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Unbounded Gradients in Federated Leaning with Buffered
Asynchronous Aggregation

Mohammad Taha Toghani and César A. Uribe

Abstract— Synchronous updates may compromise the effi-
ciency of cross-device federated learning once the number
of active clients increases. The FedBuff algorithm (Nguyen
et al. [1]) alleviates this problem by allowing asynchronous
updates (staleness), which enhances the scalability of training
while preserving privacy via secure aggregation. We revisit
the FedBuff algorithm for asynchronous federated learning
and extend the existing analysis by removing the boundedness
assumptions from the gradient norm. This paper presents a the-
oretical analysis of the convergence rate of this algorithm when
heterogeneity in data, batch size, and delay are considered.

I. INTRODUCTION

Federated learning (FL) is an approach in machine learn-
ing theory and practice that allows training models on
distributed data sources [2], [3]. The distributed structure
of FL has numerous benefits over traditional centralized
methods, including parallel computing, efficient storage, and
improvements in data privacy. However, this framework also
presents communication efficiency, data heterogeneity, and
scalability challenges. Several works have been proposed
to improve the performance of FL [4]-[6]. Existing works
usually address a subset of these challenges while imposing
additional constraints or limitations in other aspects. For
example, the work in [7] shows a trade-off between privacy,
communication efficiency, and accuracy gains for the dis-
tributed discrete Gaussian mechanism for FL with secure
aggregation.

One of the most important advantages of FL is scalability.
Training models on centralized data stored on a single server
can be problematic when dealing with large amounts of
data. Servers may be unable to handle the load, or clients
might refuse to share their data with a third party. In FL,
the data is distributed across many devices, potentially im-
proving data privacy and computation scalability. However,
this also presents some challenges. First, keeping the update
mechanism synchronized across all devices may be very
difficult when the number of clients is large [8]. Second,
even if feasible, imposing synchronization results in huge
(unnecessary) delays in the learning procedure [6]. Finally,
each client often might have different data distributions,
which can impact the convergence of algorithms [9], [10].

In synchronous FL, e.g., FedAvg [2], [3], the server first
sends a copy of the current model to each client. The clients
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then train the model locally on their private data and send the
model updates back to the server. The server then aggregates
the client updates to produce a new shared model. The
process is repeated for many rounds until the shared model
converges to the desired accuracy. However, the existence
of delays, message losses, and stragglers hinders the per-
formance of distributed learning. Several works have been
proposed to improve the scalability of federated/distributed
learning via enabling asynchronous communications [6],
[8], [11]-[15]. In the majority of these results, each client
immediately communicates the parameters to the server after
applying a series of local updates. The server updates the
global parameter once it receives any client update. This has
the benefit of reducing the training time and better scalability
in practice and theory [6], [12], [15], [16] since the server
can start aggregating the client updates as soon as they are
available.

The setup, known as “vanilla” asynchronous FL, has
several challenges that must be addressed. First, due to the
nature of asynchronous updates, the clients are supposed to
deal with staleness, where the client updates are not up-to-
date with the current model on the server [1]. Moreover, the
asynchronous setup may imply potential risks for privacy
due to the lack of secure aggregation, i.e., the immediate
communication of every single client to the server [17], [18].
In [1], the authors proposed an algorithm called federated
learning with buffered asynchronous aggregation (FedBuff),
which modifies pure asynchronous FL by enabling secure
aggregation while clients perform asynchronous updates.
This novel method is considered a variant of asynchronous
FL while serving as an intermediate approach between
synchronous and asynchronous FL.

FedBuff [1] is shown to converge for the class of smooth
and non-convex objective functions under the boundedness of
the gradient norm. By removing this assumption, we provide
a new analysis for FedBuff and improve the existing theory
by extending it to a broader class of functions. We derive our
bounds based on stochastic and heterogeneous variance and
the maximum delay between downloads and uploads across
all the clients. Table I summarizes the properties and rate of
our analysis for FedBuff algorithm alongside and provides
a comparison with existing analyses for FedAsync [8] and
FedAvg [2], [3]. The rates reflect the complexity of the num-
ber of updates performed by the central server. The speed
of asynchronous algorithms is faster since the constraint for
synchronized updates is removed in asynchronous variations.
To our knowledge, this is the first analysis for (a variant
of) asynchronous federated learning with no boundedness
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TABLE I: Comparison of the characteristics considered in our analysis with relevant works for federated learning for smooth
& non-convex objective functions. Parameter 7 denotes the maximum delay.

Algorithm  Reference Asynchronous Buffered Unbounded Convergence
g Update Aggregation Gradient Rate
McMahan et al. [2] X v - -
FedAve  Yuet al. [19] X v/ X 0) (%)
Wang et al. [10] X v v O (%)
FedAsync  Xie et al. [8] v X X @) <ﬁ> +0 (%)
1 2
FedBuff Nguyen et al. [1] v v X @) <ﬁ> + 0 <T>
is 1 T2
This Work v v v O (ﬁ) o) (T)

assumption on the gradient norm.

Following is an outline of the remainder of this paper.
The problem setup and FedBuff algorithm are presented
in Section II. Moreover, our convergence result and its
corresponding assumptions are provided in Section II. We
state detailed proof of our result in section III. Finally,
we conclude remarks and prospects for future research in
Section IV.

II. PROBLEM SETUP, ALGORITHM, & MAIN RESULT

In this section, we first state the problem setup, and after

explaining the FedBuff algorithm [1], we present our main
result along with the underlying assumptions.
o Problem Setup: We consider a set of n clients and one
server, where each client ¢ € [n] owns a private function
fi : RY — R and the goal is to jointly minimize the average
local cost functions via finding a d-dimensional parameter
w € R? that

weRd

min f(w) = 3" filw). o
=1

with fz(w) = Efi:m wl(w7§1)]’

where ¢; : R x S; — R is a cost function that determines
the prediction error of w over a single data point §; € S;
on user ¢, and p; represents user ¢’s data distribution over
S, for i € [n]. In the above definition, f;(-) is the local cost
function of client 7, and f(-) denotes the global (average) cost
function which the clients try to collaboratively minimize.
Now, let D; be a data batch sampled from p;. Similar to (1),
we denote the stochastic cost function f;(w,D;) as follows:

= 1
fiw, Dy) = D] > li(w, &). 2)
“leieD;

Minimization of (1) by having access to an oracle of samples
and its variants are extensively studied for many different
frameworks [4]. Now, we are ready to explain the FedBuff.

o FedBuff Algorithm: Let w” be the initialization parameter
at the server. The ultimate goal is to minimize the cost
function in (1), using an algorithm via access to the stochastic
gradients. All clients can communicate with the server, and
each client 7 € [n] communicates when its connection to the
server is stable. First, let us explain the FedBuff algorithm
from the client and server perspectives.

1) Client Algorithm: Each client ¢ requests to read the
server’s parameter w € R? once the connection is stable
and the server is ready to send the parameter.! There is
often some delay in this step which we call the download
delay. This may be originated from factors such as
unstable connection, bandwidth limit, or communication
failure. For example, maybe the server seeks to reduce the
simultaneously active users by setting client ¢ on hold.
The download delay can model all these factors. Once
the parameter is received (downloaded) from the server,
client ¢ performs @ steps of local stochastic gradient
descent starting from the downloaded model w for its
cost function f;(-). In words, agent i runs a @-step
algorithm (loop of size (), where at each local round
q € {0,1,...Q—1}, client ¢ samples a data batch D; ,
with respect to distribution p; and performs one step
of gradient descent with local stepsize n > 0. Finally,
agent ¢ returns the updates (the difference between the
initial and final parameters) to the server. We refer to
the time required to broadcast parameters to the server
as the upload delay, which could have similar factors
as the download delay. Agent repeats all this procedure
until the server sends a termination message. Algorithm 1
summarizes the pseudo-code of operations at client ¢ €
[n], where Steps 4-8 show the local updates performed at
the agent. Moreover, A; in Step 9 denotes the difference
communicated to the server.

2) Server Algorithm: The server considers an initialization

'We drop the timestep from the parameters in the client algorithm, for
clarity of exposition. We use the time notation in our analysis in Section III.



Algorithm 1 FedBuff (Client 7)

Algorithm 2 FedBuff (Server)

1: input: number of local steps @, local stepsize 7.
2: repeat
3:  read w from the server {download phase}
Wi, < W
for ¢ =0to Q—1 do

sample a data batch D, ,

Wi, qg+1 $ Wi g — UVfi(wi7q, Di7q)
end for
Ai — Wi — WiQ
0:  client 7 broadcasts A; to the server{upload phase}
11: until not interrupted by the server

R A A

—

for parameter w® € R?. Then, starting from timestep ¢t =
0, the server repeats an iterative procedure in addition to
sending its parameters to the clients upon their request.
Algorithm 2 describes the server operations in FedBuff. In
a nutshell, the algorithm consists of two parts, (i) secure
aggregation of client updates in a buffer with size K >
1, and (ii) update the parameters using the aggregated
updates. In other words, let k,¢ respectively denote the
indices associated with buffer and server updates.” The
server starting from ¢ = 0, receives updates broadcast by
the agents asynchronously depending on their upload &
download delays as well as the time required for @) local
updates. A secure buffered aggregates these updates, up to
K separate updates received by the clients in ZO, initially
set to zero. By indexing k, we keep track of uploaded
updates on the server. When the buffer saturates of K
different updates, the server uses the aggregator parameter
A’ and updates its parameter w” according to line 9 of
Algorithm 2. Then, the server increases its update counter
t and removes all updates from the buffer, i.e., k& = 0.
In this algorithm, we denote the agent which sends the
k-th update at round ¢ by index i, € [n]. Basically,
server repeats Steps 5-14 until some convergence criteria
be satisfied. After the convergence, the server sends a
termination message to all the clients.

As we described above, the crucial novelty of this algorithm
is on the server side, where the server operations, with the
help of a secure buffered aggregation, control the staleness
and prevent unnecessary access to individual updates. Note
that for K = 1, the presented algorithm reduces to vanilla
asynchronous federated learning with no buffer aggregation.
Figure 1 illustrates the update schedule for FedBuff and
provides a comparison with the asynchronous updates in
FedAvg [2]. As shown on the left of Figure 1, the vertical
lines with light blue color are associated with uploaded
updates. Note that the buffer size is K = 2 in this example.
These vertical lines are of two types, (i) solid or (ii) hatched.
The solid lines reflect the time the buffer is full, so the
server performs an update. Contrary to FedBuff, under the

2 As explained in [1], the buffer and secure aggregation may be performed
on a secure channel which prevents the server from observing individual
local updates received from the clients.

1: input: model w?, server stepsize (3, buffer size K

2:t<0,k<0

3: ZO +~0

4: repeat

5. if the server receives an update A;, , from some client
it,x€[n] then

6: A Ay A,

7: k< k+1

8: if £ = K then

9: witlh «— wt — th

10: k<0

11: t<—t+1

12: Ao

13: end if

14:  end if

15: until not converged

synchronous updates (as shown in the right figure), the server
should halt the training procedure until all clients selected
within one round receive the updates.

Next, we present our assumptions on staleness, bounded
stochasticity, and population diversity (heterogeneity).
o Assumptions & Main Result: Here, we present our
main result alongside a few standard assumptions. First, to
be coherent with the proof in [1], let us denote Tf to be
the timestep of the last downloaded parameter on client
i € [n] up to the ¢-th update at the server. We are ready
to introduce the assumptions in our analysis for FedBuff,
i.e., Algorithms 1 & 2.

Assumption 1 (Bounded Staleness). For all clients, i € [n]
and server steps t > 0, the staleness or effective delay
between the download and upload steps is bounded by some
constant T, i.e.,
sSup max ’t — Tf’ <, 3)
t>0 1€[n]
and the server receives updates uniformly, ie., i ~
Uniform([n]).

Note that 7} is the timestep of the last parameter down-
loaded via agent ¢ up to timestep ¢ at the server. Therefore,
if agent 7 contributes in the (¢+1)-th update, i.e., ir = i,
for some k € {0,1,..., K—1}, the difference between the
download and upload rounds is bounded. This is a standard
assumption in the analysis of asynchronous algorithms with

heterogeneous data on the clients.?

Assumption 2 (Smoothness). For all clients i € [n], function
fi : RY = R is bounded below, differentiable, and L-smooth,
i.e., for all w,u € R4,

IV fi(w) =V fi(u)|| < Lljw — ull 4)

31t is worth mentioning that Mishchenko et al. [15] relaxed this as-
sumption (to unbounded delay) for the analysis of homogeneous smooth
& strongly convex functions.



=
q]
: dle local
delay update gy
=
S
stops (@ (1) (@) ® @
g © Ng——
,.8 g (0) } S 3) =
= ©) )
1= ) )
&g "8 == —p—] =) }
a g e———— e
<m (0), 1) >—D—p
Time

Server

Steps ©

" 1)

= ;

S e
£ e e

<

Q:) (0) . . .

w0 (0), >—p—p

Time

Fig. 1: Communication and update schedule for synchronous and buffered asynchronous aggregation: The demonstrated
setup in this example contains n = 5 agents, with () = 3 local updates, buffer size K = 2 for FedBuff [1], and sampling

rate 0.6 for FedAvg [2].

£ = min f;(w) > —o0. (5)
weR4

This assumption guarantees the necessary conditions for
analyzing smooth & non-convex functions. Note that bound-
edness from below can be relaxed only to the global
cost function f, i.e., it is sufficient to only assume that
f* = min,epe f(w) > —oo in our analysis instead of (5)
for all i« € [n]. Now, we introduce the assumptions on

bounded stochasticity and heterogeneity.

Assumption 3 (Bounded Variance). For all clients i € [n),
the variance of a stochastic gradient V{;(w,&;) on a single
data point &; € S; is bounded, i.e., for all w € R?

Vi (w, &) — Vi(w)|)? < o (6)

EﬁiN;Di

This assumption is conventional in the analysis of stochas-
tic optimization algorithms and has been used in many
relevant works [1], [6], [9], [10], [14], [20], [21]. Note
that as we defined the stochastic loss in (2) and used the
stochastic gradients in Step 7, we also need to show the
stochastic variance for the gradients of the sampled batches.
For simplicity, let us assume that all batch sizes are of size
at least b, therefore according to (6), we have:

o? o O

D] <%= o 7
Assumption 4 (Bounded Population Diversity). For all w €
RY, the gradients of local functions fi(w) and the global
Sunction f(w) satisfy the following property:

Em\Vﬁwxa>—Vﬁmﬂfg

LS Hiw) ~ V) < A ®
=1

In our analysis, we work with heterogeneous cost func-
tions. Therefore, it is a reasonable and conventional as-
sumption to assume that the boundedness of the population
diversity [1], [5], [22]. The inequality in 9 measures the
variance of local full gradients from the average full gradient,
which resembles to the expressions in (6) & (7). The authors

of [5] discusses the connection of this bound to the similarity
of local data distributions p;, for all i € [n].

Now, we present our result under the stated assumptions.

Theorem 1. Let Assumptions 1-4 hold, § = % and
n = 1 Then, the following property holds for the

QVLT®
joint iterates of Algorithms 1 and 2: for any timestep
T > 160L(Q+T7)(7+1)3 at the server

1= w2 SVL(f(w®)—f*
73 B9 ) < LGS0
16VL (% +9?)
VT
320L(Q-+1)(r2+1) (”—; + n72)
- .

We present the proof for Theorem 1 in Section III.

+

+

The above theorem states the convergence of the FedBuff
algorithm to a first-order stationary point. This result states
a convergence rate of O (%) +O (%?), where the term
affected by the maximum delay (second term) decays faster,
hence the same convergence complexity as the synchronized
counterpart. Note that this rate states the number of updates
occurring on the server (iteration complexity), which in the
case of asynchronous updates, practically converges much
faster (3.3x according to [1]) than synchronized updates.

Remark 1. The choice of (8 in Theorem 1 is an arbitrary
option that implies the rate in the theorem statement. The
convergence proof holds for any choices of [, such that

BK =0 (1)

Remark 2. In our analysis for Theorem 1, we considered
bounded population diversity in Assumption 4. One can see
that by relaxing this assumption to a stronger variant

max sup ||V f;(w) — Vf(w)[* <2, ©)

i€[n] yeRrd



i.e., uniformly bounded heterogeneity*, ny? can be replaced
with v2 in the third term of the rate.

Next, we will provide detailed proof for Theorem 1.

III. CONVERGENCE RESULT

This section provides a detailed explanation of the proof
of the convergence result in Section II.

Proof of Theorem 1. Before proceeding with the proof, let
us state some inequalities. For any set of m vectors {w; }/";
such that w; € R?, and a constant a > 0, the following
properties hold: for all ¢, 5 € [m]:

[wi +w;[|* < (14a) lw]* + (1+a~ ") [lwy]?,  (10a)
2<wi,wj> < allwi||* 4+ o H|w,]?, (10b)
m m
> wil| <m <Z||wl|2> (10c)
=1

For simplicity, let us denote VJf; (w) = Vf; (w,D;).
Therefore, att round ¢, the server updates its parameter by
receiving A", as follows:

Wt =w' =N =w' =5 Y A,
k=0
K-1Q-1 o
=w'=nB> > Vfi, (wit’f,;’jq) . (11)
k=0 q=0
Due to Assumption 2, we can infer that f is L-smooth, thus
) L 2 02 K-1Q-1
Pt < ) + HLE

Ltk
ZZ%
k=0 ¢=0

K—-1Q-1 _ ot
+ 8 <Vf(wt), S Vi (w)> (12)

k=0 ¢=0

=:S55
We first provide a lower bound on term Sy in (12).
L Eq 0 sz( ) J' = 12 191’
i4)» and g* ZZ 1 gL. Therefore,

Let us denote g! =

= ZQQ:_(JI V fi(w;,

K-1Q-1 5 ,t
E[Sy] = <Vf DY Vi, ( q) >]
k=0 ¢=0
1 n K-—1
—E<Vf(wt),n2 > B, [§£]> (13)
=1 k=0
= KQE ||V f(w")||* + K [E(Vf(w'),¢" — QV f(w"))]

(10b) _
g K(QCj 1)

K
E V()| - SE[g" - @U@’

4This stronger assumption is considered in the analysis of works such
as [22][Assumption 3] and [23][6.1.1 Assumptions and Preliminaries, (vii)])

Moreover, the following holds for Sy in (12):

K-1Q-1 2
E[Sl] =E 'Ltk Z Z Vfltk < ltltklij)
k=0 ¢=0
1 n K—-1Q-1 _ . 2
--E |33 ZOVfi <w;fq) (14)
i=1 || k=0 gq=

Zsz( )| =

K? K2 &N o2

w Z — D _E|g
i=1 i=1

Now, according to (12), (13), and (14), we have:

nBK(2Q—1)
2
HQ Ln ﬁ K2

E ||V f(w")]”

= |31l

Ef (w't!) <Ef(w') — (15)

+ 08 Iy — Qv )

=:S3

where we bound S3, S; as follows:

))

Sy =

1
n

=
(10c) 1
Z

(9 — QV fi(w'
(w

|g 7Qvfz )H

Q-1 .

ii 2 [VH (v]i) = V)]
q=0

(100 Q - Qz:lHsz (wzq) V fi(w)

i=1 ¢q=0

2
;316

n

and
n Q-1 12
SRV PIACH]
i=1  ¢=0
n Q-1
203" S o (o)

i=1 ¢q

—Qiiuw )95 (o))

i=1 q=0
+ V1 (wlh) = Vi (w')
4V (wh) = VF () + Vf (w') H2

(10 )

1035 {9 (ur) -9 (u)

+ sz- (i) ~ 95 () |
s w) =5 @) |+ s ) ﬂ a7

therefore, by taking expectations, we can show that:



D, © 2

E[S) < 4nQ? {AQH +1EHVf D)

2 (10a) 1 . s
| 2 (1) Bl -

n 9 2
P10 S B v (o) Vi@ an o+ A0200E| [T )~ A ()|
i=1 q=0
2
Therefore, due to (15)-(18), we have + |V fi (wiq_l) — Vfi(w®) ‘
Ef (u'*) < Ef(u) + |9 s ) v @)
K(2Q-1 2
_ [775 (2Q ) _ 2772Lﬂ2K2Q2} EHVf(wt)H )
+ ||V f (w®) ‘ @1)
nBKQ H 2
E\\V/fiw; Vfi @, (1 2
Z;ZI CORMITY AT r—
217262K2QL 2 2
T ZZEHV}%( m) — Viiw )H bo4(120)? AQ—&—LQEHqu ——s
=1 q=0
22L 2K2 222 22L 2K2 2_2 2
:)17 BTK Q767 + 20" LK Q™Y HEHVfZ_(wS)_Vf(wS)‘
<Ef(w') 2
K(20-1 +]EHVf(w) . 22)
. 1
. nﬁKQLZ (1+4nBKL) i Q-1 Hwn o 9 Note that we can select stepsize 1 < QT such that
2n ; i 9 1 P |
i=1 =0 “——— < ———— = 4(1+4+2 L < — 23
! =5 T = 812Q2Q+1) (L+20°L" < g0 B
+2° L2 K?Q%6% + 2P LB K Q%% (19)  therefore, due to (21)-(22) and (23), we have:
Hence, it is sufficient to bound S5 in (19) as follows: 2 E H s wsHQ < <1+1) EHwS W 2
|2 =l ) ) t Lt :=Ps —ps
s:‘r,it . 2
, +401+2Q)° |6 + B[V (w?) - Vf (w”)
(10a) 1 =1 o1 .
= +EHV F) | = @
2
+ (1+ﬁ2K2 Hw i —wlq -
(10¢),(3) 1 a2 1
< 7 (HBQK?) SZ:T |w**t —w?|| P, < <1+Q) P 1+ R}
t o -1 L\ Q-1 L\
+ (1+8°K?) wa —wlt | (20) =Ry (1+Q> <RY (HQ)
k=0 k=0
=:5 Q
° 1+$) 1 1@
=R; - =R;Q (H—Q) -1
Now, we show a bound on the evolution of local updates (1+§) -1
at an arbltrary round s > 0, i.e., the distance between w; , < R;Q(e—1) <2R;Q, (25)

d hich ill t ide a bound on S
and w?, which we will use to provide a bound on 57. ) for all ¢ € [Q]. Note that according to Algorithm 2, we have:

EHw —w || —IEHqu 1 n@fi (wfyqfl)—ws

zq 1 —w® 777vf(,ws)

K-1
w5 Z [w’iss — w:Q} = (26)
k=0

- ﬁvfz (wzs,q 1) + vaz (wzsq 1) K 2
—nVf; (wt a— 1) +nVf; (U; ) E ||ws+1 < ﬁ? kz_: |:w S _ U) ]
— Vi (') + 0V f () | -




(10 62K2|: |:Eg

- 62[(2 n

s =2
Ti _ ig

ws wis,QH H

T3 j

s 112

24)—(25)

< 8Q(I+2Q)*BK?6?

n

8Q(1+2Q) 2B2K? ZEHVfJ ( ) Vf( )
1 8QU+2Q)n5 K i]EHVf (w) "

n
Let ¢ = 8n?Q?(1+2Q)(1+32K?), then according to (20)-
(??), we have

n Q-1

> > E[Ss)

i=1 q:O

[ > o -’
S=

27

1

-t t

2
Ti
i,q

el
o2 svs (o) |
o ()

§72&2+f

5 el )
§ Saferer)
+o7 4 ;EHVﬁ (m)

(28)

Note that according to (3), we know that: 7} € {t—7 ..., t},
therefore:

ofer () < 52 el o

and similarly, for any s € {t—T .

57 ()

..,t} and j € [n],

F< Y Efvren

+7 ti Z B[V (w

s=t—T u=s—T

+ > E|Vf(w)

s=t—T1

(32)

By combining (19) and (32), we have the following inequal-
2 ity:

Ef (w t+1) < Ef(w') + 202 LB2K2Q? [&2 _~_72]
- PR (20-1) ~ anLpKQ?

— QL(1472) (1+4nBK L) 6| E ||V f(
| MBKQL? (1+4nBKL) ¢

wh)|”

2
kd 2
EHVf (w 3 ]EHVf (w") ]
s=t—T1 U=8—T
n WﬂKQLQ(H-TZ) (14+-4nBKL) ¢ [6% 4+ n7?]
<Ef(w') + 20°LB2K*Q? [6° + ]
_ns é( @ [1 — 4nLBKQ

— QL2 (1472%) (144nBK L) QS}E |V £(
n nBKQL? (1+4nBKL) ¢

wh)||”

2
s 2
B|v/ w > B[V () ]
. nBKQL2(1+722) (1+4nBKL) ¢ [62 +nv?)] . (33)

Now, we can obtain the following inequality by rearranging
the terms in (33):

[1—4nLBKQ — QL*(14+7%) (14+4n8K L) ¢|E ||V f(

wh)||”

t—1
30) —L*(1+4nBKL)¢ > [EHV f(w
U=s—T1 s=t—7
Moreover, we have: - 2
. e JrTu;TEHVf (w®) ]
HVfg (w J)—Vf (w J) ‘ Q[Ef(wt)*Ef(thrl)] 5 )
n . 2 7RG +4nBKQL [6° + 7]
< |vs () -wr @) [oen B
st +2L%(147%) (14+4nBKL) ¢ [6* + nv?] (34)
Therefore, due to (28)-(31), we have: whereby mixing the terms in (34), we obtain:
- 2": Qzl <28> OV 252 4 1202 [1-4nLBKQ — L*(°+1) (11—_4:76](;) S| ||V £ (wh)|?
=t . — L2 (144nBKL) (r+1)p 3 Y ]EHVf (w)
+ T E Vf (w s=t—T u=s—T
S;TU;‘—T H 2 [E’f(wt) _Ef (wt+1)] +4 ﬂKQL ~2 2
: = nBKQ 7 (7% +7)
+6%+n 4+ Y EHVf (w +2L2(1472) (14+4nBK L) ¢ [6% + ny?] . (35)
= (1+72) [&2 i_;_;z] Finally, we add (35), for t =0, 1

,...T'—1, and divide by T



to show that:

1 —4nLBKQ — L*(7°+1) (1+4nBKL) ¢

T-1
> B[Vl
= L? (I+4nfKL) 7(r+1)%6 | F=0——

2 [f(w®) —Ef (w”)] .
< VBRO + 4nBKQL [6° + 7]

+2L*(1477) (144nBKL) ¢ [6° + ny*] . (36)

L_ Thus, we know that the

Letusﬁxﬁ:%andn:Q\/ﬁ

following inequality holds
max {4776KLQ, L2(r2+1)(1+4nBK L),

L2T(T+1)2(1+4nﬁKL)¢} <1 ey
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for T > 160L(Q+7)(7+1)3. Note that under this choices
for n and B, we also have n < m, which we used
in (23). Therefore, we can conclude the result in Theorem 1
as follows:

1= o2~ VL (f() ~Ef (w"))
f;EHW(w)H < 77
N 16VL (6% ++?)
VT
320L(Q+1)(7%41) (62 + nvy?)
+ 7 :

(38)

O

IV. CONCLUSION

This paper studied the convergence properties of asyn-
chronous federated learning via secure buffered aggregation.
By removing the boundedness assumption on the gradient
norms, we presented a novel analysis of the convergence of
the FedBuff algorithm, where we showed a sublinear conver-
gence rate of O(e?) + O(72%¢) to an e-first-order stationary
solution. We also discussed the dependence of this rate on
the batch size, stochasticity variance, data heterogeneity, and
maximum delays. We leave the privacy analysis of Fed-Buff
with gradient clipping and noise addition to future studies.
Also, the communication complexity of this method and the
extensions to decentralized setups remain for future work.
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