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Abstract—In online exploration systems where users with fixed
preferences repeatedly arrive, it has recently been shown that
O(1), i.e., bounded regret, can be achieved when the system is
modeled as a linear contextual bandit. This result may be of
interest for recommender systems, where the popularity of their
items is often short-lived, as the exploration itself may be com-
pleted quickly before potential long-run non-stationarities come
into play. However, in practice, exact knowledge of the linear
model is difficult to justify. Furthermore, potential existence of
unobservable covariates, uneven user arrival rates, interpretation
of the necessary rank condition, and users opting out of private
data tracking all need to be addressed for practical recommender
system applications. In this work, we conduct a theoretical study
to address all these issues while still achieving bounded regret.
Aside from proof techniques, the key differentiating assumption
we make here is the presence of effective Synthetic Control
Methods (SCM), which are shown to be a practical relaxation of
the exact linear model knowledge assumption. We verify our
theoretical bounded regret result using a minimal simulation
experiment.

Index Terms—Recommender systems, Synthetic Controls,
Bounded regret

I. INTRODUCTION

In many modern personalization systems (e.g., video/music
recommendation systems), users with highly heterogeneous
preferences arrive sequentially and repeatedly to choose an
item. In this context, online learning models have been increas-
ingly used for their ability to address potential presentation
bias [1] which may occur through repeated data collection -
learning feedback loop when using typical matrix methods [2],
[3].

Among online learning models, contextual bandit models
[4]–[10] are often used when it is reasonable to make two
assumptions on the reward model. The first assumption is
that a user’s observable covariates (e.g., demographics, age,
sex, etc.), user’s arm (=item) choice, and unknown model
parameters jointly determine the stochastic reward model.
(When these unknown parameters are not shared among arms,
we call this model a “disjoint” contextual bandit model.) The
vector of observed covariates is called the context. The second
assumption is that the distribution of the stochastic reward
from an arm with a given context does not change over time.
(Each user’s context itself may change over time in the long
run.) The objective of the contextual bandit model is often to
minimize the order of cumulative regret (=total loss of welfare)
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as a function of time T [11]–[14], as many recommender
systems prioritize user welfare.

In the special case when users arrive repeatedly and each
user’s context can be considered fixed over the short run (e.g.,
a music listener’s genre preference does not change after a few
songs), the best known regret bound is constant, i.e., O(1) [15],
for the class of models called linear contextual bandit models
[11]–[13]. In typical linear contextual bandit model settings,
it is assumed that there is a known function ϕm that maps
a context into a vector representation that is linearly related
to the mean of the reward from arm m. It has been shown
in [15], [16] that when user arrivals are modeled as random
sampling from a fixed distribution, boundedness of regret can
be attained if and only if the representation vectors jointly
satisfy a full rank condition (details in Section II-A).

The boundedness of regret for linear contextual bandit
models is an attractive result for many recommender system
applications. Popularities of video topics on video platforms
are only ephemeral; topics may lose their timeliness before
they get old. However, this violates the second assump-
tion of contextual bandits. Addressing such potential non-
stationarities, either by explicitly modeling non-stationarities
or by addressing worst-case scenarios, has been an active area
of study in the bandit literature [17]–[25]. The bounded regret
approach attempts to address non-stationarities by completing
exploration quickly enough before long-run non-stationarities
kick in.

Despite the attractiveness of the O(1) regret result in
contextual bandits, it is not clear how the conditions described
above can be justified for practical recommender systems.
Specifically, there are five issues that need to be addressed:
Issue (1): Due to the potential existence of unobservable
covariates [26], known context information (along with arm
choice) may not fully determine the stochastic reward. This
violates the contextual bandit model assumption.
Issue (2): The existence of a linear representation, a well-
justified assumption [16], does not justify the assumption
that the linear representation function is exactly known. This
violates the linear contextual bandit model assumption.
Issue (3): User arrivals may be far from i.i.d. sampling; they
may even be of different orders, such as lnT and T .
Issue (4): Disjoint linear contextual bandit models (where
unknown parameters are not common to arms) are widely used
[11], [12] for recommender systems. However, the condition
required for the disjoint case to achieve bounded regret [16],
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[27] is not an easily operationalizable condition (details in
Section II-A)
Issue (5): A user’s context and the rewards she observes may
remain private information if she opts out of tracking.

In this paper, we focus on the theoretical study of addressing
these issues either by relaxing or by justifying the assumptions
to show that we can consider using bounded O(1) regret
methods for recommender systems applications.
- For issues (1) and (2), we assume the existence of Syn-
thetic Control method (SCM) [28]–[34] we can use, which
is “arguably the most important innovation in the policy
evaluation literature in the last 15 years” [35]. We observe
that what is achieved in Synthetic Control methods is exactly
equivalent to a relaxation of the assumption that the linear
representation function is precisely known1; this resolves issue
(2). As Synthetic Control methods can address unobserved
covariates in the long run [28], issue (1) is also resolved.
- For issue (3), our condition only requires some of the users
to have similar order of arrival rates.
- For issue (4), we provide an operationalizable condition that
requires the user set size to be larger than |M | ln |M | (this
value may be larger under non-uniform preferences among
users over arms).
- For issue (5), we show users’ strong incentive to opt in and
comply with the recommendations.
The rest of the paper is organized as follows. We provide the
relevant background on bounded regret results and SCM in
Section II. Then we present our main model, the main algo-
rithm we call Counterfactual-UCB (CFUCB), and its bounded
regret analysis in Sections III, IV, and V. Finally, we further
validate the proposed theory via a minimalistic simulation
experiment in Section VII. After reaching the conclusion,
Section IX briefly discusses related previous works.

II. PRELIMINARIES

A. Bounded regret results for (disjoint) linear contextual ban-
dit models

In this section, we review the problem settings and con-
ditions for which bounded regret can be attained for non-
disjoint [15] and disjoint [27] linear contextual bandit models.
In Section III, we discuss how they can be relaxed or justified
for practical recommender systems.

Let A be the set of users and M the set of arms. Each user
j ∈ A is associated with a context vector xj ∈ Rk, where k
is the number of observable covariates for each user.
Rewards model In the setting of [15], every time user j ar-
rives and pulls arm m the user receives a reward ϕm(xj)

′β+ϵ,
where {ϕm : Rk 7→ Rd}m∈M are linear representation
functions that are assumed to be precisely known, β is a
common parameter vector of dimension d that is shared across
the arms, and ϵ is a i.i.d. zero-mean random noise that follows

1Most Synthetic Control methods address linear factor model settings,
which are non-stationary generalizations of disjoint linear contextual bandit
model settings [12]. While our setting considers sequential arrivals, the
stationarity of the setting allows the application of synthetic control methods.

a sub-Gaussian distribution with variance proxy σ2. In the
setting of disjoint linear contextual bandits [27], the reward
equation is ϕm(xj)

′βm + ϵ where βm is an arm-specific
parameter vector for arm m.
User arrivals In the settings of [15], [27], user arrivals are
modeled as a result of repeated i.i.d. random sampling accord-
ing to a fixed distribution over A. Note that this user arrival
model is equivalent to independent repeated user arrivals with
exponential inter-arrival times [36].
Condition for bounded regret It is shown in [15], [16]
that bounded regret can be achieved in this setting if and
only if

{
ϕmj∗(xj) | j ∈ A

}
spans Rd, where mj∗ is the

optimal arm for user j, i.e., mj∗ = argmaxm∈M ϕm(xj)
′θ.

In the disjoint case, bounded regret can be achieved if and
only if

{
ϕmj∗(xj) | j ∈ Am

}
spans Rd for each m ∈ M ,

where Am is the set of users whose optimal arm is m, i.e.,
Am = {j ∈ A : mj∗ = m} [16], [27]. Since k generic
randomly generated vectors in Rd with d ≥ k are almost surely
linearly independent, this condition can simply be rewritten as
|Am| ≥ d for m ∈M .

B. Synthetic Control Methods (SCM)

Synthetic Control Methods (SCM) have been one of the
most actively studied areas of econometrics [32], [35]. They
can be described as an observational method of finding a linear
combination to synthetically construct a user j ∈ A from
other users in E ⊂ A \ {j} using their contexts and previous
data. While the coefficients of the linear combination were
constrained to be non-negative and sum to one in the vanilla
SCM [28], [29], recent advances in SCM effectively relax
these constraints [30]–[34]. Throughout, we will consider this
more relaxed version of SCMs.

Definition 1 (Synthetic Control Method (SCM)). Suppose that
we are given context vectors {xi}i∈A and previous reward
histories {hi}i∈A. Denote the one and only arm as arm 1. A
Synthetic Control Method (SCM) is a method that, for given
large enough E ⊆ A and user j /∈ E, takes {xi}i∈E∪{j}
and {hi}i∈E∪{j} as inputs and outputs {aji}i∈E that satisfies
µj1 =

∑
i∈E ajiµi1, where µj1 describes user j’s mean

reward from arm 1.

Lemma 1 (Abadie et al., 2010 [28]). Given long enough
{hi}i∈E∪{j}, SCM can infer the linear combination coeffi-
cients {aji}i∈E described in Definition 1 as precise as we
want, even in the presence of the unobservable covariates2.

III. THE MAIN MODEL

In this section, we introduce the main model considered in
this paper. We denote the set of users by A and the set of
arms by M . We further denote by A+ the subset of users
who opt in for the revelation of their private data. That is, the
recommender knows xj ∈ Rk of user j ∈ A+ and the rewards
user j ∈ A+ receives.

2SCM typically considers the reward model Yj(k) = ϕ(xj)
′β(t) +

ψ(yj)
′λ(t) + ϵ(k) = µj + ϵ(k), which is called the linear factor model.

Abadie et al. 2010 [28] shows Lemma 1 for the linear factor model.



A. Rewards model and objective

Let Yj,m(k) denote the reward obtained from user j’s
kth pull of arm m. We first consider the reward model
Yj,m(k) = ϕm(xj)

′βm + ψm(yj)
′λm + ϵ(k) = µj,m + ϵ(k),

the multi-arm extension of the static version of the model2

usually considered by SCM methods.
For each user j ∈ A, define m∗

j ∈M as an optimal arm that
satisfies µj,m∗

j
≥ µj,m ∀m ∈ M , and ∆j,m := µj,m∗

j
− µj,m

as the instantaneous pseudo-regret of using arm m. Denote the
arm pulled by user j at its n-th arrival by mj(n). Let Nj(t)
be the random variable indicating the total number of arrivals
of user j until time t. Then the finite time pseudo-regret of
user j until time T is Regretj(T ) :=

∑Nj(T )
n=1 ∆j,mj(n) =∑Nj(T )

n=1 (µj,m∗
j
− µj,mj(n)), which we will simply abbreviate

as “regret.” The system’s total regret is
∑

j∈ARegretj(T ).
Let hj,m denote the previous history of rewards for user

j ∈ A+ from the arm m ∈ M . Definition 1 and Lemma 1 in
Section II-B allows us to make the following assumption:

Assumption 1 (Synthetic Control Oracle (SCO)). Fix an
arm m ∈ M . For any E ⊆ A+ and j ∈ Ec ∩
A+ that satisfies rank({ϕm(xi)})i∈E ≥ dim(ϕm(xj)),
there is a Synthetic Control Oracle (SCO) that takes
({xi}i∈E∪{j}, {hi,m}i∈E∪{j}) as its input and outputs
{a(m)

ji }i∈E that satisfies µjm =
∑

i∈E a
(m)
ji µim, regardless

of the unobservable covariates {yi}i∈E∪{j}.

The following lemma shows that the SCO assumption is a
relaxation of the requirement for knowledge of a precise linear
model knowledge in typical linear contextual bandit models:

Lemma 2. Assumption 1 is a relaxation of the assumptions
that (i) there are no unobserved covariates, and (ii) that the
linear model is known to the recommender.

Proof of Lemma 2. From Lemma 1, it is immediate that As-
sumption 1 is a relaxation of the (i) part assumption that
there are no unobserved covariates. For the (ii) part, for
any E ⊆ A with rank({ϕm(xj)})j∈E ≥ dim(ϕm(xj))

and j /∈ E, we can find {a(m)
ji }i∈E such that ϕm(xj) =∑

i∈E a
(m)
ji ϕm(xi). This implies that µj,m = ϕm(xj)

′βm =∑
i∈E a

(m)
ji ϕm(xi)

′βm =
∑

i∈E a
(m)
ji µi,m.

In many practical recommender systems, it is not necessary
to consider a separate user context representation function
ϕm for each arm m ∈ M . For example, in movie recom-
mendation problem, user context representation may represent
a user’s affinity for different genres, how much the user
values plot complexity, and the user’s preference for movies
with a specific mood (e.g., light-hearted, serious, or thought-
provoking), all of which are characteristics not specific to a
particular movie. This leads us to consider a simplified model
Yi,m(k) = ϕ(xj)

′βm+ψ(yj)
′λm+ϵ(k) = µj,m+ϵ(k). Below

is the resulting simplified form of Assumption 1.

Assumption 1 (Synthetic Control Oracle (SCO) in sim-
plified reward model). For any E ⊆ A+ and j ∈

Ec ∩ A+ that satisfies rank({ϕ(xi)})i∈E ≥ dim(ϕ(xj)),
there is a Synthetic Control Oracle (SCO) that takes
({xi}i∈E∪{j}, {hi,m}i∈E∪{j}) as its input and outputs
{aji}i∈E that satisfies µjm =

∑
i∈E ajiµim for any m,

regardless of the unobservable covariates {yi}i∈E∪{j}.

The simplified SCO is useful in practice as it can generalize
experiences among arms. In Spotify, for example, there are
more than 60,000 songs (=arms) newly registered each day
[37]; given this simplified disjoint version Assumption 1, the
SCO in Spotify’s case can take previous user experiences from
existing songs as its input and output the linear combination
coefficients that can be used for the future exploration of newly
registered songs.

B. User arrivals

We generalize the arrival model in Section II-A to allow
for users with arrival rates of different orders. Let Sj(n) be
the random variable indicating user j’s nth arrival time, and
F

(n)
j (t) := P ({Sj(n) ≤ t}). For i, j ∈ A, define qij,m(x) :=

−B
AW−1

(
−A

B (xd )
−C

B

)
, where W−1 is the lower branch Lam-

bert W-function [38], where A = 1, B =
∑

n ̸=m
16

∆i,n
2 and

C =
16c2m,t

∆j,m
2 . (Remark: qij,m(x) increases faster than lnx but

slower than x - see Appendix XI).

Assumption 2. Consider users Ej,m := {i ∈ A \ {j} :

lim supn→∞

∫ +∞
0

P (Ni(t)<qij,m(Nj(t))dF
(n)
j (t)

1
n2

< +∞}. We as-

sume that |Ej,m∩A+∩Am| ≥ d for all j ∈ A+ and m ∈M .

Intuitively, Ej,m refers to users in A whose orders of arrival
rates are not far behind the arrival rate of j. Assumption 2 says
that, for each opted in user, there are enough other opted in
users whose tastes are different from hers but have similar (or
faster) arrival rate orders. It generalizes the user arrival model
of [15] discussed in Section II-A, i.e., i.i.d. random sampling
according to a fixed distribution over A, where arrival rate
orders are the same for all users in A:

Lemma 3 (Exponential inter-arrival times (equivalent to i.i.d.
sampled arrivals)). Suppose that each user i ∈ A repeat-
edly arrives independently with i.i.d. exponentially distributed
inter-arrival times with parameter λi. Then Ej,m = A, and
Assumption 2 becomes |A+ ∩ Am| ≥ d for m ∈ M , a
reminiscent of condition |Am| ≥ d for m ∈ M in Section
II-A.

Lemma 4 shows that Assumption 2 also holds also for Sub-
Gaussian arrivals (proof in Appendix X).

Lemma 4 (Subgaussian inter-arrival times). Suppose that each
user i ∈ A repeatedly arrives independently with i.i.d. 1-sub-
Gaussian inter-arrival times with mean θi. Then Ej,m = A,
and Assumption 2 becomes |A+ ∩Am| ≥ d for m ∈M .

C. Operationalizable condition for bounded regret

Note that the condition described in Assumption 2 of
Section III-B (|Ej,m ∩A+ ∩Am| ≥ d) serves as a counterpart



to the condition |Am| ≥ d for m ∈ M in Section II-A; if
we further assume that all user arrival rates are of the same
order (which results in Ej,m = A (e.g., Lemma 3 and 4)), that
condition becomes |A+ ∩ Am| ≥ d. However, this condition
cannot be verified, as Am is unknown: if Am were known,
exploration would be unnecessary.

Theorem 5 provides a path to an operationalizable condi-
tion: Assumption 2 is highly likely to be satisfied if we are
given a sufficiently large number of users in A+ compared to
the number of arms. Its proof is deferred to Appendix X.

Theorem 5. Suppose that the optimal arms associated with
users {m∗

j : j ∈ A} are independently and uniformly
distributed over A and user arrival rates are of the same order.
If |A+| ≥ |M |d+max{|M |d, 4

(
|M | ln |M |+ |M | ln 1

ϵ + d
)
}

holds, then P ({|Am ∩A+| ≥ d ∀m ∈M}) ≥ 1− ϵ.

IV. CFUCB ALGORITHM

We now introduce our main algorithm we call the
Counterfactual-UCB (CFUCB) recommendation algorithm. In
a typical UCB-based algorithm (e.g., [39] for the multi-
armed bandit problem), each user forms a confidence interval
solely based on her own experience, which one may call the
self-experience based confidence interval. For all users who
opted in, the recommender not only knows the user’s self-
experience based confidence interval, but it can also construct
a confidence interval based solely on other users’ experiences.
We call this the counterfactual confidence interval.
Self-experience based Confidence interval. Denote by

Y j,m(t) =
∑Nj,m(t)

k=1 Yj,m(k)

Nj,m(t) the empirical mean reward of user

j on arm m, and define the width wse
j,m(t) :=

√
lnNj(t)
Nj,m(t) .

Defining Y j,m(t) + wse
j,m(t) as ucbsej,m(t) and Y j,m(t) −

wse0j,m(t) as lcbsej,m(t), the self-experienced confidence in-
terval is CIsej,m(t) := [lcbsej,m(t), ucbsej,m(t)].

Counterfactual Confidence interval. Define Am(d, t) :=
{j ∈ A+ : |{i ∈ A+ : Ni,m(t) > Nj,m(t)}| < d}.
This set includes the top d users in A+ for arm m with
all ties at the bottom being included. Since Assumption
2 implies that |A+| ≥ d + 1, |Am(d + 1, t)| ≥ d +
1. Let Ej,m(t) be any arbitrarily chosen d-size subset of
Am(d + 1, t) \ j. From SCO (Assumption 1), we are given
{aji}i∈Ej,m

such that µj,m =
∑

i∈Ej,m(t) ajiµi,m. Define
Ŷj,m(t) :=

∑
i∈Ej,m(t) ajiY i,m(t) and call it the counterfac-

tual mean reward of user j for arm m. The width wcf
j,m(t)

of the corresponding counterfactual confidence interval is

chosen as wcf
j,m(t) :=

√
2 ln d+4 lnNj(t)

Nmin
j,m (t)/c2m,t

, where cm,t :=∑
i∈Ej,m(t) |aji|, and Nmin

j,m (t) := mini∈Ej,m(t)Ni,m(t). The
counterfactual confidence interval is defined as CIcfj,m(t) :=

[lcbcfj,m(t), ucbcfj,m(t)], where ucbcfj,m(t) := Ŷj,m(t) + wcf
j,m(t)

and lcbcfj,m(t) := Ŷj,m(t)− wcf
j,m(t).

For future references, let’s restate the upper confidence
bounds we defined above:

ucbsej,m(t) := Y j,m(t) + wse
j,m(t), ucbcfj,m(t) := Ŷj,m(t) + wcf

j,m(t). (1)

The Counterfactual UCB (CFUCB) algorithm. Let sk be the
time of the kth arrival from A, ak be the user that arrives at
sk, mk be the arm pulled at sk, and rk be the corresponding
reward. Note that mk and rk are known to the recommender
if and only if user ak has opted in, i.e., ak ∈ A+.

Algorithm 1: CFUCB Algorithm

1 for k = 1, 2, . . . do
2 Observe sk and ak
3 if ak ∈ A+ (i.e., ak is a user who opted in) then
4 for m = 1, 2, . . . , |M | do
5 Compute ucbse(ak,m)(sk) (Self-experienced

upper confidence bound) according to Eq
(1)

6 Compute ucbcf(ak,m)(sk) (counterfactual
upper confidence bound) according to Eq
(1)

7 ũcb(ak,m)(sk) =

min(ucbse(ak,m)(sk), ucb
cf
(ak,m)(sk))

8 Set mk = argminm∈M{ũcb(ak,m)(sk)}
9 Recommend user ak pull the arm mk and

obtain rk
10 Store Y(ak,mk)(Nak,mk

(sk)) = rk for later use
in lines 4 and 5

V. ANALYSIS OF CFUCB

We first start by describing how the confidence intervals are
chosen. Following the spirit of [39], they bound the violation
probability by the inverse square of the total number of pulls
at time t. The proofs are deferred to Section X.

Lemma 6 ([39]). For ϵ ≥
√

4 lnNj(t)
Nj,m(t) , P (|Y j,m(t)−µj,m| >

ϵ) ≤ Nj(t)
−2.

Lemma 7. Let cm,t :=
∑

i∈Ej,m(t) |a
(j)
i |. Then, for ϵ ≥√

2 ln d+4 lnNj(t)

Nmin
j,m (t)/c2m,t

, P (|Ŷj,m(t)− µj,m| > ϵ) ≤ Nj(t)
−2.

Lemmas 8 and 9 are the key results in this paper, in that
they provide intuition of why bounded regret is achieved.

Lemma 8. If CIsei,n(t) and CIcfi,n(t) both include the true
mean µi,n for all i ∈ A and n ∈ M , user j pulls arm m

only if min

(
2
√

4 lnNj(t)
Nj,m(t) , 2

√
2 ln d+4 lnNj(t)

Nmin
j,m (t)/c2m,t

)
≥ ∆j,m, i.e.,

Nj,m(t) ≤ 16 lnNj(t)
∆j,m

2 and Nmin
j,m (t) ≤ 8c2m,t(ln d+2 lnNj(t))

∆j,m
2 .

Lemma 9. If CIsei,n(t) and CIcfi,n(t) both include the true
mean µi,n for all i ∈ A and n ∈ M , then a user j who
arrives at time t pulls a non-optimal arm m, i.e., one with
∆j,m > 0, only if



min
Ej,m∩A+∩Am

{Ni(t)−(
∑
n ̸=m

16

∆i,n
2 ) lnNi(t)} ≤

8c2m,t(ln d+ 2 lnNj(t))

∆j,m
2 .

(2)

See Section X for their proofs. Lemma 9 says that the
inequality (2) is a necessary condition for a user j to pull
a non-optimal arm m. Since LHS of growing like Ni(t)
increases far faster than the RHS of (2) growing only like
lnNj(t), the inequality will soon cease to hold for all non-
optimal arms unless there exists a user i in Ej,m ∩A+ ∩Am

with Ni(t) that increases far slower than Nj(t). Since there is
no such i ∈ Ej,m∩A+∩Am (Assumption 2), only the optimal
arm will be pulled afterwards except when the true mean µi,n

is not included CIsei,n(t)∩CI
cf
i,n(t). A concentration inequality

however assures the inclusion of the means in the confidence
intervals with high probability.

The following Proposition 1 formalizes the intuition pro-
vided above, showing that Assumptions 1 and 2 are indeed
enough to achieve bounded expected regret. For the proof,
refer to the Appendix X.

Proposition 1. Under Assumptions 1 and 2, E[Regretj(T )] ≤∑
m∈M ∆j,m

(
π2|A||M |

6 + kπ2|A|
6

)
for j ∈ A+. Since this

bound does not increase with T , the system expected regret∑
j∈AE[Regretj(T )] is bounded.

VI. INCENTIVE TO OPT IN AND COMPLY

Suppose that a user i ∈ A only cares about the asymptotic
order of the regret, and not its precise value. That is, user
i is indifferent between an f(T ) regret and an g(T ) regret
if and only if f(T ) = Θ(g(T )). We say that such a user
i has asymptotic preference (defined formally in Appendix
XII). Would there be any incentive for the user i to opt
out or not follow the recommendation at any time? This is
a dynamic game, and the question relates to whether opting
in and following the recommendation constitutes a Subgame
Perfect Nash Equilibrium (SPNE) [40]. If all the users of A
have asymptotically indifferent preferences, it is trivial that
no user can strictly improve herself by opting out or not
complying to recommendation since she already has O(1)
regret and there is no smaller order of regret that can be
contemplated. Hence we have the following result:

Theorem 10. Under Assumption 2, for users with asymptot-
ically indifferent preferences, the strategy where every user
opts in and complies is a Subgame Perfect Nash Equilibrium
(SPNE).

The formal formulation of this game and result are provided
in the Appendix XII.

Remark. While Theorem 10 posits our result as SPNE, our
result is actually much more robust than SPNE. This is because
we allow coalitional deviation as long as Assumption 2 holds,
i.e., |Ej,m ∩A+ ∩Am| ≥ d for all j ∈ A+ and m ∈M .

Figure 1. The regret of the opted in users compared to that opted out users
(200 users, 20 arms, feature vector dimension 5)

VII. SIMPLE SIMULATION ANALYSIS

As we are suggesting a new practical setting that relaxes the
’knowledge of ϕ’ assumption (Assumption 1), our empirical
simulation analysis can simply be devoted to verifying the the-
oretical results thus far. Specifically, we aim for the empirical
demonstration of the opted-in users’ O(1) expected regret and
the opted-out users’ O(lnT ) regret. Our SCM oracle computes
the coefficients using the user feature vectors. Our algorithm
only knows about the coefficients.

In this experiment, we have 200 users repeatedly arriving
to explore 20 arms. Each user independently arrives according
to its own renewal process with positively truncated i.i.d.
Gaussian inter-arrival times. Both user and arm feature vectors
(unknown) are randomly and uniformly generated as vectors
on the surface of the 0-centered unit sphere in R5. Rewards are
generated according to the simplified disjoint model (Section
III-A), i.e., the reward resulting from an arm pull is the inner
product of the user’s and the pulled arm’s feature vectors plus
i.i.d. N(0, 0.1) noise.

Figure 1 averages the results of ten experiments, with ar-
rivals and feature vectors newly generated for each experiment.
As can be seen, the regret graph for the opted-in users almost
levels off by the time each user pulls each arm five times on
average. In contrast, the average regret of the opted-out users
grows logarithmically with T .

VIII. CONCLUSIONS

In this paper, we present a theoretical study addressing
the challenges in applying recent bounded regret results [15],
[16], [27] to practical recommender systems. These challenges
encompass unobservable covariates, unknown linear represen-
tation functions, user arrival rates, and incentives to opt in. We
present an algorithm that relies on a more practical assumption
than the knowledge of linear representation functions, while
still enabling bounded regret. This algorithm also allows other
practical relaxations, including allowing very different orders
of arrival rates among users.



IX. RELATED WORKS

The issue of not knowing ϕ in linear contextual bandits has
been studied in the representation learning literature. Recent
studies [41], [42] examined the linear contextual bandit rep-
resentation selection problem, i.e., learning to choose a good
representation ϕ from a finite set of known representations Φ.
However, it remains challenging for practical recommender
systems applications to assume the knowledge of Φ. In [43],
they study ϕ learning problem beyond representation selection;
however, their setting and results are not directly related to
online learning settings.

At the intersection of Synthetic Control Methods (SCM)
and bandit methods, recent studies [44]–[46] have attempted to
develop online learning versions of SCM. Compared to these
works, our focus is not on developing a good SCM method
itself, but on assuming existence of a good SCM method. To
the best of our knowledge, this work is the first to observe that
what is achieved by SCM is a relaxation of what is assumed
in the linear contextual bandit models.

On the subject of incentive issues, there are many works on
incentive constraints in coordinating exploration. [47] studies
Bayesian perspectives of incentivizing myopic users with a pri-
vate context to explore, with the goal of achieving O

(
log3(T )

)
regret. [48] considers incentive-compatible exploration coor-
dination in a setting opposite to ours: the context is private,
but the mean reward associated with each arm is known. In
this work, we illustrate that opting in (revelation of private
information) is Subgame Perfect Nash Equilibrium (SPNE)
and achieve O(1) regret.
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X. PROOFS

Proof of Lemma 4. Let P (Ni(t) < qij,m(Nj(t))) = hj,m(t). Then∫
hj,mFSj(n)

=

∫
[0,n(θj−ϵ))

hj,mFSj(n) +

∫
[n(θj−ϵ),∞)

hj,mFSj(n)

≤ hj,m(0+)× e−2nϵ2 + hj,m(n(θj − ϵ))× 1 (3)

= 2|A|e−2nϵ2 + h(j)m (n(θj − ϵ))

= 2|A|(exp(−2nϵ2) + exp(−2
(n(θj − ϵ)− ⌈qij,m(n(θ

j−ϵ)
θj−ϵj )⌉θmax)

2

⌈qij,m(n(θ
j−ϵ)

θj−ϵj )⌉
)

+ exp(−2
ϵj

2

θj − ϵj
n(θj − ϵ))) (4)

= 2|A|
(
2 exp(−2nϵ2) + exp(−2

(n(θj − ϵ)− ⌈qij,m(n)⌉θmax)
2

⌈qij,m(n)⌉
)

)
(for simplicity, we fix ϵj = ϵ)

= O(
1

n2
). (5)

Above,
(3) holds because P (S(j)

n ≤ n(θj − ϵ)) ≤ e−2nϵ2 and since g(j)m is a decreasing function,
(4) holds because of Lemma 11 below,
(5) holds because (

n(θj − ϵ))− ⌈qij,m(n)⌉θmax

)2 ≥ ⌈qij,m(n)⌉2 for all n ≥ N for some N (6)

(⇒)(n(θj − ϵ))− ⌈qij,m(n)⌉θmax)
2 ≥ ln(n)⌈qij,m(n)⌉ for all n ≥ N (7)

(⇒) exp(−2
(n(θj − ϵ)− ⌈qij,m(n)⌉θmax)

2

⌈qij,m(n)⌉
) = O(

1

n2
),

Lemma 11. hj,m(t) := P (N (i)(t) < qij,m(N (j)(t))) ≤ |A|
(
exp(−2

(t−⌈qij,m( t

θj−ϵj
)⌉θmax)

2

⌈qij,m( t

θj−ϵj
)⌉ ) + exp(−2 ϵj

2

θj−ϵj t)

)
.

Proof of Lemma 11.

hj,m(t) := P (N (i)(t) < qij,m(N (j)(t)))

=

∫
P (N (i)(t) < qij,m(n)) dFN(j)(t)(n)

≤
∫
P (N (i)(t) < qij,m(n)) dFN(j)(t)(n)

=

∫
P (S

(i)
⌈qij,m(n)⌉) > t) dFN(j)(t)(n)

= (

∫
[0, t

θj−ϵj
]

P (S
(i)
⌈qij,m(n)⌉) > t) dFN(j)(t)(n)

+

∫
( t

θj−ϵj
,∞)

P (S
(i)
⌈qij,m(n)⌉) > t) dFN(j)(t)(n))

(c)

≤

(
P (S

(i)

⌈qij,m( t

θj−ϵj
)⌉) > t)× 1 + 1× exp(−2

ϵj
2

θj − ϵj
t)

)
(8)

=

(
exp(−2

(t− ⌈qij,m( t
θj−ϵj )⌉θi)

2

⌈qij,m( t
θj−ϵj )⌉

) + exp(−2
ϵj

2

θj − ϵj
t)

)

≤ |A|

(
exp(−2

(t− ⌈qij,m( t
θj−ϵj )⌉θmax)

2

⌈qij,m( t
θj−ϵj )⌉

) + exp(−2
ϵj

2

θj − ϵj
t)

)
. (9)



Above,
• θmax := maxi∈A θi.
• The inequality (c) of (8) holds because we apply left tail Hoeffding inequality, i.e.,

P
(
S(j)
n ≤ n(θj − ϵj)

)
= P

(
N (j)(n(θj − ϵj)) ≥ n

)
≤ e−2nϵj2

⇔ P

(
N (j)(t) ≥ t

θj − ϵj

)
≤ e

−2 ϵj2

θj−ϵj
t

and ⌈qij,m(n)⌉ is an increasing function of n.

Proof of Theorem 5. For simplicity, we denote |A+| = a and |M | = b. Let Im be the indicator random variable for the event
{|Am| < d+ 1}, and I :=

∑
m∈M Im. What we want is to upper bound P (I > 0) by ϵ. Note that

P (I > 0) = P (I ≥ 1)

≤ E[I] (because of Markov’s inequality)
= bE[I1]

= bP (I1 = 1)

= b

d∑
k=0

(
a

k

)(
1− 1

b

)a−k (
1

b

)k

≤ b

d∑
k=0

(
a

k

)(
1− 1

b

)a−d(
1

b

)k

≤ b

d∑
k=0

ak

k!
exp(−a− d

b
)

(
1

b

)k

(because
(
a

k

)
≤ ak

k!
, and 1 + x ≤ ex)

= exp

(
d

b

) d∑
k=0

1

k!

(a
b

)k
exp

(
−a
b

)
= bexp

(
d

b

)
P (Z ≤ d) , where Z ∼ Poi(

a

b
)

(a)

≤ bexp

(
d

b

)
exp

(
−1

2

b

a

(a− bd)
2

b2

)
(10)

= bexp

(
1

b

(
d− (a− bd)

2

2a

))

= exp

(
ln b− 1

b

(
(a− bd)

2

2a
− d

))
. (11)

Above, the inequality (a) of (10) holds because Z ∼ Poisson(λ), Pr[Z ≤ λ− x] ≤ e−
x2

2λ for 0 ≤ x ≤ λ, where in our case
a
b ≥ d as assumed, λ = a

b , λ− x = d and x = a
b − d = a−bd

b ).
Let us further assume that a ≥ (1 + η)bd. Now

a ≥ (1 + η)bd

(⇔) (1 + η)(a− bd) ≥ (1 + η)a− a = ηa

(⇔) a ≤ (a− bd)
(1 + η)

η
. (12)

Then,

P (I > 0) ≤ ϵ

(⇐) exp

(
ln b− 1

b

(
(a− bd)

2

2a
− d

))
≤ ϵ (because of (11))

(⇔) exp

(
−
( (a−bd)2

2a − d)− b ln b

b

)
≤ ϵ



(⇔)
(a− bd)

2

2a
≥ b ln b+ b ln

1

ϵ
+ d

(⇐) a− bd ≥ 2(1 + η)

η

(
b ln b+ b ln

1

ϵ
+ d

)
(because of (12)) (13)

Proof of Lemma 6.. This follows from the 1-sub-Gaussian tail bound P (|Y j,m(t)−µj,m| > ϵ) ≤ 2exp(−Ni,m(t)ϵ2/2). Since
we want to upper bound P (|Y j,m(t)−µj,m| > ϵ) ≤ by Nj(t)

−2, the value of ϵ that renders 2exp(−Ni,m(t)ϵ2/2) ≤ Nj(t)
−2

will suffice. This yields ϵ ≥
√

4 lnNj(t)
Nj,m(t) .

Proof of Lemma 7..

P (|Ŷj,m(t)− µj,m| > ϵ)

= 1− P (|Ŷj,m(t)− µj,m| ≤ ϵ)

≤ 1−Πi∈Ej,m(t)P (|aji||Yi,m(t)− µi,m| ≤ |a(j)i | ϵ

cm,t
)

= 1−Πi∈Ej,m(t)(1− P (|Yi,m(t)− µi,m| > ϵ

cm,t
))

≤ 1−Πi∈Ej,m(t)((1− exp(
−Ni,m(t)ϵ2

2c2m,t

)))

≤ 1−Πi∈Ej,m(t)(1− exp(
−Nmin

j,m (t)ϵ2

2c2m,t

) (∵ Nmin
j,m (t) := min

i∈Ej,m(t)
Ni,m(t))

= 1− (1− exp(
−Nmin

j,m (t)ϵ2

2c2m,t

))d

≤ d exp(
−Nmin

j,m (t)ϵ2

2c2m,t

).

Therefore, ϵ ≥
√

2 ln(d/δ)

Nmin
j,m (t)/c2m,t

implies P (|Ŷj,m(t)− µj,m| > ϵ) ≤ δ.

Since we want CI with δ = 1/Nj(t)
−2 following the spirit of [49], CI with width

√
2 ln d+4 lnNj(t)

Nmin
j,m (t)/c2m,t

works.

Proof of Lemma 8. Denote the optimal arm for user j as arm m∗
j . According to Algorithm 1, {user j pulls arm m} ⊆

{ũcbj,m(t) ≥ ũcbj,m∗
j
(t)}. Note that l̃cbj,m(t) ≤ µj,m ≤ ũcbj,m(t) and l̃cbj,m∗

j
(t) ≤ µj,m∗

j
≤ ũcbj,m∗

j
(t) holds according to

the assumption that under the assumption that all true means are within CIs. Therefore, {user j pulls arm m} ⊆ {l̃cbj,m(t) ≤
µj,m, µj,m ≤ µj,m∗ , µj,m∗ ≤ ũcbj,m∗

j
(t), ũcbj,m∗

j
(t) ≤ ũcbj,m(t)} = {l̃cbj,m(t) ≤ µj,m ≤ µj,m∗

j
≤ ũcbj,m(t)} =

{µj,m, µj,m∗
j
∈ CIsej,m(t)∩CIcfj,m(t)}. Note that {µj,m, µj,m∗

j
∈ CIsej,m(t)∩CIcfj,m(t)} ⊆ {min(2wse

j,m(t), 2wcf
j,m(t)) ≥ ∆j,m}.

Therefore, under the assumption that all true means are within CIs, user j pulls arm m only if min(2wse
j,m(t), 2wcf

j,m(t)) ≥ ∆j,m

holds. Combining this with Lemma 6 and 7 yields the result.

Proof of Lemma 9.. Fix user j and arm m. Note that for any arm i ∈ A, Ni,m(t) = Ni(t)−
∑

n∈M\mNi,n(t). Let tn be the
last time prior to t at which a non-optimal arm n is played by user i. Then Ni,n(t) = Ni,n(t

n) ≤ 16 lnNi(t
n)

∆i,n
2 ≤ 16 lnNi(t)

∆i,n
2

holds by Lemma 8. Therefore, for user i ∈ Am, for arm m, Ni,m(t) ≥ Ni(t) − (
∑

n̸=m
16

∆i,n
2 ) lnNi(t). By the Assumption

(2), |Ej,m ∩ A+ ∩ Am| ≥ d holds, and therefore Nmin
j,m (t) ≥ Ni,m(t) holds for some i ∈ Aj,m. Therefore, Nmin

j,m (t) ≥
Ni,m(t) ≥ Ni(t) − (

∑
n ̸=m

16
∆i,n

2 ) lnNi(t) for some i ∈ Ej,m ∩ A+ ∩ Am. That is, Nmin
j,m (t) ≥ minEj,m∩A+∩Am

{Ni(t) −

(
∑

n ̸=m
16

∆i,n
2 ) lnNi(t)}. Substituting this into N

(min)
j,m (t) ≤ 8c2m,t(ln d+2Nj(t))

∆j,m
2 from Lemma 8, it can be seen that arm m is

pulled by user j only when minEj,m∩A+∩Am{Ni(t)− (
∑

n ̸=m
16

∆i,n
2 ) lnNi(t)} ≤ 8c2m,t(ln d+2Nj(t))

∆j,m
2 .

Proof of Proposition 1.. Let Gj,m := {User j arrives at time t and pulls a non-optimal arm m} and Vt := {µi,n ∈ CIsei,n(t)∩
CIcfi,n(t) ∀i ∈ Am, n ∈M} as V (t). Let P (Gj,m(t)|V (t)) = gj,m(t). Then,

E[Regretj(T )] =
∑

m∈M\m∗
j

∆j,mE[# of user j’s non-optimal arm m pulls before T ]



=
∑

m∈M\m∗
j

∆j,m

∞∑
n=1

E[1Gj,m(Sn,j)1Sn,j≤T ]

=
∑

m∈M\m∗
j

∆j,m

∞∑
n=1

E[E[1Gj,m(Sn,j)1Sn,j≤T |Sn,j ]]

=
∑

m∈M\m∗
j

∆j,m(

∞∑
n=1

E[E[1Gj,m(Sn,j)1Sn,j≤T |V (Sn,j)
c, Sn,j ]P (V (Sn,j)

c|Sn,j) +

E[1Gj,m(Sn,j)1Sn,j≤T |V (Sn,j), Sn,j ]P (V (Sn,j)|Sn,j)])

≤
∑

m∈M\m∗
j

∆j,m

( ∞∑
n=1

E[P (V (Sn,j)
c|Sn,j)] +

∞∑
n=1

E[E[1Gj,m(Sn,j)1Sn,j≤T |V (Sn,j), Sn,j ]]

)

≤
∑

m∈M\m∗
j

∆j,m

(
π2|A||M |

6
+

∞∑
n=1

E[E[1Gj,m(Sn,j)|V (Sn,j), Sn,j ]

)
∑

m∈M\m∗
j

∆j,m

(
π2|A||M |

6
+

∞∑
n=1

E[P (Gj,m(Sn,j)|V (Sn,j), Sn,j ]

)

=
∑

m∈M\m∗
j

∆j,m

(
π2|A||M |

6
+

∞∑
n=1

∫ +∞

0

gj,m(t)dF
(n)
j (t)

)

(a)

≤
∑

m∈M\m∗
j

∆j,m

π2|A||M |
6

+

∞∑
n=1

∫ +∞

0

∑
i∈Ej,m∩A+∩Am

P (Ni(t) ≤ qij,m(Ni(t))) dF
(n)
j (t)

 (14)

=
∑

m∈M\m∗
j

∆j,m

π2|A||M |
6

+
∑

i∈Ej,m∩A+∩Am

∞∑
n=1

∫ +∞

0

P (Ni(t) ≤ qij,m(Ni(t))) dF
(n)
j (t)


≤

∑
m∈M\m∗

j

∆j,m

π2|A||M |
6

+
∑

i∈Ej,m∩A+∩Am

∞∑
n=1

k
1

n2

 (∵ Assumption 2)

≤
∑

m∈M\m∗
j

∆j,m

(
π2|A||M |

6
+
kπ2|A|

6

)
=
∑
m∈M

∆j,m

(
π2|A||M |

6
+
kπ2|A|

6

)
.

Above, inequality (a) of equation (14) is from

gj,m(t) ≤ P ({ min
Ej,m∩A+∩Am

{Ni(t)− (
∑
n̸=m

16

∆i,n
2 ) lnNi(t)} ≤

8c2m,t(ln d+ 2 lnNj(t))

∆j,m
2 }) (∵ Lemma 9)

≤
∑

i∈Ej,m∩A+∩Am

P ({Ni(t)− (
∑
n ̸=m

16

∆i,n
2 ) lnNi(t) ≤

8c2m,t(ln d+ 2 lnNj(t))

∆j,m
2 })

≤
∑

i∈Ej,m∩A+∩Am

P (Ni(t) ≤ qij,m(Ni(t))) (∵ Lemma 12)

XI. FUNCTION qij,m IN SECTION III-B: DETAILS

Lemma 12. For A,B,C > 0, Ay − B ln y < C ln(xd ) is satisfied only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
, where W−1 denotes

the lower branch of the Lambert W -function [50].

Proof of Lemma 12. For A,B,C > 0, A
C y − B

C ln y < ln(xd ) ⇐⇒ y−
B
C e

A
C y < (xd ) ⇐⇒ ye−

A
B y > (xd )

−C
B ⇐⇒

−A
B ye

−A
B y < −A

B (xd )
−C

B ⇐⇒ −B
AW0

(
−A

B (xd )
−C

B

)
< y < −B

AW−1

(
−A

B (xd )
−C

B

)
where W0 denotes the principal branch

of the Lambert W -function. Therefore, Ay −B ln y < C ln(xd ) holds only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
.



In the present case, y = Ni(t), x = Nj(t), A = 1, B =
∑

n ̸=m
16

∆i,n
2 and C =

16c2m,t

∆j,m
2 . Define qij,m as qij,m(x) =

−B
AW−1

(
−A

B (xd )
−C

B

)
where we use the above parameter values. One can easily check that B

AW−1

(
−A

Bx
−C

B

)
is a function

growing faster than lnx and slower than x.

XII. INCENTIVE CONSIDERATIONS

A. Sequential game description

The CFUCB Algorithm 1 can be posited as a game G = (A,M, {{Si(n)}n∈N}i∈A, {xi}i∈A, {βm}m∈M ,Γ). It is defined
as an |A|-player infinite horizon sequential game, where

- A denotes the index set of users and M denote the index set of arms.
- {{Si(n)}n∈N}i∈A denotes the arrival time processes of users in A
- Γ denotes the counterfactual UCB sharing mechanism (we describe below).
G is a sequential game [40] where an arrival of any user in A is one stage of the game. At the beginning of the game, which
we call epoch 0, each user i is asked to report its feature vector xi. (Of course, it can refuse to report it by opting out at time
0). At each epoch k,

1) A user we denote by ak ∈ A arrives. The recommender observes ak.
2) If and only if ak ∈ A+, the recommender calculates the counterfactual UCBs {ucbcfak,m

(sk)}m∈M according to Equation
(1) and lets user ak know the counterfactual UCBs.

Remark. Γ of game G, the counterfactual-UCB sharing mechanism, is formally defined as a function that maps the previous
history of reports the recommender has at k, {al, (m̂l, r̂l)}k−1

l=1 , into {ucbcfak,m
(sk)}m∈M .

3) After receiving {ucbcfak,m
(sk)}m∈M from the recommender, the user calculates ũcbak,m(sk) for all m ∈ M according

to ũcbak,m(sk) = min(ucbseak,m
(sk), ucb

cf
ak,m

(sk). (Note that user ak can calculate {ucbseak,m
(sk)}m∈M by only using it’s own

pulling history, which is private information.)
4) User ak then pulls arm mk := argminm∈M{ũcbak,m(sk)} and observes a reward that we denote by rk.
5) According to its reporting strategy, user generates its report (m̂k, r̂k) from the truth (mk, rk) and sends it to the

recommender.
6) The recommender receives (m̂k, r̂k) and stores it.

B. Incentive analysis

We denote by σi the strategy of user i of never opting out and complying to recommendation at any of its arrivals. We
define σ = ×i∈Aσi as the strategy profile corresponding to each user i ∈ A following σi.

The strategy profile where every i ∈ A chooses σi is defined as σ. When no user ever violates the two assumptions, the
outcome of σ and Algorithm 1 are the same. Corollary 1, which is an immediate result of Proposition 1, formally states this
observation.

Corollary 1. Under Assumption 1 and 2, under the strategy profile σ, every user’s expected regret is bounded.

Now we formally define the notion of “asymptotically indifferent users”. Given the game G and some strategy profile σ,
after playing the game up to time T , denote the regret of user i up to time T by Regret(i)σ (T ). Suppose that for each i ∈ A,
we are able to achieve E[Regret

(i)
σ (T )] = O(f

(i)
σ (T )] for some function f (i)σ . Denoting the set of all possible strategy profiles

Σ, we say that an user i has an asymptotically indifferent preference if its preference can be described by a complete and
transitive preference relation ⪰i on Σ such that σ ⪰i σ

′ if and only if f (i)σ (T ) = O(f
(i)
σ′ (T )). We say that σ is strictly preferred

to σ′ by user i if σ ⪰i σ
′ but not σ′ ⪰i σ.

Corollary 2. Suppose that all the users in A have asymptotically indifferent preferences. Then σ constitutes a Subgame Perfect
Nash Equilibrium for the game G = (A,M, {{Si(n)}n∈N}i∈A, {xi}i∈A, {βm}m∈M ,Γ).

Proof of Corollary 2. This result is immediate from Corollary 1, in that (i) no other strategy profile can be strictly preferred
to σ by any user with aymptotically indifferent preference; (ii) σ already achieves bounded regret, i.e., O(1), for all the users,
and (iii) thus cannot be improved in terms of asymptotically indifferent preference.
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