
ar
X

iv
:2

31
0.

00
46

7v
1

 [
cs

.I
T

]
 3

0
Se

p
20

23

New Results on Erasure Combinatorial Batch Codes

Phuc-Lu Le∗, Son Hoang Dau†, Hy Dinh Ngo∗, Thuc D. Nguyen∗§

∗Faculty of Information Technology, Ho Chi Minh City University of Science, Vietnam
†The School of Computing Technologies, RMIT University, Australia

{lplu, ndthuc, ndhy}@fit.hcmus.edu.vn, sonhoang.dau@rmit.edu.au

Abstract—We investigate in this work the problem of Erasure
Combinatorial Batch Codes, in which n files are stored on m

servers so that every set of n − r servers allows a client to
retrieve at most k distinct files by downloading at most t files
from each server. Previous studies have solved this problem for
the special case of t = 1 using Combinatorial Batch Codes. We
tackle the general case t ≥ 1 using a generalization of Hall’s
theorem. Additionally, we address a realistic scenario in which
the retrieved files are consecutive according to some order and
provide a simple and optimal solution for this case.

Index Terms—Combinatorial batch codes, erasures, multiset,
non-adaptive group testing, consecutive files.

I. INTRODUCTION

Combinatorial Batch Codes (CBC) were defined by Pater-

son et al. in [1] as a combinatorial version of batch codes

(introduced by Ishai et al. [2]). More specifically, a CBC

allows ones to store n files on m servers (possibly with

repetitions among servers) such that any k distinct items can

be retrieved by downloading at most t items from each server.

The goal is to minimize the total number N of items stored

across all servers, given n, m, k and t. To address the practical

scenario in distributed storage systems where servers may

fail or maintenance frequently, CBC was also generalized to

Erasure Combinatorial Batch Codes (ECBC) by J. Jung et al.

[3], which allows up to r servers to fail. Several constructions

of ECBC in which every item is stored in the same number

of servers were developed in [3].

As far as we know, most of the previous works on

CBC/ECBC assumed that t = 1, i.e., each server can be

used at most t = 1 time. The problem has been approached

using various mathematical structures, including dual systems,

extremal hypergraphs, and transversal matroids (see, e.g., [4]–

[6]). A number of works focused on solving CBC for specific

cases, e.g. when k is small (k = 3, 4, 5) or when n = m+ 2
[7]. In almost all cases, the main used method is Hall’s

theorem from graph theory. More specifically, by viewing a

CBC/ECBC as a matching in a bipartite graph, one can apply

Hall’s condition to find the optimal total storage.

In this paper, using also Hall’s theorem, we extend the

previous studies to address the more general case of ECBC

for any r ≥ 0 and t ≥ 1. Note that in practice, allowing

the client to download more than one item from each server

can improve the efficiency of data retrieval. Additionally,

motivated by the application in video streaming where several

consecutive video chunks are often downloaded at one time,

§Corresponding author

we consider and provide the optimal solution for a special

version of ECBC in which the retrieved files are consecutively

indexed (instead of being random). Although this version is

rather simple to address, it opens up an entirely new research

direction on batch codes where batches to be downloaded

are not randomly selected but follow some special patterns.

Along with the approaching CBC/ECBC problems, we focus

on the efficient algorithm to retrieve a list of files from the

given ECBC system. Finally, we briefly note the relationship

between ECBC and Non-Adaptive Group Testing (NAGT).

II. PRELIMINARIES

A. Problem Definitions

We first recall the definition of an ECBC.

Definition 1. An Erasure Combinatorial Batch Code denoted

by ECBC(n,m, k, t, r) is a set system (X,S) where X =
{1, 2, . . . , n} and S is a collection of m-subsets of X , denoted

by S1, S2, . . . , Sm, such that for every subset X ′ ⊂ X of size

up to k and for every subset J of {1, 2, . . . ,m} with |J | ≥ m−
r, there exists a subset Cj ⊂ Sj , j ∈ J , satisfying |Cj | ≤ t and

X ′ =
⋃

j∈J

Cj . The goal is to construct an ECBC(n,m, k, t, r)

that minimizes the total storage N ,
∑m

j=1
|Bj |.

In Definition 1, the set X can be considered as the list of

indices of n files while S1, S2, . . . , Sm are the indices of files

that stored on m server. Here, r refers to the maximum number

of inactive servers simultaneously.

Next, we recall the well-known Hall’s Marriage theo-

rem, which plays an essential role in the constructions of

CBC/ECBC.

B. Hall’s Marriage Theorem

Hall’s theorem is stated as follows: for positive integers

m and n, assume that A1, A2, . . . , An are n subsets of

X = {1, 2, . . . ,m}. If for every subset I of {1, 2, . . . , n},

the condition

∣

∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣

∣

≥ |I| holds, then there exist n distinct

elements from these n subsets, one from each set. We refer

to the aforementioned condition as the Hall’s condition. The

theorem states that in a simple undirected bipartite graph

G = (X,Y,E) with two disjoint sets of vertices X,Y and

E as the edges connecting vertices between them, there exists

a matching from X to Y if and only if, for any subset X ′ of

X with size k, |V (X ′)| ≥ |X ′|, where V (X ′) represents the

set of vertices in Y that are adjacent to some vertex in X ′.

http://arxiv.org/abs/2310.00467v1

In other words, Hall’s condition can be applied to a subset

X ′ of X with size k to find a matching from X ′ to Y .

This is the other form of Hall’s theorem which is compatible

with solving the CBC-ECBC problems and was mentioned by

Bujtas and Tuza in [8].

The way to apply Hall’s condition is straightforward: by

defining the equivalence between the original problem and

Hall’s condition, and then establishing the dual condition, we

can find the optimal solution for some cases of m and n. The

dual condition can be understood as the requirement that ‘the

files must be stored on separate servers, so as to prevent servers

from storing too many files’. These concepts form the basis

for constructing the proof of the general case where t ≥ 1 and

r ≥ 0 that will be discussed in more detail in the next section.

C. Existing Results for CBC and ECBC

The incidence matrix A = (aij)m×n of a CBC(n,m, k, t)
or ECBC(n,m, k, t, r) is defined as: aij = 1 if and only if

server i stores file j, and aij = 0 otherwise. Let Fj , {i :
aij = 1} be the set of rows that has a ‘1’ in column j and

Si = {j : aij = 1} be the set of columns that has a ‘1’ in

row i. In other words, Fj consists of the indices of servers

that store file j, j = 1, . . . , n and Si consists of the indices

of files that are stored in server i, i = 1, . . . ,m.

For some special parameter ranges, the minimum total store

of a CBC(n,m, k, t) can be determined.

Theorem 1 (Paterson, Stinson, and Wei [1]). Let N(m,n, k)
denote the minimum total storage of a CBC(n,m, k, t) when

t = 1. Then the following statements hold.

1) If n = m then N(n,m, k) = n.

2) If m = k then N(n,m, k) = kn− k(k − 1).
3) If n = m+ 1 then N(n,m, k) = m+ k.
4) If n ≥ (k − 1)

(

m
k−1

)

then

N(n,m, k) = kn− (k − 1)

(

m

k − 1

)

.

5) If
(

m
k−2

)

≤ n ≤ (k − 1)
(

m
k−1

)

then

N(n,m, k) = n(k − 1)−
⌊

(k − 1)
(

m
k−1

)

− n

m− k + 1

⌋

.

Paterson, Stinson, and Wei [1] were the first to study the

property of the incidence matrix of a CBC (t = 1) using the

Hall’s condition.

Theorem 2 (Paterson, Stinson, and Wei [1]). The m×n binary

matrix A represents a CBC(n,m, k) if and only if one of the

following conditions holds.

(1) For every c ∈ {1, 2, . . . , k}, and for every subset J ⊂

{1, 2, . . . , n} of c elements, it holds that

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

≥ c.

In other words, this condition requires that every set of

c files must be collectively stored on at least c servers.

(2) For every d ∈ {0, 1, . . . , k − 1}, and every subset I ⊂
{1, 2, . . . ,m} of size d, it holds that

∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

≤ d. In

other words, this condition requires that every set of d
servers store at most d files.

Bujtas and Tuza [8] extended the aforementioned approach

to the CBC problem with an arbitrary t.

Theorem 3 (Bujtas and Tuza [8]). The m×n binary matrix A
represents a CBC(n,m, k, t) if and only if one of the following

conditions holds.

(1) For every c ∈ {1, 2, . . . , k}, and every subset J ⊂

{1, 2, . . . , n} of size c, it holds that

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

≥
⌈

c
t

⌉

.

In other words, the condition requires that any set of c
files must be collectively stored on at least

⌈

c
t

⌉

servers.

(2) For every d ∈ {0, 1, . . . ,
⌈

k
t

⌉

− 1}, and every subset

I ⊂ {1, 2, . . . ,m} of size d, it holds that

∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

≤ dt.

In other words, this condition requires that any set of d
servers together store at most dt files.

Jung, Mummert, Niese, and Schroeder [3] extended the

previous results to the ECBC problem with t = 1, via an

extension of Hall’s theorem.

Theorem 4 (Jung, Mummert, Niese & Schroeder [3]). The

m×n binary matrix A represents an ECBC(n,m, k, t, r) with

t = 1 if and only if one of the following conditions holds.

(1) For every c ∈ {1, 2, . . . , k}, and every subset J ⊂

{1, 2, . . . , n} of size c, it holds that

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

≥ r+ c. In

other words, every set of c ≤ k files collectively must

be stored on at least r + c servers.

(2) For every d ∈ {r, r + 1, . . . , r + k − 1}, and for

every subset I ⊂ {1, 2, . . . ,m} of size d, it holds that
∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

≤ d− r. In other words, every set of d servers

store at most d− r files.

With the background and definitions established in this

section, we are now ready to present our main results.

III. MAIN RESULTS

In this section, we establish the generalization of Hall’s

condition for ECBC for any r ≥ 0, t ≥ 1, and demonstrate

its application in determining the minimum total storage

N(n,m, k, r, t) of an ECBC problem in several cases.

A. The Main Theorem for ECBC with General r and t

Theorem 5. A binary matrix A of size m × n represents

an ECBC(n,m, k, t, r) if and only if one of the following

conditions holds.

(1) For every c ∈ {1, 2, . . . , k}, and for every subset J ⊂
{1, 2, . . . , n} of size c, it holds that

∣

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

∣

≥
⌈c

t

⌉

+ r.

In other words, the condition requires that any set of

c ≤ k files must be collectively stored on at least
⌈

c
t

⌉

+r
servers.

(2) For every d ∈ {r, r + 1, . . . , r +∆− 1}, and for every

subset I ⊂ {1, 2, . . . ,m} of size d, it holds that
∣

∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

∣

≤ t(d− r).

In other words, the condition requires that any set of d
servers store at most t(d− r) files. Here, ∆ ,

⌈

k
t

⌉

.

Proof. We divide the proof into two steps as follows.

First step. We show that a binary matrix A represents an

ECBC(n,m, k, t, r) if and only if (1) holds.

First, let us assume that the matrix A represents an

ECBC(n,m, k, t, r). Regardless of r unavailable servers, any

c ≤ k files can be retrieved from the remaining servers by

downloading at most t files from each. These files must be

stored on at least r +
⌈

c
t

⌉

servers originally, for otherwise,

there would be at most
⌈

c
t

⌉

− 1 available servers storing any

of these files, and downloading t from each would not be

enough to recover c files.

Next, assume that the binary matrix A meets condition (1)

and moreover, there is a collection of unavailable servers S
with |S| ≤ r. For every set J ⊂ {1, 2, . . . , n} of size c, i.e.,

c files, the number of servers that store at least one of these

files is
∣

∣

∣

∣

∣

∣

⋃

j∈J

(Fj\S)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





⋃

j∈J

Fj



 \S

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

∣

− r

≥
⌈c

t

⌉

+ r − r =
⌈c

t

⌉

.

We now create an (mt)×n matrix A′ from A by replicating

each row of A t times. In other words, we replicate each server

t times, where each copy stores the same set of files as the

original one. Then for the same set J ⊂ {1, 2, . . . , n} of size

c ≤ k, the number of servers (including the duplicated ones)

storing at least one file is

t

∣

∣

∣

∣

∣

∣

⋃

j∈J

(Fj\S)

∣

∣

∣

∣

∣

∣

≥
⌈

t · c
t

⌉

= c,

which means that the Hall’s condition is satisfied for the sets

F ′

j , j = 1, . . . , n, defined for the matrix A′. By applying

Hall’s theorem, there is a matching between the c files and

a set of available servers (original and copies). Since each

of original (available) servers appears at most t times in this

set, it appears in the matching at most t times. This means

that there are at most t files downloaded from each available

servers while retrieving c files. Thus, the matrix A represents

an ECBC(n,m, k, t, r).
Second step. We aim to prove the equivalence between the

two conditions (1) and (2).

First, suppose that A does not satisfy condition (1). Then

there exists J ⊂ {1, 2, . . . , n} of size c ≤ k such that
⋃

j∈J

Fj

contains
⌈

c
t

⌉

+ r − 1 elements at most. Take I ,
⋃

j∈J

Fj ⊂

{1, 2, . . . ,m}. Then we have

|I| ≤
⌈c

t

⌉

+ r − 1 ≤ ∆+ r − 1.

Note that for each Fi, 1 ≤ i ≤ n, we must have |Fi| ≥ r+1,

as otherwise there will be a case when all servers containing

the ith file are unavailable, which results in the permanent loss

of this file. This implies that |I| ≥ r + 1. Therefore,
∣

∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

∣

= c > (c+ tr − 1)− tr ≥ t (|I| − r) ,

implying that the condition (2) of Theorem 5 does not hold.

Supposing that A does not satisfy condition (2) of Theorem

5. Then there exists d ∈ {r, . . . , r + ∆ − 1} and subset I ⊂
{1, 2, . . . ,m} of size d in which Y =

⋃

i∈I

Si has more than

t(d − r) elements. Take J ⊂ Y and |J | = t(d− r) + 1. It is

not difficult to check that

t(d− r) + 1 ≤ t(∆− 1) + 1 < k.

Hence, |J | < k and
∣

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

∣

= d < (d− r + 1) + r =

⌈

t(d− r) + 1

t

⌉

+ r,

which implies that the condition (1) does not hold.

By combining what we have proved in the two steps, the

theorem follows.

We now proceed to explore the application of Theorem 5 in

determining the optimal total storage for ECBC(n,m, k, t, r).

B. ECBC with Optimal Total Storage

In is section, we use Theorem 5 to obtain ECBC with

optimal total storage in some specific cases. The previous

researches have shown that in almost all cases, the minimum

total storage for an ECBC(n,m, k, t, r) where r = 0 and t = 1
can be represented as a function of its parameters. By replacing

k → k + r for the case of t = 1, r > 0 or k →
⌈

k
t

⌉

for

t > 1, r = 0, we can obtain the corresponding answers. Thus,

for the general case of t ≥ 1, r ≥ 0, it is possible to replace

k →
⌈

k
t

⌉

+r and apply the known results to find new bounds,

the rest of work is construction. Let N(n,m, k, t, r) denote the

minimum total storage achievable by an ECBC(n,m, k, t, r).

Theorem 6. If m =
⌈

k
t

⌉

+ r and n ≥ tm then

N(n,m, k, t, r) = m(n− tm+ r + 1).

Proof. By applying the condition (2) of Theorem 5, we can

see that each set of size d = m − 1 servers contains at most

t(m− 1 − r) files. As a result, the rest contains at least n−
t(m− 1− r) files. Hence, by counting the number of storage

on overall servers, we have

N ≥ m(n− t(m− 1− r)) = mn− tm(m− 1− r)

= tm(r + 1) +m(n− tm).

TABLE I: Construction for ECBC when n = 17,m = 5, k = 10, t = 3, r = 1
(the empty cells contain 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 1 1 1 1 1 1 1 1

S2 1 1 1 1 1 1 1 1

S3 1 1 1 1 1 1 1 1

S4 1 1 1 1 1 1 1 1

S5 1 1 1 1 1 1 1 1

Construction: each file from indices 1, 2, . . . , tm is stored

on r + 1 servers: files 1 → t on servers 1 → r + 1, files

t + 1 → 2t on servers 2 → r + 2, and so on; the remaining

n−tm files are store on all servers. One can verify that in this

case, N(n,m, k, t, r) = tm(r + 1) + m(n − tm) as needed

and this also satisfies the ECBC condition.

Example. For k = 10, t = 3, r = 1 then m = 5 and n = 17
then Nmin = 17 ·5−3 ·5 ·3 = 40. The construction is showed

in Table I.

The bound for another case can be obtained as follows (the

similar idea for construction can be found in in [1]):

Theorem 7. Let h ,
⌈

k
t

⌉

. If n ≥ (h − 1)
(

m
r+h−1

)

and m ≥
h+ r then we have

N(n,m, k, t, r) = nh− (h− 1)

(

m

r + h− 1

)

.

C. Application to the Multiset CBC with r > 0

In [9], Zhang, Yaakobi, and Silberstein studied the multiset

CBC where each file can appear multiple times in the retrieval

list, i.e each Fj ∈ {1, 2, . . . , n} is a multiset with elements

having multiplicity up to p. Now we consider the erasure

multiset ECBC in the presence of server failures. Based on

Theorem 5, we can state the Hall’s conditions for this problem

following the study in [9].

Theorem 8. Denote δ = ⌈k/p⌉. The sets Fj , j ∈ {1, 2, . . . , n}
represent a multiset ECBC with parameters m,n, k, r, t, p if

and only if one of the following conditions is satisfied.

(1) For every c ∈ {1, 2, . . . , δ} and for every subset J ⊂
{1, 2, . . . , n} of size c, it holds that

∣

∣

∣

∣

∣

∣

⋃

j∈J

Fj

∣

∣

∣

∣

∣

∣

≥
⌈

min{cp, k}
t

⌉

+ r.

(2) For every d ∈ {r, r+1, . . . , r+
⌈

pδ
t

⌉

−1}, and for every

subset I ⊂ {1, 2, . . . ,m}, it holds that
∣

∣

∣

∣

∣

⋃

i∈I

Si

∣

∣

∣

∣

∣

≤ t(d− r).

D. Method to Retrieve Files from the Given ECBC Matrix

Consider an ECBC matrix A with parameters n,m, k, t, r
as defined. The goal is to find the list of servers containing

the k files to query, given a list of r unavailable servers. To

solve the problem, we use a bipartite graph G = (V,E) and

apply a maximum matching algorithm such as Hopcroft-Karp

which run in the time complexity as O(
√
V E). The procedure

consists of two steps:

1) Construct a sub-matrix from the ECBC matrix that has

columns corresponding to the k files to retrieve and rows

corresponding to servers (excluding unavailable ones)

that each has at least one of these files, meaning each

row has at least one number 1. The size of this sub-

matrix is at most (m− r) × k.
2) Apply the Hopcroft–Karp algorithm to find the matching

in the following two cases:

• If t = 1, find the maximum matching between

columns and rows (ECBC property of the matrix

ensures this will contain k pairs).

• If t > 1, create t copies of each row and then apply

the algorithm as if t = 1. The chosen edges do

not share a common vertex which can ensure that

each server is accessed at most t times. From these

edges, one can find the list of needed servers and

the corresponding files on those servers.

Hence we can apply this procedure in the realistic systems

which use the CBC/ECBC ideas.

IV. BATCH CODES WITH CONSECUTIVE ITEMS

In this section, we discuss a special version for the ECBC

problem in which the retrieved files have consecutive indices.

For examples, databases storing purchasing history, weather

forecasts, school reports, medical records, can often be ar-

ranged in a linear order chronologically. A set of consecutive

files provides relevant data for a specific period of time.

Although a quite simple solution exists for this problem,

the setting in which only specially structured subsets of files

(instead of arbitrary subsets like in the traditional batch code)

are retrieved is novel and has potential applications in practice.

The only other work in this direction that we are aware of

is [10, App. F], in which the database items are placed at the

nodes of a binary tree and only batches of items lying along

a root-to-leaf path are retrieved, which correspond to Merkle

proofs in a Merkle tree [11].

A. Solution for General ECBC

If t = 1, we need the constraints n ≥ k and m ≥ k+r. If r
servers are unavailable and there are fewer than k+r servers, it

is not possible to retrieve k files. Moreover, the lower bound on

the number of servers storing each file is r+1, which ensures

all r servers storing the same file are active. Therefore, we get

the necessary condition N ≥ (r + 1)n.

TABLE II: Construction for ECBC when n = 9, k = 3,m = 5, r = 2 in the consecutive version

1 2 3 4 5 6 7 8 9

S1 1 1 1

S2 1 1 1

S3 1 1 1

S4 1 1 1 1 1 1 1 1 1

S5 1 1 1 1 1 1 1 1 1

We demonstrate that the number N is the minimum for all

values of m and n. We first construct the ECBC matrix:

(1) We store the files with the indices congruent to i modulo

k on the servers with indices i ∈ {0, 1, 2, . . . , k − 1}.

This way, each file is stored once, resulting in a total

storage count of n.

(2) For the servers with indices i ∈ {k, k+1, . . . , k+r−1},

we store all files. So the total storage count to rn.

Hence, the total number of storage is Nmin = n + rn =
(r + 1)n. It is not difficult to check that this construction

satisfies all the given ECBC conditions:

• If r servers in group (2) are unavailable, we still have

servers in group (1) to retrieve the files. Note that we

only consider k consecutive files, two files with indices

that have a difference greater than k will not be retrieved

simultaneously. This is the main idea of the construction.

• If some servers in group (1) is unavailable, we can replace

it with any server in group (2), since each server in that

group stores all files.

For the case where t > 1, the above result remains tight,

since the bound (r + 1)n holds for all values of t. It just

enables us to reduce the number of servers from k to
⌈

k
t

⌉

.

So, in the general ECBC problem, the solution for consec-

utive files version is Nmin = (r + 1)n.
Example. For n = 9,m = 5, k = 3, r = 2 then Nmin =

(r + 1)n = 27. The construction is showed on the Table II.

In this case, by the periodically distribution of the files

among servers, one can modify the given matrix A when some

of values m,n or r change as follows: if the number n of files

increases then add new columns to the matrix such that for

each of them, the last r cells are all filled by 1, an extra

number 1 will be filled base on the modulo k; if the number

m of servers increases, it does not matter since k + r servers

are enough for the system; and if the upper bound r increases

then the number of servers must increases too, each of the new

servers will store all files there. When number k or t changes,

it is required to edit quite a lot to get the new optimal system.

B. The Relations between CBC/ECBC and NAGT

NAGT is a technique that aims to minimize the number of

tests required to identify some particular defected items among

all items. The items are grouped and tested together to improve

the accuracy. Tests are performed independently, can be done

in parallel, and are represented by a measurement matrix.

In [12], Jia et al. studied the connections between ECBC

and NAGT through the incident binary matrices, focusing

on disjunct and separable matrices. In [13], [14], NAGT

with consecutive positives has been studied, where positive

items are consecutive in a linear order. This idea inspired the

ECBC problems, where the files are also linearly ordered and

the retrieval files are consecutive. In this special aspect, the

optimal value of storage in the ECBC problem can easily be

obtained as the previous part.

Furthermore, NAGT is a well-studied problem with nu-

merous theories and research results have been done. By

discovering new relationships between two problems ECBC

and NAGT, we can potentially apply ideas from one to another.

Here, we compare some other aspects of these two problems.

• Objectives: ECBC aims to store n files in m servers,

while NAGT aims to test N items with T tests.

• Requested items: ECBC requires k files (a subset of the

original files), while NAGT requires D defect items (a

subset of the original items).

• The constrains: in ECBC, it is required k ≤ min{m,n};

in NAGT, it is required D ≤ min{N, T }.

• Classification of storage objects: ECBC classifies servers

into two groups - those that contain at least one required

file and others. In NAGT, tests are classified into positive

class and negative class.

• Erasure aspects: in ECBC, there are at most r unavailable

servers while in NAGT, there are R inhibitors that can

join some tests and change the result of tests.

Despite some similar aspects of these two problems, the main

difference lies in the finding of subsets. ECBC finds a subset

of servers based on the storage of k files, while NAGT finds

a subset of items based on the test results.

V. CONCLUSIONS

In this work, we extended the previous results on Erasure

Combinatorial Batch Codes to accommodate the most general

case when r ≥ 0 and t ≥ 1, using an generalization of Hall’s

theorem. We also explored the relationship between ECBC and

NAGT problems, and found an optimal solution for a special

case when retrieved files are arranged in specific consecutive

linear sequence. This provides new insights into the problem

and a new approach to solve it.

In the future, we will consider the way to slightly modify the

given ECBC matrix A in case that some of values n,m, k, t, r
change (since the modification of whole matrix requires plenty

of computation). We also aim to explore the practical applica-

tions of ECBC in real-time data storage for IoT devices and

multiple servers. Our research also has significant potential in

industries requiring reliable data storage, such as biomedical

and agriculture, thus we would like to further investigate the

ECBC concept and its potential use in these industries.

VI. ACKNOWLEDGMENTS

This article was funded in part by University of Science,

VNU-HCM under Grant No. CNTT2022−11.

We also would like to express our gratitude to Mr. Bui Van

Thach (National University of Singapore) who has shared with

us a lot of valuable ideas to complete this research.

REFERENCES

[1] M. B. Paterson, D. R. Stinson, and R. Wei, “Combinatorial batch codes,”
Advances in Mathematics of Communications, vol. 3, no. 1, p. 13, 2009.

[2] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes
and their applications,” in Proceedings of the thirty-sixth annual ACM

symposium on Theory of computing, pp. 262–271, 2004.
[3] J. Jung, C. Mummert, E. Niese, and M. Schroeder, “On erasure com-

binatorial batch codes,” Advances in Mathematics of Communications,
vol. 12, no. 1, p. 49, 2018.

[4] C. Bujtás and Z. Tuza, “Optimal combinatorial batch codes derived from
dual systems,” Miskolc Mathematical Notes, vol. 12, no. 1, pp. 11–23,
2011.

[5] N. Balachandran and S. Bhattacharya, “On an extremal hypergraph
problem related to combinatorial batch codes,” Discrete Applied Math-

ematics, vol. 162, pp. 373–380, 2014.
[6] R. A. Brualdi, K. P. Kiernan, S. A. Meyer, and M. W. Schroeder,

“Combinatorial batch codes and transversal matroids,” Advances in
Mathematics of Communications, vol. 4, no. 3, p. 419, 2010.

[7] D. Jia and G. Zhang, “Some optimal combinatorial batch codes with k=
5,” Discrete Applied Mathematics, vol. 262, pp. 127–137, 2019.

[8] C. Bujtás and Z. Tuza, “Relaxations of hall’s condition: optimal batch
codes with multiple queries,” Applicable Analysis and Discrete Mathe-

matics, pp. 72–81, 2012.
[9] H. Zhang, E. Yaakobi, and N. Silberstein, “Multiset combinatorial batch

codes,” Designs, Codes and Cryptography, vol. 86, no. 11, pp. 2645–
2660, 2018.

[10] Q. Cao, R. Gagiano, D. Huynh, X. Yi, S. H. Dau, P. L. Le, Q.-H. Luu,
E. Viterbo, Y.-C. Huang, J. Zhu, M. M. Jalalzai, and C. Feng, “Parallel
private retrieval of Merkle proofs via tree colorings,” 2023. Available
at https://arxiv.org/abs/2205.05211.

[11] R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in Proceedings of the Conference on the Theory and

Application of Cryptographic Techniques (EUROCRYPT), pp. 369–378,
Springer, 1987.

[12] D. Jia, S. Zhang, and G. Zhang, “Erasure combinatorial batch codes
based on nonadaptive group testing,” Designs, Codes and Cryptography,
vol. 87, no. 7, pp. 1647–1656, 2019.

[13] C. J. Colbourn, “Group testing for consecutive positives,” Annals of
Combinatorics, vol. 3, no. 1, pp. 37–41, 1999.

[14] T. V. Bui, M. Cheraghchi, and T. D. Nguyen, “Improved algorithms
for non-adaptive group testing with consecutive positives,” 2021 IEEE
International Symposium on Information Theory (ISIT), pp. 1961–1966,
2021.

https://arxiv.org/abs/2205.05211

	Introduction
	Preliminaries
	Problem Definitions
	Hall's Marriage Theorem
	Existing Results for CBC and ECBC

	Main results
	The Main Theorem for ECBC with General r and t
	ECBC with Optimal Total Storage
	Application to the Multiset CBC with r>0
	Method to Retrieve Files from the Given ECBC Matrix

	Batch Codes with Consecutive Items
	Solution for General ECBC
	The Relations between CBC/ECBC and NAGT

	Conclusions
	Acknowledgments
	References

