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Operating-Envelopes-Aware Decentralized Welfare

Maximization for Energy Communities

Ahmed S. Alahmed , Guido Cavraro , Andrey Bernstein , and Lang Tong

Abstract

We propose an operating-envelope-aware, prosumer-centric, and efficient energy community that aggregates

individual and shared community distributed energy resources and transacts with a regulated distribution system

operator (DSO) under a generalized net energy metering tariff design. To ensure safe network operation, the DSO

imposes dynamic export and import limits, known as dynamic operating envelopes, on end-users’ revenue meters.

Given the operating envelopes, we propose an incentive-aligned community pricing mechanism under which the

decentralized optimization of community members’ benefit implies the optimization of overall community welfare.

The proposed pricing mechanism satisfies the cost-causation principle and ensures the stability of the energy

community in a coalition game setting. Numerical examples provide insights into the characteristics of the proposed

pricing mechanism and quantitative measures of its performance.

Index Terms

distributed energy resources aggregation, energy community, mechanism design, net metering, operating en-

velopes, pricing mechanism, transactive energy system.

I. INTRODUCTION

D
ESPITE THE ambitious electrical grid decarbonization goals by increasing the penetration of behind-the-meter

(BTM) distributed energy resources (DER), many end-users are ineligible to install BTM DER due to several

physical, financial, and jurisdictional challenges1. Energy communities overcome many DER adoption hurdles by

allowing a group of spatially co-located customers to pool and aggregate their resources and perform energy and

monetary transactions as a single entity behind the DSO’s revenue meter [2]. Under the widely adopted net energy

metering (NEM) policy design [3], [4], the meter measures the community’s net consumption and assigns a buy

(retail) rate if the community is net-importing, and a sell (export) rate if the community is net-exporting [4].

Enabling jurisdictions and programs, such as NEM aggregation (NEMA) and virtual NEM (VNEM), play a critical

role in the proliferation of energy communities [3].

Without proper coordination of the immense flexibility that DER introduces, DER imports and exports can result

in two-way energy flows that threaten the voltage and thermal limits of the distribution networks [5]. The high

imports and exports issue is exacerbated by the fact that, to the DSO, such resources are neither visible (due

to load masking) nor controllable (due to the unbundled model of deregulated electricity markets). Therefore, to

ensure that the community’s power exports and imports do not compromise the distribution network’s operation, the

DSO may impose dynamic operating envelopes (OEs2) on its end-users revenue meters. The OEs, which may vary

temporally and spatially depending on the network’s conditions, provide much higher flexibility over the widely

adopted scheme fixed export limits (e.g., 5kW or 3.5kW [5]), which quickly become obsolete as the BTM DER

penetration level grows.

In this work, we propose a network-aware energy community market mechanism that induces its members to

maximize global welfare. The mechanism’s OEs-aware, resource-aware, and threshold-based pricing and payment
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rules ensure that the community’s aggregate flexible demand schedule is actively adapting to its aggregate supply,

which in turn maximizes the community’s welfare.

Despite the abundant previous work on energy communities, the majority of literature that considered pricing-

based energy management market mechanisms and cost allocation rules neglected network and grid constraints [2],

[6]–[11]. On the other hand, the literature on OEs largely ignored incorporating them into a price-driven mechanism

design that induces community members to collectively react to ensure a safe community operation [12]–[15]. The

study in [16], which considers an energy community with operator-designed OEs to maximize energy transactions

among its members without compromising network constraints, is perhaps the closest to our work. However, the

authors adopt an ex-post allocation rule, namely Shapley value, to distribute the coalition welfare, whereas in our

case, ex-ante and resource-aware pricing and allocation mechanisms are designed to distribute the coalition welfare

and incentivize joining the coalition.

To the best of our knowledge, no previous work incorporated OEs into a price-driven and welfare-maximizing

market mechanism design that induces rational prosumers to join the community while meeting the cost-causation

principle.

To this end, we propose an OEs-aware and welfare-maximizing market mechanism for energy communities

that aggregates individual and shared community resources under a general NEM policy. The proposed market

mechanism

★ incorporates the DSO-imposed OEs at the end-user level, ensuring that the community’s operation is network-

aware.

★ guarantees surplus levels to its members higher than the maximum attainable surplus under standalone settings.

★ decentrally achieves welfare optimality.

★ satisfies the generalized cost-causation principle.

Under the proposed market mechanism, the community operator charges/compensates its members via a two-

threshold-based dynamic price that is a function of the DERs in the community. The community price is uniform

to all members, regardless of the homogeneity of the OEs, and whether the OEs are binding or not. The price

monotonically decreases as the community aggregate generation/load ratio increases, indicating that the excess

generation from net-producing members is first pooled with net-consuming members before it is exported back to

the grid.

This paper generalizes our Dynamic NEM (D-NEM) mechanism [17], [18] in three different aspects3. First,

incorporating OEs gives rise to a community price with a threshold structure that requires knowledge of the BTM

generation and OEs of every member. Second, unlike D-NEM, the community member’s optimal decision is also a

threshold policy that is computed using the announced community price and the assigned OEs. Third, the decision

problem of the OEs-aware benchmark customer under the DSO is a four-threshold policy.

In the next section, we introduce the OEs-constrained energy community framework and the available DER,

in addition to the benchmark model outside the community. In Section III, we present the OE-aware D-NEM

mechanism and the community member decision problem. In Section IV, we present the decentralized welfare

optimality and cost-causation conformity results under the proposed OEs-aware D-NEM, followed by a numerical

study to showcase the community performance compared to the benchmark in Section V, and a summary of our

findings in Section VI.

II. ENERGY SHARING MODEL AND BENCHMARK

Here, we describe the energy community structure, resources, and payment and surplus functions in sections

II-A-II-C, followed by establishing the standalone-DSO-prosumer benchmark model in section II-D, which is the

reference model for community members. Lastly, we present the cost-causation principle in section II-E.

A. Energy Community Structure

As a single entity behind the DSO’s NEM revenue meter (i.e., point of common coupling (PCC)), the profit-neutral

operator receives one bill on behalf of its N community members, represented by the set N := {1, . . . , N}, who

3For the rest of this paper, we, interchangeably, use OEs-aware D-NEM and D-NEM to refer to the proposed market mechanism in this

work.



are subject to the operator’s market mechanism that determines the pricing and payment rules (Fig.1). Community

network constraints are incorporated by considering the DSO-imposed OEs at each member’s revenue meter, which

guarantee the safe operation of the community. The operator’s goal is to devise a market mechanism that incorporates

the DSO-imposed OEs and announces a price that induces its members to achieve social welfare optimality in a

decentralized fashion (Fig.1). Given the market mechanism, each community member optimizes its own resources

subject to the DSO-imposed OEs and other consumption constraints.

Before we model the local (i.e., BTM) and community (central) resources, we assume that the BTM renewable

distributed generation (DG) outputs of every member are available to the operator through sub-meters. With little

loss of generality, we assume that the DSO’s NEM netting frequency [4] is commensurate with the frequency at

which it announces the OEs.

Fig. 1. Energy community framework. Member consumption and renewables are di ∈ R+, ri ∈ R+, respectively, and member and aggregate

net consumption, and community (central) DER are zi ∈ R, zN ∈ R, gN ∈ R+, respectively. The direction of the arrows indicates positive

quantities.

B. Energy Community DER

The community resources are either located within prosumer premises, i.e., behind their revenue meters; to which

we refer as BTM DER, or they are located in front of their meters but still downstream of the PCC; to which we

refer to as community DER.

1) BTM and community shared DER: Each community member may have flexible loads and solar PV. We

assume each member i ∈ N is equipped with K devices, represented by the set K := {1, . . . ,K} whose load

consumption is denoted by

di = (di1, · · · , diK) ∈ Di := {di : di � di � di} ⊆ R
K
+ , (1)

where di and di are the device bundle’s lower and upper consumption limits of i ∈ N , respectively. For a

critical inflexible load k ∈ K, prosumer i sets dik = dik. The community aggregate consumption is defined as

dN :=
∑

i∈N 1
⊤di.

We assume that each member may have access to private BTM PV output and a share of community PV

production4. Let bi ∈ R+ be the renewable generation of member i from both BTM generation and community

generation. Therefore, the aggregate generation of all members, including community generation, is given by bN :=
∑

i∈N bi. The vector of renewable DG of members is denoted by b := (b1, . . . , bN ) ∈ R
N
+ .

2) Net consumption: Given the outputs of the BTM DER and share of the community DER, the net consumption

of every member i ∈ N is defined as

zi := 1
⊤di − bi ∈ Zi := {zi : zi ≤ zi ≤ zi], (2)

4Here, we ignore community and/or BTM storage. See [17] for storage incorporation.



where zi > 0 (zi < 0) indicates a net-consuming (net-producing) individual, and zi ≤ 0 and zi ≥ 0 are the

DSO-imposed export and import OEs at the prosumer’s revenue meter, respectively5. The community aggregate

net consumption is given by

zN :=
∑

i∈N

zi = dN − bN , (3)

where zN > 0 (zN < 0) indicates a net-consuming (net-producing) community.

C. Energy Community Payments and Surpluses

1) Community Payments and Profit: At the PCC, the community faces the DSO’s NEM X tariff model [19],

characterized by the parameter πNEM = (π+, π−), which has a pricing rule ΓNEM and a payment rule P NEM

N

ΓNEM(zN ) =

{

π+, zN ≥ 0

π−, zN < 0
, P NEM

N (zN ) = ΓNEM(zN ) · zN , (4)

respectively, where π+ ≥ 0 and π− ≥ 0 are the buy (retail) and sell (export) rates6. We assume that π+ ≥ π−,

which avoids risk-free price arbitrage, given that the retail and export rates are deterministic and known apriori.

The role of the community operator is to come up with a community pricing rule χ : b → Γχ(·) for its

members that incentivizes the members toward achieving the maximum social welfare. Given the pricing rule χ,

we define the vector of payment (allocation) of community members as functions of individual net consumption

by P
χ
i (z) := (Pχ

1 (zi), . . . , P
χ
N (zN )), where z := (z1, . . . , zN ) ∈ R

N .

To achieve profit neutrality, the community operator must ensure that the money it pays to the utility matches

the aggregated payments of its members, i.e.,
∑

i∈N

P
χ
i (zi)− P NEM

N (zN ) = 0. (5)

2) Community Members Surplus and Decision Problem: The surplus of every i ∈ N community member is

characterized by comfort/satisfaction and economics metrics as

S
χ
i (di, zi) := Ui(di)

︸ ︷︷ ︸

utility of consumption

− P
χ
i (zi)

︸ ︷︷ ︸

payment under χ

, (6)

where, for every member i ∈ N , the utility of consumption function Ui(di) [20] is assumed to be additive,

concave, non-negative, non-decreasing, and continuously differentiable with a marginal utility function Li := ∇Ui =
(Li1, . . . , LiK). For notational simplicity, we denote the inverse marginal utility vector by fi := (fi1, . . . , fiK),
where fik := L−1

ik ,∀i ∈ N ,∀k ∈ K. Note that adopting the surplus function to characterize the prosumer’s payoff

(benefit) is more general than using the payment function.

After announcing the pricing rule, every community member i ∈ N solves the following surplus-maximization

program

Pχ
i : maximize

di∈RK
+ ,zi∈R

S
χ
i (di, zi) := Ui (di)− P

χ
i (zi)

subject to zi := 1
⊤di − bi (7)

di � di � di

zi ≤ zi ≤ zi.

Denote the optimal value function of (7) by S
∗,χ
i (bi) := S

∗,χ
i (d∗,χ(bi), z

∗,χ(bi)). To ensure that a feasible solution

to (10) always exists, we assume that, for every i ∈ N , the OEs (zi, zi) satisfy

zi ≥ 1
⊤di − bi, zi ≤ 1

⊤di − bi. (8)

5Without loss of generality, the OEs zi, zi are adjusted, for every i, to be cognizant of the virtual generation share gi.
6Here we do not include possible fixed charge in NEM tariff π0, assuming that such a fixed charge is matched by membership fees.



D. Benchmark Model, Surplus and Decision Problem

To ensure fairness when comparing the surplus of community members under the proposed market mechanism

to their benchmark surplus, i.e., under the DSO’s regime, we posit that prosumer resources (BTM DER, and share

from central generation) are the same with and without the community.

The benchmark payment, for every member i ∈ N , is given by the DSO’s NEM X tariff as P NEM(zi).
Similar to community members, the surplus of the benchmark prosumer, for every i ∈ N , is defined as

SNEM

i (di, zi) := Ui(di)− P NEM(zi). (9)

Each surplus-maximizing benchmark prosumer solves

PNEM

i : maximize
di∈RK

+ ,zi∈R
SNEM

i (di, zi) := Ui(di)− P NEM(zi)

subject to zi := 1
⊤di − bi (10)

di � di � di

zi ≤ zi ≤ zi.

Lemma 2 in the appendix characterizes the benchmark’s maximum surplus function

S
∗,NEM

i (bi) := S
∗,NEM

i (d∗,NEM

i (bi), z
∗,NEM

i (bi)),

and shows that it is a monotonically increasing function of prosumer’s renewables bi.

E. Generalized Cost-Causation Principle

To ensure that the pricing rule χ is just we use the cost-causation principle developed in [9], but with a

generalization that incorporates surplus-based individual rationality rather than payment-based one.

Definition 1 (Generalized cost-causation principle). A market mechanism that achieves the following five axioms

is a cost-causation-based market mechanism.

Axiom 1 (Individual rationality). The surplus of every i ∈ N community member should be at least equal to its

benchmark surplus, i.e., S
∗,χ
i ≥ S

∗,NEM

i ,∀i ∈ N .

Axiom 2 (Profit neutrality). The market operator must be profit-neutral, i.e., (5) is satisfied.

Axiom 3 (Equal treatment of equals). The mechanism equally treats the equals, if, for any two community members

i, j ∈ N , i 6= j, having zi = zj yields P
χ
i (zi) = P

χ
j (zj).

Axiom 4 (Monotonicity). The mechanism is monotonic if, for any two community members i, j ∈ N , i 6= j, having

|zi| ≥
∣
∣zj

∣
∣ and zizj ≥ 0 yields |Pχ

i (zi)| ≥ |Pχ
j (zj)|.

Axiom 5 (Cost causation penalty and cost mitigation reward). A net-consuming (net-producing) community member

zi > 0 (zi < 0) causes (mitigates) cost to (from) the community, and therefore should be penalized (rewarded) for

it, i.e., for any i ∈ N , if zi > 0 then P
χ
i (zi) > 0, whereas if zj < 0 then P

χ
j (zj) < 0.

III. OPERATING-ENVELOPES-AWARE DYNAMIC NEM

The goal of the profit-neutral community operator is to devise an OE-aware market mechanism that achieves

maximum welfare in a distributed fashion while satisfying the DSO OEs and the generalized cost-causation principle.

Definition 2 (Decentralized welfare optimality). The community welfare is decentrally maximized if there exists a

pricing rule χ♯ such that the maximum welfare under centralized community operation

PNEM

N : maximize
{di}N

i=1,{zi}
N
i=1

W NEM

N (d1, . . . ,dN ,z) := E

[ N∑

i=1

(Ui(di)− P NEM

N (

N∑

i=1

zi))

]

subject to (1)− (2), ∀i ∈ N (11)

(3)− (5),



denoted by W
†,NEM

N , is achieved by the aggregate maximum surpluses of community members under the pricing rule

χ♯, i.e., if

W
†,NEM

N (b) =
∑

i∈N

S
∗,χ♯

i (bi). (12)

Heed that the assumption in (8) guarantees the existence of a feasible solution to PNEM

N in (11).

A. Operating-Envelopes-Aware Dynamic NEM

Here, we propose the OEs-aware D-NEM, and show that the community price is announced without compromising

members’ privacy. Only the BTM and community-level renewable generation are needed to determine the community

price.

OEs-aware Dynamic NEM. The threshold-based, OEs-aware, community pricing ΓDNEM(b) and payment rules

P DNEM

i are, respectively, given by the 3-tuple tariff parameter πDNEM = (π+, πz(b), π−) with the order π+ ≥ πz(b) ≥
π−, as

ΓDNEM(b) =







π+ , bN < σ1(b)

πz(b) , bN ∈ [σ1(b), σ2(b)]

π− , bN > σ2(b),

(13)

P DNEM

i (zi) = ΓDNEM · zi, ∀i ∈ N . (14)

where the thresholds σ1(b) and σ2(b) are computed as

σ1(b) :=

N∑

i=1

max

{

zi + bi,min
{

R+
i , z̄i + bi

}}

, σ2(b) :=

N∑

i=1

max

{

zi + bi,min
{

R−
i , z̄i + bi

}}

≥ σ1(b),

and

R+
i := 1

⊤max

{

di,min

{

fi

(

1π+
)

,di

}}

, R−
i := 1

⊤max

{

di,min

{

fi

(

1π−
)

,di

}}

,

where the max and min operators are elementwise.

The price πz(b) := µ∗(b) ∈ (π−, π+) is the solution of

N∑

i=1

max
{

zi + bi,min
{
Rz

i (µ), z̄i + bi
}}

= bN , (15)

where

Rz
i (µ) := 1

⊤max

{

di,min
{

fi(1µ),di

}}

.

B. Operating-Envelopes-Aware Dynamic NEM Properties and Structure

The OEs-aware D-NEM, shown in Fig.2, offers nice and intuitive structural properties.

1) Resource- and OEs-aware pricing: The community price is a function of the centralized and BTM resources in

the community. It also takes into account, the network constraints represented by the DSO-imposed OEs at every

member’s revenue meter.

2) Threshold-based structure: The operator announces the prices based on a 2-thresholds (σ1, σ2) policy that

partitions the range of bN into three regions. The thresholds are computed in closed-from given the DSO’s tariff

and OEs, and the vector of measured DER b and prosumer bids.

3) Privacy-preserving mechanism: The two thresholds (σ1, σ2) can be computed without compromising member’s

privacy. In particular, the values R+
i and R−

i are provided apriori by the community members, given the public

utility prices. Also, given that πz(b) ∈ (π−, π+), the members can provide a value for each price sample, which

are then used by the operator to compute the price πz(b) depending on the aggregate generation bN .



Fig. 2. OEs-aware D-NEM and NEM prices under optimal community member response.

4) Non-discriminatory pricing: The proposed network-aware community price is uniform to all members, even

when some OEs may be binding, and regardless of the heterogeneity of the DSO-imposed OEs7.

5) Supply/Demand balance: The community price dynamically decreases as the supply-to-demand ratio increases,

which is economically intuitive. The decreasing (increasing) price as the supply-to-demand ratio increases (de-

creases) induces the community members to increase (decrease) their consumption, which reduces the community’s

net exports and imports, and brings it closer to energy balancedness.

6) Endogenously-determined market roles: Unlike conventional electricity markets, where the roles of buyers and

sellers are predetermined, the proposed mechanism allows community members to determine their roles (see Section

III-C).

7) Scalability and explainability: The proposed pricing mechanism is tractable and highly scalable, as it scales

linearly with the number of community members O(N). This is not the case under computationally intensive

allocation rules, such as Nucleolus [7], [22], Shapley value [16], [23], and Nash bargaining [24]. Furthermore,

the payment amount of each community member i can be easily understood and justified [25], as it depends on

their own net consumption zi, which is not the case under, for example, Shapley value, that allocates payments to

community members based on their marginal contributions to the coalition, which can only be computed by the

market operator and may not be proportionate to members’ net consumptions.

The operator sets the price by comparing the aggregate DG output in the community bN to the thresholds (σ1, σ2)

that characterize the total willingness of prosumers to consume while factoring in the remaining headroom to reach

their import/export limits (Fig.2). Fig.2 depicts the community operator price ΓDNEM(b) (blue) and the DSO’s NEM

X price the community faces at the PCC ΓNEM(b), and shows that the thresholds partition the range of bN into three

zones based on the aggregate net consumption under members optimal decisions characterized in Lemma 1.

When the OEs of all members are relaxed, i.e., zi → ∞, zi → −∞,∀i ∈ N , the market mechanism converges

to the one in [17], and the thresholds (σ1, σ2) become independent of the renewables. More precisely, σ1(b) → R+
i

and σ2(b) → R−
i . Conversely, tightening any of the import (export) envelopes zi (zi) shifts both thresholds to the

left (right), which reflects the effect of individual OEs on the community’s aggregate net-consumption at the PCC

zN , and therefore the community price ΓDNEM(b).

7Imposing OEs at the community’s PCC rather than at the prosumers’ revenue meters in our case might yield some form of discrimination,

perhaps through fixed non-uniform re-allocations (analogous to uplifts in wholesale markets). A full analysis of the PCC OEs scheme is

pursued in [21].



C. Community Member Problem and Optimal Decisions

Given bN , the community pricing and payment rules are announced, and accordingly, every member i ∈ N
solves the (7), which we reformulate to:

(d∗,DNEM

i , z
∗,DNEM

i ) =argmax
di∈RK

+

SDNEM

i (di, zi) := Ui (di)− ΓDNEM · zi

subject to zi := 1
⊤di − bi (16)

zi ≤ zi ≤ zi

di � di � di.

The following Lemma 1 characterizes the optimal consumption and net consumption of every community member

under the proposed OEs-aware mechanism.

Lemma 1 (Optimal member decisions). Given the announced market mechanism, every member i ∈ N ’s optimal

decisions obey a two-threshold policy with thresholds

θi1 := 1
⊤dΓDNEM

i − zi, θi2 := 1
⊤dΓDNEM

i − zi ≥ θi1, (17)

that schedule the consumption as

d
∗,DNEM

i (bi) =







d
µ∗

1

i (bi) , bi < θi1

dΓDNEM

i , bi ∈ [θi1, θ
i
2]

d
µ∗

2

i (bi) , bi > θi2,

(18)

where dΩ
i = max{di,min{fi(1Ω),di}} with Ω = {µ∗

1,Γ
DNEM, µ∗

2} and µ∗
1 ≥ ΓDNEM ≥ µ∗

2.

The prices µ∗
1(bi) and µ∗

2(bi) are the solutions of

1
⊤ max{di,min{fi(1µ1),di}} = zi + bi, 1

⊤max{di,min{fi(1µ2),di}} = zi + bi, (19)

respectively, and the max and min operators are elementwise.

The optimal net consumption for every i ∈ N is, by definition,

z
∗,DNEM

i (bi) = 1
⊤d

∗,DNEM

i (bi)− bi. (20)

Proof: See the appendix. �

Lemma 1 reveals how every member i ∈ N uses the announced community price ΓDNEM and its OEs to compute

the thresholds θi1, θ
i
2, which are then compared to the member’s local DER bi to schedule consumption (Fig.3).

As depicted in Fig.3, Lemma 1, and given the monotonicity of ΓDNEM and fi for all i ∈ N , shows that the

optimal consumption of community members d
∗,DNEM

i is monotonically increasing with bi, leading to a monotonically

decreasing optimal net consumption z
∗,DNEM

i with bi.

Given the optimal responses of the benchmark (Lemma 2 in the appendix) and the community member (Lemma

1), Theorem 1 establishes individual rationality under the proposed OEs-aware D-NEM.

Theorem 1 (Individual rationality). Under the OEs-aware D-NEM, every member i ∈ N and for all bi, achieves

a surplus no less than its benchmark, i.e.,

S
∗,DNEM

i (bi) ≥ S
∗,NEM

i (bi), (21)

where S
∗,DNEM

i (bi) := S
∗,DNEM

i (d∗,DNEM

i (bi), z
∗,DNEM

i (bi)) is the member surplus under optimal decisions.

Proof: See the appendix. �

Theorem 1 shows that every member i ∈ N finds it advantageous to join the community over autonomously

facing the DSO.



Fig. 3. Community members optimal consumption and net consumption under the OEs-aware D-NEM.

IV. SOCIAL OPTIMALITY AND COST-CAUSATION

Given the OEs-aware D-NEM and the corresponding rational prosumer response, we establish two primary results

on social optimality (Theorem 2) and conformity with the generalized cost-causation principle (Theorem 3).

Theorem 2 (Decentralized welfare optimality). Under the OEs-aware D-NEM, the aggregate surplus of community

members achieves the community maximum welfare, i.e.,
∑

i∈N S
∗,DNEM

i (bi) = W
†,NEM

N (b).

Proof: See the appendix. �

Theorem 2 also shows that the maximum community welfare is wholly distributed to the members. Next, we

leverage Definition 1 to establish the conformity of the OEs-aware D-NEM that induced community members to

achieve the maximum social welfare with the cost-causation principle.

Theorem 3 (Conformity with the generalized cost-causation principle). The proposed OEs-aware D-NEM satisfies

the generalized cost-causation principle.

Proof: See the appendix. �

Intuitively, the non-discriminatory price of the OEs-aware D-NEM directly leads to the equity and monotonicity

axioms, and structuring the volumetric charge based on the member’s own net consumption zi enables penalizing

net-consumers (zi > 0), and rewarding net-producers (zi < 0), which satisfy axiom 5 in Definition 1.

V. NUMERICAL STUDY

To evaluate the community market mechanism and the corresponding optimal prosumer response, we used a

one-year DER data8 of N = 20 residential customers (3 of which do not have BTM generation) to construct an

energy community, whereby the 20 households pool and aggregate their resources behind a DSO revenue meter

under a NEM policy9. The DSO charges the community (retail rate π+) based on a ToU rate with π+
ON = $0.40/kWh

and π+
OFF = $0.20/kWh as on- and off-peak prices, respectively, and compensates the community (export rate π−)

based on the wholesale market price10. The DSO’s fixed charge under NEM is assumed to be zero, i.e., π0 = 0.

The DSO OEs were varied, but we assumed homogeneous OEs and zi = −zi,∀i ∈ N .

For every i ∈ N , the household’s consumption preferences are modeled using a quadratic concave and non-

decreasing utility function of the form

Uik(dik) =

{

αikdik −
1
2
βikd

2
ik, 0 ≤ dik ≤ αik

βik

α2
ik

2βik
, dik > αik

βik
,

(22)

8We used 2018 PecanStreet data for households in Austin, TX with 15-minute granularity.
9Centralized resources were not considered.
10We used the averaged 2018 real-time wholesale prices in Texas. The data is accessible at ERCOT.

https://www.pecanstreet.org/dataport/
https://www.ercot.com/mktinfo/prices


for all k ∈ K, where αik, βik are parameters that are learned and calibrated using historical retail prices11 and

consumption12, and by predicating an elasticity for each load type (see appendix D in [4]). Two load types with

two different utility functions of the form in (22) were considered: 1) HVAC, and 2) other household loads13. We

ignore device consumption limits di,di,∀i ∈ N .

We compared the welfare of four schemes under the same resources and number of customers. The first two

involve no community (coalition), whereas the last two consider energy communities.

1) NEM-Benchmark: N prosumers who autonomously face the DSO’s NEM, and solve (10), which yields a

BTM-generation-aware consumption scheduling as shown in Lemma 2 in the appendix. The welfare of NEM-

Benchmark is the aggregate maximized surplus of the N prosumers.

2) NEM-Passive Benchmark: similar to NEM-Benchmark, under this scheme, the N prosumers autonomously

face the DSO, but rather than optimally scheduling their resources as in Lemma 2, they use all of the BTM

generation to reduce their payment (see [4] for a wider discussion). The welfare of NEM-Passive Benchmark

is, also, the sum of the N customers’ surpluses.

3) D-NEM: N prosumers who form a community under the OEs-aware D-NEM. The welfare achieved under this

case is as in (11).

4) NEM-Community: unlike the ex-ante price set under D-NEM, the price and/or allocation rules under NEM-

Community are set after the market is cleared. Therefore, the N prosumers continue to consume as if they were

facing the DSO’s NEM14, but gain higher benefits by joining the coalition because P π(zN ) ≤
∑

i∈N P π(zi),
as shown, for example, in [2], [7], [9]. The NEM-Community scheme includes allocation methods such as

Shapley value [16], [23], proportional rule [27], the allocation in [9], and the nucleolus [7], [22], among

others.

The monthly welfare gains (%) achieved by NEM-Benchmark, D-NEM, and NEM-Community over the NEM-

Passive Benchmark welfare are shown in Fig.4 under −zi = zi = 3kW OEs (left) and −zi = zi = ∞ (right).

For every month, the difference between the circles and the reference (zero) shows the value of being an active

prosumer under the DSO’s NEM X, whereas the difference between the diamonds and the circles shows the value

of forming the community (coalition) and sharing the resources. The asterisks show the value of adopting the

OEs-aware D-NEM that induces the members to maximize global welfare.

!"#$% #$% " &'(()*+,- #$% " ./*01(234

Fig. 4. Monthly welfare gain (%) over NEM - Passive Benchmark under −zi = zi = 3kW (left) and −zi = zi = ∞ (right). The bar chart

shows the aggregate community generation bN .

Four observations in Fig.4 are in order. First, in all months, forming the energy communities achieved positive

welfare gains, which shows the value of forming the coalition over autonomously facing the DSO. Second, we

observe the optimality of D-NEM over the schemes, since D-NEM induces the community members to maximize

11We used Data.AustinTexas.gov historical residential rates in Austin, TX.
12We used pre-2018 PecanStreet data for households in Austin, TX.
13The elasticities of HVAC and other household loads are taken from [26].
14For a fairer comparison, and to improve the welfare under this case, we assume that prosumers consume similar to NEM-Benchmark

rather than NEM-Passive Benchmark.

https://data.austintexas.gov/stories/s/EOA-C-5-a-Austin-Energy-average-annual-system-rate/t4es-hvsj/


global welfare. The average monthly gain under D-NEM was ∼5.3%, whereas it was ∼1.4% and ∼4.4% under

NEM-Benchmark, and NEM-Community, respectively. Third, comparing the left and right panels of Fig.4, the welfare

gains were only slightly affected by changing the OEs, because the OEs are the same regardless of whether the

customer joins the community or stays under the DSO’s NEM X. The OEs, however, affected the total welfare, as

will be shown in Fig.5. Lastly, the welfare gains are functions of the community’s aggregate renewable and also

flexibility given by the utility function parameters α and β in (22). One can see that although in the summer months

(June–August), renewables were the highest, hence higher welfare, the welfare gain was the lowest in those months.

This is because consumption in the summer was also high, which means that the renewables were mostly consumed

by BTM rather than pooled with other customers, which creates the intrinsic value of energy communities.

We observed in Fig.4 that the effect of relaxing OEs on welfare gain over NEM-Passive Benchmark was negligible.

Fig. 5 shows the normalized average monthly welfare (to the minimum value under NEM-Passive Benchmark) of

the four schemes as the OEs get relaxed from −zi = zi = 3kW to −zi = zi = 8kW. Under all four schemes, the

welfare increased as the OEs were further relaxed. Increasing the OEs from 3kW to 8kW increased the normalized

welfare of each scheme by almost 2.5%. At −zi = zi = 3kW, D-NEM normalized percentage welfare was ∼ 105%,

which increased to ∼ 107.5% at −zi = zi = 8kW, because more energy can be pooled within the community.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Operating Envelopes (kW)

100

101

102

103

104

105

106

107

108

N
o

rm
al

iz
ed

 W
el

fa
re

 (
%

)

!"#$%

#$%&" '())*+,-.

#$%&" /0+12)345

#$% 6 7388,90&/0+12)345

Fig. 5. Normalized average monthly welfare (%) under varying OEs.

VI. CONCLUSION

This work proposes an OEs-aware market mechanism for energy communities that incorporates the DSO’s

dynamic OEs at each member’s meter into its pricing structure to induce a collective member response that

decentrally achieves the maximum global welfare while making joining the community advantageous for every

member. The market mechanism charges its members by a uniform, but dynamic, price that obeys a two-threshold

policy and gets announced based on how much aggregate generation-storage resources exist in the community. The

OEs-aware mechanism is shown to conform with the generalized cost-causation principle of designing just and fair

cost allocations.

A potentially worthwhile future direction is to address and quantify the flexibility limitations brought by network-

awareness via OEs and compare it with communities that have OEs at the PCC rather than at its members’ revenue

meters.
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APPENDIX: PROOFS AND ADDITIONAL THEORETICAL RESULTS

A. Proof of Lemma 1

The proof follows directly from KKT conditions. We drop the subscript i to simplify notations. The Lagrangian

of (16) is given by:

L(·) := ΓDNEM · (
K∑

k=1

dk − b)−
K∑

k=1

Uk(dk) +

K∑

k=1

γk(dk − dk)

−
K∑

k=1

γ
k
(dk − dk) + λ(

K∑

k=1

dk − b− z)− λ(

K∑

k=1

dk − b− z),

where γk and γ
k

are device k’s Lagrangian multipliers associated with its upper and lower consumption limits,

respectively, whereas λ and λ are Lagrangian multipliers associated with the upper and lower OEs, respectively.

For every device k, deriving the Lagrangian with respect to dk, gives

∂L

∂dk
= ΓDNEM − Lk(d

∗,DNEM

k ) + γk − γ
k
+ λ− λ = 0,

which yields

d
∗,DNEM

k = fk(Γ
DNEM + γk − γ

k
+ λ− λ).

Given the assumption in (8) and complementary slackness conditions of the consumption limits multipliers, we can

re-write the equation above to

d
∗,DNEM

k = max{dk,min{fk(Γ
DNEM + λ− λ), dk}}.

From the complementary slackness conditions of the OEs, we can write the consumption above as

d
∗,DNEM

k =







max{dk,min{fk(Γ
DNEM), dk}} if λ = λ = 0

max{dk,min{fk(Γ
DNEM + λ), dk}} if λ > 0, λ = 0

max{dk,min{fk(Γ
DNEM − λ), dk}} if λ = 0, λ > 0.

Let dΓ
DNEM

k
:= max{dk,min{fk(Γ

DNEM), dk}}. Note that when λ = λ = 0, we have

b ∈ (

K∑

k=1

dΓ
DNEM

k − z,

K∑

k=1

dΓ
DNEM

k − z).

If b ≤
∑K

k=1
dΓ

DNEM

k − z → z ≤
∑K

k=1
dΓ

DNEM

k − b, because of the monotonicity of fk, it must be that λ > 0, λ = 0,

and we have
K∑

k=1

max{dk,min{fk(µ1), dk}} − b = z, where µ1 := ΓDNEM + λ, (23)

which must have a non-negative solution when b ∈ [
∑K

k=1
dk − z,

∑K
k=1

dΓ
DNEM

k − z]. Let

F1(x) :=

K∑

k=1

max{dk,min{fk(x), dk}} − b− z,

which is a continuous and monotonically decreasing function of b. Since F1(Γ
DNEM) ≥ 0, F1(µmax) ≤ 0, where µmax

is such that
K∑

k=1

max{dk,min{fk(µmax), dk}} =

K∑

k=1

dk,



there must exist a µ∗
1 ∈ [ΓDNEM, µmax] such that F (µ∗

1) = 0. The positive solution of (23) also implies d
µ∗

1

k (b) ∈

[dk, d
ΓDNEM

k ],∀k. Therefore, the optimal consumption when b ≤
∑K

k=1
dΓ

DNEM

k − z is d
∗,DNEM

k (b) = d
µ∗

1

k (b) :=
max{dk,min{fk(µ

∗
1(b)), dk}}.

Similarly, if b ≥
∑K

k=1
dΓ

DNEM

k − z → z ≥
∑K

k=1
dΓ

DNEM

k − b, it must be that λ = 0, λ > 0, and we have

K∑

k=1

max{dk,min{fk(µ2), dk}} − b = z, where µ2 := ΓDNEM − λ, (24)

which must have a non-negative solution when b ∈ [
∑K

k=1
dΓ

DNEM

k − z,
∑K

k=1
dk − z]. Let

F2(x) :=

K∑

k=1

max{dk,min{fk(x), dk}} − b− z, (25)

which is a continuous and monotonically decreasing function of b. Since

F2(Γ
DNEM) ≤ 0, F2(µmin) ≥ 0,

where µmin is such that
K∑

k=1

max{dk,min{fk(µmin), dk}} =

K∑

k=1

dk,

there must exist a µ∗
2 ∈ [µmin,Γ

DNEM] such that F (µ∗
2) = 0. The positive solution of (25) also implies d

µ∗

2

k (b) ∈

[dΓ
DNEM

k , dk]. Therefore, the optimal consumption when b ≥
∑K

k=1
dΓ

DNEM

k −z is d
∗,DNEM

k (b) = d
µ∗

2

k (b) := max{dk,min{fk(µ
∗
2(b)), dk}}.

Letting θ1 :=
∑K

k=1
dΓ

DNEM

k − z, θ2 :=
∑K

k=1
dΓ

DNEM

k − z, the optimal consumption can be written as

d
∗,DNEM

k (b) =







d
µ∗

1

k (b) if b ≤ θ1

dΓ
DNEM

k if b ∈ (θ1, θ2)

d
µ∗

2

k (b) if b ≥ θ2,

and has a vector form

d∗,DNEM(b) =







dµ∗

1 (b) if b < θ1

dΓDNEM

if b ∈ [θ1, θ2]

dµ∗

2 (b) if b > θ2,

where we used the fact that, for every k, d
µ∗

1

k (θ1) = dΓ
DNEM

k and d
µ∗

2

k (θ2) = dΓ
DNEM

k . By definition, the optimal net

consumption z∗,DNEM(b) is as shown in (20). �

B. Lemma 2 and its proof

Lemma 2 (Benchmark prosumer optimal response and maximum surplus). The optimal benchmark consumption

of every member i ∈ N under the DSO’s NEM regime abides by the following 4-thresholds,

∆i
1 := ∆i

2 − zi, ∆i
2 :=

K∑

k=1

max{dik,min{fik(π
+), dik}} (26)

∆i
3 :=

K∑

k=1

max{dik,min{fik(π
−), dik}}, ∆i

4 := ∆i
3 − zi. (27)

as

d
∗,NEM

i (bi) :=







d
µ+

i (bi) , bi ≤ ∆i
1

dπ+

i , bi ∈ [∆i
1,∆

i
2]

d
µo

i (bi) , bi ∈ [∆i
2,∆

i
3]

dπ−

i , bi ∈ [∆i
3,∆

i
4]

d
µ−

i (bi) , bi ≥ ∆i
4

(28)



where the static consumptions dπ+

ik and dπ−

ik and dynamic consumptions d
µ+

ik (bi),d
µo

i (bi),d
µ−

i (bi), for every k ∈ K,

are all given by,

dxik := max{dik,min{fik(x), dik}}, (29)

and the prices µ+(bi), µ
o(bi), µ

−(bi) are the solutions of:

K∑

k=1

max{dik,min{fik(µ
p), dik}} = zi + bi, (30)

K∑

k=1

max{dik,min{fik(µ
zz), dik}} = bi, (31)

K∑

k=1

max{dik,min{fik(µ
n), dik}} = zi + bi, (32)

respectively, with the order µ+(bi) ≥ π+ ≥ µo(bi) ≥ π− ≥ µ−(bi).
By definition, the surplus under optimal consumption is given by:

S
∗,NEM

i (bi) :=







Ui(d
µ+

i (bi))− π+zi , bi ≤ ∆i
1

Ui(d
π+

i )− π+(1⊤dπ+

i − bi) , bi ∈ [∆i
1,∆

i
2]

Ui(d
µo

i (bi)) , bi ∈ [∆i
2,∆

i
3]

Ui(d
π−

i )− π−(1⊤dπ−

i − bi) , bi ∈ [∆i
3,∆

i
4]

Ui(d
µ−

i (bi))− π−zi , bi ≥ ∆i
4.

(33)

Proof of Lemma 2: We drop the prosumer subscript/superscript i for notational brevity. The concave and non-

differentiable objective of the benchmark prosumer optimization in (10) can be divided into the following three

convex programs PNEM,+,PNEM,−, and PNEM,o, which correspond to when z ≥ 0, z ≤ 0 and z = 0, respectively15:

PNEM,+ : minimize
d∈RK

π+(1⊤d− b)− U(d)

subject to 1
⊤d− b ≥ 0,

d � d � d

z ≤ z.

(34)

PNEM,− : minimize
d∈RK

π−(1⊤d− b)− U(d)

subject to 1
⊤d− b ≤ 0,

d � d � d

z ≤ z.

(35)

PNEM,o : minimize
d∈RK

−U(d)

subject to 1
⊤d− b = 0,

d � d � d.

(36)

Since we assumed that for every i ∈ N , the OEs (z, z) satisfy z ≥ 1
⊤d− b and z ≤ 1

⊤d− b, an optimal solution

for each of the three optimizations above exists. Because the Slater’s condition is satisfied for these optimizations,

KKT conditions for optimality are necessary and sufficient. Given b, the optimal schedule is the one that achieves

the minimum value among PNEM,+,PNEM,− and PNEM,o.

15The proof here follows the approach adopted in [19].



1) Schedule when z ≥ 0:

Under PNEM,+, the Lagrangian L+ is given by

L+(·) = π+(

K∑

k=1

dk − b)−
K∑

k=1

Uk(dk) +

K∑

k=1

γ+k (dk − dk)−
K∑

k=1

γ+
k
(dk − dk)− κ+(

K∑

k=1

dk − b)

+ ν+(

K∑

k=1

dk − b− z),

where γ+k , γ
+

k
, κ+, ν+ ≥ 0 are Lagrange multipliers for the upper and lower consumption constraints for every

device k, net-consumption zone constraint, and OE constraint, respectively. Given that PNEM,o covers the case

when κ+ > 0, we can here set κ+ = 0. From the KKT conditions we have, for all k ∈ K,

d
∗,NEM

k = fk(π
+ + γ+k − γ+

k
+ ν+)

From the proof of Lemma 2, we know that when ν+ = 0 we have

d
∗,NEM

k
:= max{dk,min{fk(π

+), dk}}.

When the import envelope is binding, we have ν+ > 0, and the optimal consumption becomes

d
∗,NEM

k
:= max{dk,min{fk(µ

p), dk}},

where the price µp := π+ + ν+ is such that the following equality holds:

K∑

k=1

max{dk,min{fk(µ
p), dk}} − b = z. (37)

Next, we show that (37) must have a non-negative solution when b ∈ [
∑K

k=1
dk − z,∆1]. Let,

F1(x) :=

K∑

k=1

max{dk,min{fk(x), dk}} − b− z. (38)

which is a continuous and monotonically decreasing function of b. Since

F1(π
+) ≥ 0, F1(µmax) ≤ 0,

where µmax is such that
K∑

k=1

max{dk,min{fk(µmax), dk}} =

K∑

k=1

dk,

there must exist a µ+(b) ∈ [π+, µmax] such that F (µ+(b)) = 0. The positive solution of (38) also implies

d
µ+

k (b) ∈ [dk, d
π+

k ], and from the continuity and monotonicity of F in b, d
µ+

k (b) is also a continuous and

monotonically increasing function of b. Hence, in summary:

d
∗,NEM

k (b) =

{

dπ
+

k ,
∑K

k=1
dπ

+

k − b < z

max{dk,min{fk(µ
+(b)), dk}},

∑K
k=1

dπ
+

k − b ≥ z,

where dπ
+

k
:= max{dk,min{fk(π

+), dk}}. From our definition of ∆1 and ∆2, we can re-write the optimal

consumption above as

d
∗,NEM

k (b) =

{

dπ
+

k , b > ∆1

d
µ+

k (b) , b ≤ ∆1,

where d
µ+

k (b) := max{dk,min{fk(µ
+(b)), dk}}.



2) Schedule when z ≤ 0:

Under PNEM,−, the Lagrangian L− is given by

L− = π−(

K∑

k=1

dk − b)−
K∑

k=1

Uk(dk) +

K∑

k=1

γ−k (dk − dk)−
K∑

k=1

γ−
k
(dk − dk) + κ−(

K∑

k=1

dk − b)

− ν−(

K∑

k=1

dk − b− z),

where γ−k , γ
−
k
, κ−, ν− ≥ 0 are Lagrange multipliers for the upper and lower consumption constraints for every

k, net-consumption zone constraint, and operating envelop constraint, respectively. Following the same steps in

the schedule when z ≥ 0, we have, for all k ∈ K:

d
∗,NEM

k (b) =

{

dπ
−

k , dπ
−

k − b > z

max{dk,min{fk(µ
−(b)), dk}}, d

π−

k − b ≤ z

where dπ
−

k := max{dk,min{fk(π
−), dk}}, and µ−(b) ≤ π− is the price that solves:

K∑

k=1

max{dk,min{fk(µ
n), dk}} − b = z.

From the definitions of ∆3 and ∆4, we can re-write the optimal consumption above as

d
∗,NEM

k (b) =

{

dπ
−

k , b < ∆4

max{dk,min{fk(µ
−), dk}} , b ≥ ∆4

Similar to PNEM,+, we can show that there must exist µ−(b) ∈ [µmin, π
−] when b ∈ [∆4,

∑K
k=1

dk − z]. Also, the

consumption when the export operating envelope z binds d
µ−

k (b) is continuous and monotonically increasing in

b, and bounded by d
µ−

k (b) ∈ [dπ
−

k , dk].
3) Schedule when z = 0:

Lastly, the schedule of Po is the same as in [19]. Therefore, the optimal consumption, when b ∈ [∆2,∆3], is

d
∗,NEM

k (b) = max{dk,min{fk(µ
o), dk}} ∈ [∆2,∆3],

where ∆2,∆3 are as defined in Lemma 2, and µo(b) ∈ [π−, π+] is the solution of:

K∑

k=1

max{dk,min{fk(µ
zz), dk}} − b = 0.

Combining the schedules in the three zones, we get the optimal consumption in (28), which given the definition

of surplus function in (9), yields (33). �

C. Proof of Theorem 1

The proof is done by comparing the community member surplus under optimal decisions in Lemma 1, given by

S
∗,DNEM

i (bi) =







Ui(d
µ∗

1

i (bi))− ΓDNEM · zi , bi < θi1

Ui(d
ΓDNEM

i )− ΓDNEM · (1⊤dΓDNEM

i − bi) , bi ∈ [θi1, θ
i
2]

Ui(d
µ∗

2

i (bi))− ΓDNEM · zi , bi > θi2,

(39)

to the benchmark surplus under optimal benchmark decision S
∗,NEM

i (bi), shown in (33) in Lemma 2.

Table I lists the 21 cases of the surplus difference between the community member and its benchmark given bi
and the community price ΓDNEM(b), given by

∆Si(bi) := S
∗,DNEM

i (bi)− S
∗,NEM

i (bi).



The proof is complete if we show that in each case in Table I, ∆Si ≥ 0. Note that in cases 1–2, and 20–21,

∆Si = 0. Also, in cases 7, 8, 14, and 15, ∆Si ≥ 0 because π+ ≥ πz ≥ π− and zi ≥ 0, zi ≤ 0. Note that some of

the cases overlap with the cases in [17] where OEs are absent. Particularly, case 3 here matches piece 2 in [17],

case 4 matches piece 3 [17], case 10 matches piece 4 [17], case 11 matches piece 5 in [17], case 12 matches piece

6 in [17], case 18 matches piece 7 in [17], and case 19 matches piece 8 in [17]. So it remains to prove the surplus

difference non-negativity of the remaining 6 cases, which are 5–6, 9, 13, 16–17.

TABLE I

SURPLUS DIFFERENCE BETWEEN A COMMUNITY MEMBER AND ITS BENCHMARK.

Case ΓDNEM Community member Benchmark member Surplus difference (∆Si(bi))

1 π+ bi < θi1 bi < ∆i
1 0

2 π+ bi ∈ [θi1, θ
i
2] bi ∈ [∆i

1,∆
i
2] 0

3 π+ bi ∈ [θi1, θ
i
2] bi ∈ [∆i

2,∆
i
3] Ui(d

π+

i )− π+(1⊤
d
π+

i − bi)− Ui(d
µo

i (bi))

4 π+ bi ∈ [θi1, θ
i
2] bi ∈ [∆i

3,∆
i
4] Ui(d

π+

i )− π+(1⊤
d
π+

i − bi)− Ui(d
π−

i ) + π−(1⊤
d
π−

i − bi)

5 π+ bi > θi2 bi ∈ [∆i
2,∆

i
3] Ui(d

µ∗

2

i (bi))− π+zi − Ui(d
µo

i (bi))

6 π+ bi > θi2 bi ∈ [∆i
3,∆

i
4] Ui(d

µ∗

2

i (bi))− π+zi − Ui(d
π−

i ) + π−(1⊤
d
π−

i − bi)

7 π+ bi > θi2 bi > ∆i
4 (π−

− π+)zi
8 πz bi < θi1 bi < σi

1 (π+
− πz)zi

9 πz bi < θi1 bi ∈ [∆i
1,∆

i
2] Ui(d

µ∗

1

i (bi))− πzzi − Ui(d
π+

i ) + π+(1⊤
d
π+

i − bi)

10 πz bi ∈ [θi1, θ
i
2] bi ∈ [∆i

1,∆
i
2] Ui(d

πz

i )− πz(1⊤
d
πz

i − bi)− Ui(d
π+

i ) + π+(1⊤
d
π+

i − bi)

11 πz bi ∈ [θi1, θ
i
2] bi ∈ [∆i

2,∆
i
3] Ui(d

πz

i )− πz(1⊤
d
πz

i − bi)− Ui(d
µo

i (bi))

12 πz bi ∈ [θi1, θ
i
2] bi ∈ [∆i

3,∆
i
4] Ui(d

πz

i )− πz(1⊤
d
πz

i − bi)− Ui(d
π−

i ) + π−(1⊤
d
π−

i − bi)

13 πz bi > θi2 bi ∈ [∆i
3,∆

i
4] Ui(d

µ∗

2

i (bi))− πzzi − Ui(d
π−

i ) + π−(1⊤
d
π−

i − bi)

14 πz bi > θi2 bi > ∆i
4 (π−

− πz)zi
15 π− bi < θi1 bi < ∆i

1 (π+
− π−)zi

16 π− bi < θi1 bi ∈ [∆i
1,∆

i
2] Ui(d

µ∗

1

i (bi))− π−zi − Ui(d
π+

i ) + π+(1⊤
d
π+

i − bi)

17 π− bi < θi1 bi ∈ [∆i
2,∆

i
3] Ui(d

µ∗

1

i (bi))− π−zi − Ui(d
µo

i )

18 π− bi ∈ [θi1, θ
i
2] bi ∈ [∆i

1,∆
i
2] Ui(d

π−

i )− π−(1⊤
d
π−

i − bi)− Ui(d
π+

i ) + π+(1⊤
d
π+

i − bi)

19 π− bi ∈ [θi1, θ
i
2] bi ∈ [∆i

2,∆
i
3] Ui(d

π−

i )− π−(1⊤
d
π−

i − bi)− Ui(d
µo

i )

20 π− bi ∈ [θi1, θ
i
2] bi ∈ [∆i

3,∆
i
4] 0

21 π− bi > θi2 bi > ∆i
4 0

We use the following property for concavity of U(·)

L(x) ≥
U(y)− U(x)

y − x
≥ L(y). (40)

to show that ∆Si ≥ 0, for the remaining cases.

• Case 5: Note that, from Lemmas 1-2 µ∗
2 = µ− ≤ µo, which given the monotonicity of fik,∀i, k means that

d
µ∗

2

i (bi) � d
µo

i (bi), hence Ui(d
µ∗

2

i (bi)) ≥ Ui(d
µo

i (bi)). Therefore, in case 5, ∆Si(bi) = Ui(d
µ∗

2

i (bi)) − π+zi −

Ui(d
µo

i (bi)) ≥ 0 because Ui(d
µ∗

2

i (bi))− Ui(d
µo

i (bi)) ≥ 0 and −π+zi ≥ 0.

• Case 6: Using the same argument in case 5, we have Ui(d
µ∗

2

i (bi)) ≥ Ui(d
π−

i ). The non-negativity of this piece

is proved if we show that Q := −π+zi + π−(1⊤dπ−

i − bi) ≥ 0. Note that in this case, we have

1
⊤dπ−

i − zi ≥ bi ≥ 1
⊤dπ+

i − zi,

which after subtracting 1
⊤dπ−

i and multiplying by (-1) becomes

zi ≤ 1
⊤dπ−

i − bi ≤ zi + 1
⊤dπ−

i − 1
⊤dπ+

i .

Using the lower bound above, we have Q = (π− − π+)zi ≥ 0.



• Case 9: Here it must be that π+ ≥ µ∗
1 because bi = 1

⊤d
µ∗

1

i (bi) − zi and bi ≥ 1
⊤dπ+

i − zi, which mean that

d
µ∗

1

i (bi) > dπ+

i , implying π+ ≥ µ∗
1 from the monotonicity of the inverse marginal utility. Using (40) and the

additivity property of the utility function (Ui(di) :=
∑K

k=1
Uik(dik)), we have

K∑

k=1

(d
µ∗

1

ik (bi)− dπ
+

ik )Lik(d
π+

ik ) ≥ Ui(d
µ∗

1

i (bi))− Ui(d
π+

i ) ≥
K∑

k=1

(d
µ∗

1

ik (bi)− dπ
+

ik )Lik(d
µ∗

1

ik (bi)).

By noting that π+ ≥ Lik(d
µ∗

1

ik (bi)) =: ν(bi) ≥ πz,∀k, and using the lower bound above, the surplus difference

becomes

∆Si(bi) = (π+ − ν(bi))1
⊤dπ+

i + ν(bi)1
⊤d

µ∗

1

i − πzzi − π+bi = (ν(bi)− π+)(bi − 1
⊤dπ+

i ) + (ν(bi)− πz)zi ≥ 0,

where we used 1
⊤d

µ∗

1

i = bi + zi, and ν(bi) ≥ πz , and bi ≤ 1
⊤dπ+

i (from bi ∈ [∆1,∆2]).

• Case 13: Same as in case 6, we have Ui(d
µ∗

2

i (bi)) ≥ Ui(d
π−

i ). The non-negativity of this piece is proved if we

show that Q := −πzzi + π−(1⊤dπ−

i − bi) ≥ 0. Note that in this case, we have

1
⊤dπ−

i − zi ≥ bi ≥ 1
⊤dπz

i − zi,

which after subtracting 1
⊤dπ−

i and multiplying by (-1) becomes

zi ≤ 1
⊤dπ−

i − bi ≤ zi + 1
⊤dπ−

i − 1
⊤dπ−

i .

Using the lower bound above, we have Q = (π− − πz)zi ≥ 0.

• Case 16: This case is the same as 9, except πz is replaced with π−. Following the same steps in case 9, the

surplus difference is

∆Si(bi) = (π+ − ν(bi))1
⊤dπ+

i + ν(bi)1
⊤d

µ∗

1

i − π−zi − π+bi

= (ν(bi)− π+)(bi − 1
⊤dπ+

i ) + (ν(bi)− π−)zi ≥ 0

where we used 1
⊤d

µ∗

1

i = bi+zi, and ν(bi) ≥ π− from Lemma 1 and bi ≤ 1
⊤dπ+

i from the condition bi ∈ [∆1,∆2].
• Case 17: Here we have two sub-cases

– Case 17.1 (µ∗
1(bi) ≥ µo(bi)): This yields d

µo

i (bi) ≥ d
µ∗

1

i (bi) and Ui(d
µo

i (bi)) ≥ Ui(d
µ∗

1

i (bi)). Using (40) and

multiplying by (-1), we have

K∑

k=1

(d
µ∗

1

ik (bi)− d
µo

ik (bi))Lik(d
µ∗

1

ik (bi)) ≥ Ui(d
µ∗

1

i (bi))− Ui(d
µo

i (bi)) ≥
K∑

k=1

(d
µ∗

1

ik (bi)− d
µo

ik (bi))Lik(d
µo

ik (bi)).

By noting that π− ≤ Lik(d
µo

ik (bi)) =: ν(bi) ≤ µ∗
1(bi),∀k, and using the lower bound above, the surplus

difference becomes

∆Si(bi) = ν(bi)(1
⊤d

µ∗

1

i − 1
⊤d

µo

i (bi))− π−zi = (ν(bi)− π−)zi ≥ 0

where we used 1
⊤d

µ∗

1

i = bi + zi from Lemma 1 and 1
⊤d

µo

i = bi from Lemma 2.

– Case 17.2 (µ∗
1(bi) ≤ µo(bi)): The same method in case 17.1 is applied to show that, in this case, ∆Si(bi) ≥ 0.

This completes the proof. �

D. Proof of Theorem 2

The proof follows from comparing the aggregated surplus of community members under optimal decisions

(
∑

i∈N S
∗,DNEM

i (bi)) to the maximum welfare under centralized operation derived in Lemma 3 below.

Lemma 3 (Community maximum welfare). The maximum community welfare under centralized resource scheduling

is



Proof of Lemma 3

Recall the centralized welfare maximization PNEM

N in (11), and given the forecasted renewables b ≥ 0,

maximize
{di}N

i=1,{zi}
N
i=1

W NEM

N (d1, . . . ,dN ,z) :=
∑N

i=1
Ui(di)− P π

N (zN )

subject to zN =
∑N

i=1
zi =

∑N
i=1

(1⊤di − bi)

di � di � di, ∀i ∈ N
zi ≤ zi ≤ zi, ∀i ∈ N

Given that the last constraint above and the indicator function in the objective, the optimization above can be,

similar to the proof of Lemma 2 divided into 3 convex programs:

P+
N : minimize

{di}N
i=1,{zi}

N
i=1

∑N
i=1

(π+(1⊤di − bi)− Ui(di))

subject to zN ≥ 0

di � di � di, ∀i ∈ N
zi + bi ≤ 1

⊤di ≤ zi + bi, ∀i ∈ N

P0
N : minimize

{di}N
i=1,{zi}

N
i=1

−
∑N

i=1
Ui(di)

subject to zN = 0

di � di � di, ∀i ∈ N
zi + bi ≤ 1

⊤di ≤ zi + bi, ∀i ∈ N

P−
N : minimize

{di}N
i=1,{zi}

N
i=1

∑N
i=1

(π−(1⊤di − bi)− Ui(di))

subject to zN ≤ 0

di � di � di, ∀i ∈ N
zi + bi ≤ 1

⊤di ≤ zi + bi, ∀i ∈ N .

The three programs are similar to the ones in the proof of Theorem 1 in [19], but with the additional dimension

of N members and the constraint on 1
⊤di,∀i ∈ N . Therefore, following the same steps in [19], it is not hard to

show that the optimal centralized consumption d
†,NEM

i of every community member obeys by the two thresholds

d̃π
+

N (b) :=

N∑

i=1

max{zi + bi,min{1⊤dπ+

i , zi + bi} = σ1

d̃π
−

N (b) :=

N∑

i=1

max{zi + bi,min{1⊤dπ−

i , zi + bi} = σ2 ≥ σ1,

with the solution being of the form:

d
†,NEM

i (b) =







y+
i (bi) , bN < d̃π

+

N (b)

yz
i (b) , bN ∈ [d̃π

+

N (b), d̃π
−

N (b)]

y−
i (bi) , bN < d̃π

−

N (b),

, ∀i ∈ N (41)

where the first, second, and third pieces in (41) solve P+
N ,P0

N and P−
N , respectively, and

∑

i∈N

1
⊤d

†,NEM

i (b) =







d̃π
+

N (b) , bN < d̃π
+

N (b)

bN , bN ∈ [d̃π
+

N (b), d̃π
−

N (b)]

d̃π
−

N (b) , bN < d̃π
−

N (b).

(42)



Note that the optimal decisions in P+
N and P−

N can be decoupled to N programs of the form in (16), because

the constraints zN ≥ 0 and zN ≤ 0 in P+
N and P−

N , respectively, are non-binding, given that the binding case is

covered in P0
N . Therefore, when bN < d̃π

+

N (b) or bN > d̃π
−

N (b), the operator schedules every member i same as

that in Lemma 1, but with π+ or π−, respectively, instead of ΓDNEM.

In the net-zero zone, i.e., bN ∈ [d̃π
+

N (b), d̃π
−

N (b)], the schedule of every member is also same as that in Lemma

1, but with replacing ΓDNEM by the price πz† ∈ (π−, π+) that solves the following

N∑

i=1

max

{

xi,min
{

1
⊤max{di,min{fi(1µ), di}, xi

}}

= bN ,

where xi := zi + bi and xi := zi + bi. One can see that πz†(b) is equal to πz(b) of DNEM.

Therefore, in summary, the optimal consumption under centralized control is

d
†,NEM

i (b) =







d
†π+

i (bi) , bN < d̃π
+

N (b)

d
†πz

i (bi) , bN ∈ [d̃π
+

N (b), d̃π
−

N (b)]

d
†π−

i (bi) , bN < d̃π
−

N (b)

, ∀i ∈ N

where for ever d
†π+

i (bi),d
†πz

i (bi), and d
†π−

i (bi) are computed as in Lemma 1, but with replacing ΓDNEM by π+, πz ,

and π−, respectively.

By definition, the welfare under optimal consumption decisions is

W †,NEM(b) =







∑N
i=1

Ui(d
†π+

i (bi))− π+ · (d̃π
+

N (b) − bN ) , bN < d̃π
+

N (b)
∑N

i=1
Ui(d

†πz

i (bi)) , bN ∈ [d̃π
+

N (b), d̃π
−

N (b)]
∑N

i=1
Ui(d

†π−

i )− π− · (d̃π
−

N (b)− bN ) , bN < d̃π
−

N (b).

(43)

�

Now it remains to compare the welfare under optimal decisions in (43) in the proof of Lemma 3, to the aggregate

surplus of community members under the OE-aware D-NEM (in (39))

S
∗,DNEM

i (bi) =







Ui(d
µ∗

1

i (bi))− ΓDNEM · zi , bi < θi1

Ui(d
ΓDNEM

i )− ΓDNEM · (1⊤dΓDNEM

i − bi) , bi ∈ [θi1, θ
i
2]

Ui(d
µ∗

2

i (bi))− ΓDNEM · zi , bi > θi2,

which we can succinctly write as

S
∗,DNEM

i (bi) = U(d∗,DNEM

i (bi))− ΓDNEM · (1⊤d∗,DNEM

i (bi)− bi),

where d
∗,DNEM

i (bi) is as in (18) in Lemma 1. When ΓDNEM = π+, we have d
∗,DNEM

i (bi) = d
†π+

i (bi), therefore

S
∗,DNEM

i (bi) = Ui(d
†π+

i (bi))− π+ · (1⊤d†π+

i (bi)− bi)

and summing over N gives

N∑

i=1

S
∗,DNEM

i (bi) =

N∑

i=1

Ui(d
†π+

i (bi))− π+ · (d̃π
+

N − bN ), (44)

where we used
∑

i∈N 1
⊤d

†π+

i (bi) = d̃π
+

N from (42) in Lemma 3. Since the price is π+ it must be that bN < σ1 =

d̃π
+

N , under which W †,NEM(b) becomes

W †,NEM(b) =

N∑

i=1

Ui(d
†π+

i (bi))− π+(d̃π
+

N (b) − bN ) =

N∑

i=1

S
∗,DNEM

i (bi). (45)

The same steps are followed to prove the cases when ΓDNEM = πz(b) and ΓDNEM = π−. �



E. Proof of Theorem 3

To prove that the market mechanism conforms with the cost-causation principle, we need to show that the five

cost-causation axioms are satisfied.

1) Individual rationality: The market mechanism achieves individual rationality as shown in Theorem 1.

2) Profit-neutrality: To prove the operator’s profit-neutrality under the OEs-aware D-NEM, we need to show that

for all bi,
N∑

i=1

P DNEM

i (z∗,DNEM

i (bi)) = P NEM

N (

N∑

i=1

z
∗,DNEM

i (bi)).

The aggregate payment of community members under the OEs-aware market mechanism is

N∑

i=1

P DNEM

i (z∗,DNEM

i (bi)) = ΓDNEM ·
N∑

i=1

z
∗,DNEM

i (bi) =







π+ ·
∑N

i=1
(1⊤d†π+

i (bi)− bi) , bN < σ1(b)

πz(b) ·
∑N

i=1
(1⊤d†πz

i (bi)− bi) , bN ∈ [σ1(b), σ2(b)]

π− ·
∑N

i=1
(1⊤d†π−

i (bi)− bi) , bN > σ2(b),

which, given ∑

i∈N

1
⊤d

†π+

i (bi) = d̃π
+

N ,
∑

i∈N

1
⊤d

†πz

i (bi) = bN ,
∑

i∈N

1
⊤d

†π−

i (bi) = d̃π
−

N

from (42) in Lemma 3, and that σ1(b) = d̃π
+

N (b), σ2(b) = d̃π
−

N (b), can be reformulated to

N∑

i=1

P DNEM

i (z∗,DNEM

i (bi)) =







π+(d̃π
+

N (b)− bN ) , bN < d̃π
+

N (b)

0 , bN ∈ [d̃π
+

N (b), d̃π
−

N (b)]

π−(d̃π
−

N (b)− bN ) , bN > d̃π
+

N (b).

The payment from the operator to the DSO under NEM X has the form in (4), which under the consumption

of community members becomes

P NEM

N (

N∑

i=1

z
∗,DNEM

i (bi)) = Γ∗,NEM

N∑

i=1

z
∗,DNEM

i (bi) =







π+d̃π
+

N (b)− bN , bN < d̃π
+

N (b)

0 , bN ∈ [d̃π
+

N (b), d̃π
−

N (b)]

π−d̃π
−

N (b)− bN , bN > d̃π
+

N (b).

=

N∑

i=1

P DNEM

i (z∗,DNEM

i (bi)).

3) Equal treatment of equals: Under the OEs-aware D-NEM, the payment of any two members i, j is, respectively,

P DNEM

i (z∗,DNEM

i (bi)) = ΓDNEM · z∗,DNEM

i (bi), P DNEM

j (z∗,DNEM

j (bj)) = ΓDNEM · z∗,DNEM

j (bj).

Given that the DNEM price ΓDNEM is uniform, having z
∗,DNEM

i (bi) = z
∗,DNEM

j (bj), for all bi, yields

P DNEM

i (z∗,DNEM

i (bi)) = ΓDNEM · z∗,DNEM

i (bi) = ΓDNEM · z∗,DNEM

j (bj) = P DNEM

j (z∗,DNEM

j (bj)).

4) Monotonicity: Under the OEs-aware D-NEM, the payment of any two members i, j is, respectively,

|P DNEM

i (z∗,DNEM

i (bi))| = ΓDNEM · |z∗,DNEM

i (bi)|, |P DNEM

j (z∗,DNEM

j (bj))| = ΓDNEM · |z∗,DNEM

j (bj)|.

Note that if |z∗,DNEM

i (bi)| ≥ |z∗,DNEM

j (bj)| and z
∗,DNEM

j (bj) · z
∗,DNEM

j (bj) ≥ 0, we have

|P DNEM

i (z∗,DNEM

i (bi))| = ΓDNEM · |z∗,DNEM

i (bi)| ≥ ΓDNEM · |z∗,DNEM

j (bj)| = |P DNEM

j (z∗,DNEM

j (bj))|.

5) Cost causation penalty and cost mitigation reward: Let z
∗,DNEM

i (bi) > 0, then we have P DNEM

i (z∗,DNEM

i (bi)) =
ΓDNEM · z∗,DNEM

i (bi) > 0, because ΓDNEM > 0 . Similarly, if z
∗,DNEM

i (bi) < 0, then we have P DNEM

i (z∗,DNEM

i (bi)) =
ΓDNEM · z∗,DNEM

i (bi) < 0.

From Definition 1, given that the market mechanism satisfies all five axioms, it is that the market mechanism

conforms with the cost-causation principle. �
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