j) ∈ Nn × Nk. To construct the
polynomials {pj(x)}ki=1, for which deg(pj) 6 nnzr(G(j)) =
n − d = k − 1, we first need to determine a sparsest and
balanced mask matrix M ∈ {0, 1}n×k, which is ρ-sparse for
ρ = d

n ; i.e. nnzr(G) = ρnk. It is fairly easy to construct
such matrices, by using the Gale-Ryser Theorem [33], [34].
Furthermore, deterministic constructions resemble generator
matrices of cyclic codes.

For our purposes we use B as our defining set of points,
where each point corresponds to the worker with the same
index. The objective now is to devise the polynomials pj(x),
for which pj(βi) = 0 if and only if Mij = 0. Therefore:

(i) Mij = 0 =⇒ (x− βi) | pj(x)
(ii) Mij 6= 0 =⇒ pj(βi) ∈ F×q

for all pairs (i, j).
The construction of BRS[n, k]q from [16] is based on what

the authors called scaled polynomials. Below, we summarize
the construction given in [14], which is based on Lagrange
interpolation. We then prove a simple but important fact
about it, which allows us to perform our decoding step.

The univariate polynomials corresponding to each column
G(j), are defined as:

pj(x) :=
∏

i:Mij=0

(
x− βi
βj − βi

)
=

k∑
ι=1

pj,ι · xι−1 ∈ Fq[x] (7)

which satisfy (i) and (ii). By the sparsity parameters of M
and the BCH bound [35, Chapter 9], it follows that deg(pj) >
n−d = k−1 for all j ∈ Nk. Since each pj(x) is the product
of n − d monomials, we conclude that the bound on the
degree is satisfied and met with equality, hence pj,ι ∈ F×q
for all coefficients.

By the construction of G, both G and GI are decompos-
able into a Vandermonde matrix H ∈ Bn×k and a matrix
comprised of the polynomial coefficients H ∈ (F×q)k×k

[14]. Specifically, G = HP where Hij = βj−1
i = βi(j−1)

and Pij = pj,i are the coefficients from (7). This can be
interpreted as P(j) defining the polynomial pj(x), and H(i)

is comprised of the first k positive powers of βi in ascending
order, therefore

pj(βi) =

k∑
ι=1

pj,ι · βι−1
i = 〈H(i),P

(j)〉.

Lemma 2. The restriction GI ∈ Fk×kq of G to any of its k
rows indexed by I (Nn, is invertible. Moreover, its inverse
can be computed online in O(k2 + kω) operations.5

Lemma 3. The generator matrix G ∈ Fn×kq of a BRSq[n, k]
MDS code defined by the polynomials pj(x) of (7), solves
the optimization problem (6).

Lemma 2 implies that as long as k workers respond, the
approximation Â−1 is recoverable. Moreover, the decoding
step reduces to a matrix multiplication of k × k matrices.
Applying HI to a square matrix can be done in O(k2 log k)
through the FFT algorithm. The prevailing computation in
our decoding, is applying P−1.

D. Coded Matrix Inversion Scheme

For our CCS, we utilize BRS generator matrices for
both the encoding and decoding steps. We adapt the GC
framework, so we need an analogous condition to a>IG = ~1
for coded matrix inversion; in order to invoke Algorithm 1.
The condition we require is D̃IG̃ = IN , for an encoding-
decoding pair (G̃, D̃I).

From our discussion on BRS codes, we set G̃ = IT ⊗G
and D̃I = IT ⊗ (GI)−1 for any given set of k responsive
workers indexed by I. The index set of blocks requested
from the ιth worker to compute is denoted by Jι, and has
cardinality w. The encoding steps correspond to

G̃ · (Â−1)> = (IT ⊗G) ·

Â
>
1
...
Â>k

 =


∑
j∈J1

pj(β1) · Â>j
...∑

j∈Jn
pj(βn) · Â>j


(8)

which are carried out locally by the servers, once they have
computed their assigned tasks. We denote the encoding of
the ιth worker by Wι ∈ CT×N , i.e. Wι =

∑
j∈Jι

pj(βι) · Â>j .

The received encoded computations by any distinct k =

n − s workers indexed by I, constitute G̃I · (Â−1)>. The
decoding step is

D̃I ·
(
G̃I · (Â−1)>

)
=
(
IT ⊗ (GI)

−1) · (IT ⊗GI
)
· (Â−1)>

= (IT · IT)⊗
(
(GI)

−1 ·GI
)
· (Â−1)>

= IT ⊗ Ik · (Â−1)>

= (Â−1)>

and our scheme is valid.
The above CCS therefore has a linear encoding done

locally by the workers (8), is MDS since s = d − 1, and
its decoding step reduces to computing and applying G−1

I
(Lemma 2). It is worth mentioning that with the above
framework, any sparsest-balanced generator MDS matrix
[33] would suffice, as long as it satisfies the MDS theorem
[36]. By Lemma 2, if we set k = Ω(

√
N) (similar to

[13]), the decoding step could then be done in O(Nω/2) =
o(N1.187), which is close to being linear in terms of N .

5Recall that ω < 2.373 is the matrix multiplication exponent.

Theorem 4. Let G ∈ Fn×k be a generator matrix of any
MDS code over F, for which ‖G(j)‖0 = n − k + 1 and
‖G(i)‖0 = w for all (i, j) ∈ Nn×Nk. By utilizing Algorithm
1, we can devise a linear MDS coded matrix inversion
scheme; through the encoding-decoding pair (G̃, D̃I).

Other constructions, based on cyclic MDS codes, can also
be considered. These have also been leveraged to devise
GC schemes [37]. The corresponding encoding matrices are
suitable when the network is comprised of heterogeneous
workers, as they are not sparsest-balanced.

Proposition 5. Any cyclic [n, k] MDS code C over F ∈
{R,C} can be used to devise a coded matrix inversion
encoding-decoding pair (G̃, D̃I).

Furthermore, we can guarantee security of the communi-
cated encodings between the workers and the master server, if
we do not reveal which encoding corresponds to each worker.
This is equivalent to keeping the workers’ indices secret.

Observe that the rows of G are partitioned into τ =
d n
n−de 6 k groups of rows with the same support. By our

threshold requirement that at least k workers respond, the
pigeonhole principle implies that at least one encoding from
each of the τ groups is received. Assume the eavesdropper
has knowledge of τ encoded computations; one from each
group, but does not know which encoding corresponds to
which group. There are a total of τ ! possibilities, each of
which results in a different GI . This corresponds to a G
with randomly permuted rows, Gperm. Without knowledge
of I and the permutation, it is then not possible to reverse
the encoding G̃perm

I · (Â−1)>, unless the eavesdropper ex-
haustively tries all n!τ ! possible cases. Even in such a case,
it will not know which is the correct Â−1.

E. Optimality of MDS BRS Codes

Under the assumption that k = n − s, by utilizing the
BRSq[n, k] generator matrices, we achieved the minimum
possible communication load from the workers to the master.
From our discussion in IV-A, we cannot hope to receive
an encoding of size less than N2/k when we require that
k workers respond with the same amount of information
symbols in order to recover A−1 ∈ RN×N , unless we make
further assumptions on the structure of A and A−1. Each
encoding Wι consists of NT = N2/k, so we have achieved
the lower bound on the minimum amount of information
needed to be sent to the main server by the workers. This also
holds true for other generator matrices which can be used in
Theorem 4, as the encodings are linear. Hence, Wι ∈ CT×N
for any sparsest-balanced generator MDS matrix.

We also require the workers to estimate the least possible
number of columns for the given recovery threshold k. For
our choice of parameters, the bound of [15, Theorem 1] is
met with equality. That is, for all i ∈ Nn:

‖G(i)‖0 = w =
k

n
· d =

k

n
· (n− k + 1) ,

which means that for homogeneous workers, we cannot get
a sparser generator matrix. This, along with the requirement

that GI should be invertible for all possible I, are what we
considered in (6).

F. Pseudoinverse from Polynomial CMM

One approach to leverage Algorithm 2 in a two-round
communication scheme is to first compute B = A>A
through a CMM scheme, then share B with all the workers
who estimate the rows of B̂−1, and finally use another CMM
to locally encode the estimated columns with blocks of A>;
to recover Â† = B̂−1 · A>. Even though there are only
two rounds of communication, the fact that we have a local
encoding by the workers results in a higher communication
load overall. An alternative approach which circumvents this
issue, uses three-rounds of communication.

For this approach, we use polynomial CMM [13] twice,
along with our coded matrix inversion scheme. This CMM
has a reduced communication load, and minimal computation
is required by the workers. To have a consistent recovery
threshold across our communication rounds, we partition A
as in (4) into k̄ =

√
n− s =

√
k blocks. Each block is of size

N×T̄ , for T̄ = M
k . The encodings from [13] of the partitions

{Aj}k̄j=1 for carefully selected parameters a, b ∈ Z+ and
distinct elements γi ∈ Fq , are

Ãa
i =

k∑
j=1

Ajγ
(j−1)a
i and Ãb

i =

k∑
j=1

Ajγ
(j−1)b
i

for each worker indexed by i. Thus, each encoding is
comprised of NT̄ symbols. The workers compute the product
of their respective encodings (Ãa

i)> · Ãb
i . The decoding step

corresponds to an interpolation step, which is achievable
when k̄2 = k many workers respond6, which is the optimal
recovery threshold for CMM. Any fast polynomial interpo-
lation or RS decoding algorithm can be used for this step,
to recover B.

Next, the master shares B with all the workers (from IV-A,
this is necessary), who are requested to estimate the column-
blocks of B̂−1

B̂−1 =
[
B̄1 · · · B̄k

]
where B̄j ∈ RM×T̄ ∀j ∈ Nk (9)

according to Algorithm 1. We can then recover B̂−1 by our
BRS based scheme, once k workers send their encoding.

For the final round, we encode B̂−1 as

B̃a
i =

k∑
j=1

B̄jγ(j−1)a
i

which are sent to the respective workers. The workers already
have in their possession the encodings Ãb

i . We then carry out
the polynomial CMM where each worker is requested to send
back (B̃a

i)> · Ãb
i . The master server can then recover Â†.

Theorem 6. Consider G ∈ Fn×k as in Theorem 4. By
using any CMM, we can devise a matrix pseudoinverse CCS
by utilizing Algorithm 2, in two-rounds of communication.
By using polynomial CMM [13], we achieve this with a

6We select k̄ =
√
k in the partitioning of A in (4) when deploying this

CMM, to attain the same recovery threshold as our inversion scheme.

reduced communication load and minimal computation, in
three-rounds of communication.

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of computing
the inverse and pseudoinverse of a matrix distributively,
under the presence stragglers. Due to inherent limitations of
inverting matrices, we settled for an approximation. We first
gave two algorithms which respectively estimate the columns
and rows of A−1 and A†.

The main contribution of this work, is showing how
generator matrices of sparsest-balanced MDS codes can
be utilized, to devise coded matrix inversion schemes. We
worked with generator matrices of BRS codes, which enables
faster online decoding. A similar approach can be used to
devise CMM schemes [38]. Furthermore, we also showed
how the information can be securely transmitted between
the main server and the workers, and vice versa, which is
another current interest in the area of CC.

There are several interesting directions for future work.
One could look into the issue of numerical stability of our
BRS approach, as well as if other suitable generator matrices
exist. Regarding Algorithms 1 and 2, we did not establish
approximation error bounds in this paper. In terms of coding
theory, it would be interesting to see if it is possible to reduce
the complexity of our decoding step. Specifically, could
well-known RS decoding algorithms such as the Berlekamp-
Welch algorithm be exploited? Another important problem
is to efficiently secure the information from the workers.

REFERENCES

[1] N. Charalambides, M. Pilanci, and A. O. Hero III, “Straggler
Robust Distributed Matrix Inverse Approximation,” arXiv preprint
arXiv:2003.02948, 2020.

[2] ——, “Secure Linear MDS Coded Matrix Inversion,” arXiv preprint
arxiv:2207.06271, 2022.

[3] B. G. Greenberg and A. E. Sarhan, “Matrix inversion, its interest and
application in analysis of data,” Journal of the American Statistical
Association, vol. 54, no. 288, pp. 755–766, 1959.

[4] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
USA: Society for Industrial and Applied Mathematics, 2002.

[5] V. Strassen, “Gaussian elimination is not optimal,” Numerische math-
ematik, vol. 13, no. 4, pp. 354–356, 1969.

[6] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam,
1997, vol. 50.

[7] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of
direct methods for sparse linear systems,” Acta Numerica, vol. 25, pp.
383–566, 2016.

[8] R. Peng and S. Vempala, “Solving sparse linear systems faster than
matrix multiplication,” arXiv preprint arXiv:2007.10254, 2020.

[9] J. Alman and V. V. Williams, “A refined laser method and faster matrix
multiplication,” arXiv preprint arXiv:2010.05846, 2020.

[10] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2017.

[11] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. Avestimehr, “Lagrange coded computing: Optimal design for re-
siliency, security and privacy,” arXiv preprint arXiv:1806.00939, 2018.

[12] S. Li and S. Avestimehr, “Coded computing,” Foundations and
Trends® in Communications and Information Theory, vol. 17, no. 1,
2020.

[13] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[14] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving Dis-
tributed Gradient Descent Using Reed-Solomon Codes,” in 2018 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2018,
pp. 2027–2031.

[15] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[16] W. Halbawi, Z. Liu, and B. Hassibi, “Balanced Reed-Solomon Codes,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2016, pp. 935–939.

[17] ——, “Balanced Reed-Solomon Codes for all parameters,” in 2016
IEEE Information Theory Workshop (ITW). IEEE, 2016, pp. 409–
413.

[18] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2011, pp. 69–77.

[19] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for
inverse problems,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017, pp. 709–719.

[20] I.S.Reed and G.Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960. [Online]. Available: http:
//www.jstor.org/stable/2098968

[21] M. Fahim and V. R. Cadambe, “Numerically Stable Polynomially
Coded Computing,” in 2019 IEEE International Symposium on In-
formation Theory (ISIT). IEEE, 2019, pp. 3017–3021.

[22] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” in 2017 55th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). IEEE, 2017, pp.
1264–1270.

[23] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” IEEE Transactions on Information Theory, vol. 66,
no. 1, pp. 278–301, 2019.

[24] Q. Yu and A. S. Avestimehr, “Entangled Polynomial Codes for Secure,
Private, and Batch Distributed Matrix Multiplication: Breaking the
“Cubic” Barrier,” arXiv preprint arXiv:2001.05101, 2020.

[25] S. Kiani and S. C. Draper, “Successive Approximation Coding for
Distributed Matrix Multiplication,” arXiv preprint arXiv:2201.03486,
2022.

[26] N. Charalambides, M. Pilanci, and A. O. Hero, “Weighted Gradient
Coding with Leverage Score Sampling,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 5215–5219.

[27] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog La-
grange Coded Computing,” IEEE Journal on Selected Areas in Infor-
mation Theory, vol. 2, no. 1, pp. 283–295, 2021.

[28] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[29] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain,” 1994.

[30] N. Atkinson, “Notes on the sensitivity of linear systems.”
[31] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley

Series in Telecommunications and Signal Processing). USA: Wiley-
Interscience, 2006.

[32] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[33] S. H. Dau, W. Song, Z. Dong, and C. Yuen, “Balanced Sparsest
Generator Matrices for MDS Codes,” in 2013 IEEE International
Symposium on Information Theory, 2013, pp. 1889–1893.

[34] M. Krause, “A Simple Proof of the Gale-Ryser Theorem,” The
American Mathematical Monthly, vol. 103, no. 4, pp. 335–337, 1996.

[35] R. J. McEliece, Theory of Information and Coding, 2nd ed. USA:
Cambridge University Press, 2001.

[36] S. Ling and C. Xing, Coding Theory: A First Course. Cambridge
University Press, 2004.

[37] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient Coding
from Cyclic MDS Codes and Expander Graphs,” IEEE Transactions
on Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[38] N. Charalambides, H. Mahdavifar, and A. O. Hero III, “Numerically
stable binary coded computations,” arXiv preprint arXiv:2109.10484,
2021.

http://www.jstor.org/stable/2098968
http://www.jstor.org/stable/2098968

[39] Å. Björck and V. Pereyra, “Solution of Vandermonde Systems of
Equations,” Mathematics of Computation, vol. 24, pp. 893–903, 1970.

APPENDIX 1 — PROOFS OF SECTION IV

In this appendix, we include the missing proofs of Section
IV. We first recall two well-know results, which will be used.

Theorem 7 (MDS Theorem — [36]). Let C be a linear
[n, k, d] code over Fq , with G,H the generator and parity-
check matrices. Then, the following are equivalent:

1) C is a MDS code, i.e. d = n− k + 1
2) every set of n−k columns of H is linearly independent
3) every set of k columns of G is linearly independent
4) C⊥ is a MDS code.

Theorem 8 (BCH Bound — [16], [35]). Let p(x) ∈
Fq[x]\{0} with t cyclically consecutive roots, i.e. p(αj+ι) =
0 for all ι ∈ Nt. Then, at least t+ 1 coefficients of p(x) are
nonzero.

Proof. [Proposition 1] Assume for a contradiction that an
adversary was able to reverse the encoding of f(x) for each
block. This implies that he or she was able to reveal β
and H−1. The only way to reveal these elements, is if the
adversary was able to both intercept and decipher the public-
key cryptosystem used by the master, which contradicts the
security of the cryptosystem. �

Proof. [Lemma 2] The matrices H and P are of size n× k
and k×k respectively. The restricted matrix GI is then equal
to HIP, where HI ∈ Fk×kq is now a square Vandermonde
matrix, which is invertible in O(k2) time [39]. Specifically

HI =


1 βI1 β2

I1 . . . βk−1
I1

1 βI2 β2
I2 . . . βk−1

I2
...

...
...

. . .
...

1 βIk β2
Ik . . . βk−1

Ik

 ∈ Fk×kq .

It follows that

det(HI) =

 ∏
{i<j}⊆I

(βj − βi)


which is nonzero, since β is primitive. Therefore, HI is
invertible. By [16, Lemma 1] and the BCH bound, we
conclude that P is also invertible. Hence, GI is invertible
for any set I.

Note that the inversion of P can computed a priori by
the master before we deploy our CCS. Therefore, computing
G−1
I online with knowledge of P−1, requires an inversion

of HI which takes O(k2); and then multiplying it by P−1.
Thus, it requires O(k2 + kω) operations. �

Proof. [Theorem 4] The encoding vectors applied locally
by each of the n workers correspond to a row of G. The
encoding by all the workers then corresponds to G̃·(Â−1)>,
for G̃ = IT ⊗G, as in (8). Consider any set of responsive
workers I of size k, whose encodings comprise G̃I ·(Â−1)>.
By Theorem 7, GI is invertible. Hence, the decoding step

reduces to inverting GI , which corresponds to D̃I = IT ⊗
(GI)−1, and is performed online. �

Proof. [Lemma 3] The first two constraints are satisfied by
the definition of G, which meets the sparsest and balanced
constraints with equality; for the given parameters. The last
constraint is implied by 3) of Theorem 7.

Additionally, the first two constraints of (6) imply that
nnzr(G) > max{nw, kd}, and for our parameters we have
nw = kd. This is met with equality for the chosen G, as

nnzr(G) =
∑
j∈Nk

nnzr(G(j))

=
∑
j∈Nk

#
{
pj(βi) 6= 0 : βi ∈ B

}
=
∑
j∈Nk

n−
{
i : Mij = 0

}
=
∑
j∈Nk

n− (n− d)

= kd

and the proof is complete. �

Proof. [Proposition 5] Consider a cyclic [n, n−s] MDS code
C over F ∈ {R,C}. Recall that from our assumptions, we
have s = n− k. By [37, Lemma 8], there exists a codeword
g1 ∈ C of support d = s+1, i.e. ‖g1‖0 = d. Since C is cyclic,
it follows that the cyclic shifts of g1 also lie in C. Denote the
n−1 consecutive cyclic shifts of g1 by {gi}ni=2 (C (F1×n,
which are all distinct. Define the cyclic matrix

Ḡ :=

 | | |
g>1 g>2 . . . g>n
| | |

 ∈ Fn×n . (10)

Since ‖gi‖0 = d and gi is a cyclic shift of gi−1 for all
i ∈ Nn, it follows that ‖Ḡ(i)‖0 = ‖Ḡ(j)‖0 = d for all i, j ∈
Nn, i.e. Ḡ is sparsest and balanced. If we erase any s =
n−k columns of Ḡ, we get G ∈ Fn×k. By erasing arbitrary
columns of Ḡ, the resulting G is not balanced7, i.e. we have
‖G(i)‖0 6= ‖G(j)‖0 for some pairs i, j ∈ Nn. Similar to the
case we considered for BRS generator matrices, we define
the encoding matrix to be G̃ = IT ⊗G. The encodings are
analogous to (8).

Consider an arbitrary set of k non-straggling workers
I (Nn, and the corresponding matrix GI ∈ Fk×k. By
[37, Lemma 12, B4.], GI is invertible. The decoding matrix
is then D̃I = IT ⊗ (GI)−1, and the condition D̃IG̃ = IN
is met. �

Next, we give a short derivation to the fact that τ =
d n
n−de 6 k. In order to have a meaningful scheme, we

require that k−1 > w, otherwise every worker is assigned all

7Recall that for conventional reasons we use the transpose of sparsest-
balanced generator matrices, hence the balanced condition is considered for
the rows of G; rather than its columns.

computational tasks, thus everyone is requested to compute
all columns of Â−1, and a CCS is not necessary. Therefore

1− 1

k
>
w

k
=
d

n
=⇒ n− d

n
>

1

k
=⇒ n

n− d
6 k

and since k ∈ Z+, we have τ 6 k.

APPENDIX 2 — GRADIENT CODING SCHEME OF [14],
AND A NUMERICAL EXAMPLE

In this appendix, we give a brief overview of the GC
scheme from [14], to show how it differs from our coded
matrix inversion scheme. We also explicitly give their con-
struction of a balanced mask matrix M ∈ {0, 1}n×k, which
we use for the construction of the BRS generator matrices.
We illustrate the proposed CCS in Figure 1, and the encoding
and decoding procedures with a simple example.

Fig. 1. Algorithmic workflow of the coded matrix inversion scheme. The
master shares f(x), an encoding analogous to (5), along with β, {η−1

j }
k
j=1.

The workers then recover A, compute their assigned tasks, and encode
them according to G. Once k encodings Wι are sent back, Â−1 can be
recovered.

Algorithm 3: MaskMatrix(n, k, d) [14]

Input: n, k, d ∈ Z+ s.t. n > d, k and w = kd
n

Output: row-balanced mask matrix M ∈ {0, 1}n×k
M← 0n×k
for j = 0 to k − 1 do

for i = 0 to d− 1 do
ι← (i+ jd+ 1) mod n
Mr,ι ← 1

end
end
return M

Even though this was not pointed out in [14], Algorithm
3 does not always produce a mask matrix of the given
parameters when we select d < n/2. This is why in our
work we require d > n/2.

The decomposition G = HP is utilized in the GC scheme
of [14]. Each column of G corresponds to a partition of
the data whose partial gradient is to be computed. The
polynomials are judiciously constructed in this scheme, such
that the constant term of each polynomial is 1 for all
polynomials, thus P(1) = ~1. By this, the decoding vector

a>I is the first row of G−1
I , for which a>IGI = e>1 . A direct

consequence of this is that a>IBI = e>1 T = T(1) = ~1,
which is the objective for constructing a GC scheme.

A. Generator Matrix Example

As an example, consider the case where n = 9, k = 6 and
d = 6, thus w = kd

n = 4. Then, Algorithm 3 produces

M =



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 1 1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 1 0 1
0 1 1 0 1 1
0 1 1 0 1 1
0 1 1 0 1 1


∈ {0, 1}9×6 .

For our CCS, this means that the ith worker computes
the blocks indexed by supp(M(i)), e.g. supp(M(1)) =
{1, 2, 4, 5}. We denote the indices of the respective task
allocations by Ji = supp(M(i)). The entries of the generator
matrix G are the evaluations of the constructed polynomials
(7) at each of the evaluation points B = {βi}ni=1, i.e.
Gij = pj(αi). This results in:

G =



p1(β1) p2(β1) 0 p4(β1) p5(β1) 0
p1(β2) p2(β2) 0 p4(β2) p5(β2) 0
p1(β3) p2(β3) 0 p4(β3) p5(β3) 0
p1(β4) 0 p3(β4) p4(β4) 0 p6(β4)
p1(β5) 0 p3(β5) p4(β5) 0 p6(β5)
p1(β6) 0 p3(β6) p4(β6) 0 p6(β6)

0 p2(β7) p3(β7) 0 p5(β7) p6(β7)
0 p2(β8) p3(β8) 0 p5(β8) p6(β8)
0 p2(β9) p3(β9) 0 p5(β9) p6(β9)


.

	I Introduction
	I-A Related Work

	II Preliminary Background
	II-A Balanced Reed-Solomon Codes

	III Approximation Algorithms
	III-A Proposed Inverse Algorithm
	III-B Proposed Pseudoinverse Algorithm
	III-C Numerical Experiments

	IV Coded Matrix Inversion
	IV-A Encrypting and Communicating A
	IV-B Computational Tasks
	IV-C Balanced Reed-Solomon Codes for CC
	IV-D Coded Matrix Inversion Scheme
	IV-E Optimality of MDS BRS Codes
	IV-F Pseudoinverse from Polynomial CMM

	V Conclusion and Future Work
	References
	V-A Generator Matrix Example

