
ar
X

iv
:2

30
8.

04
33

1v
1

 [
cs

.I
T

]
 8

 A
ug

 2
02

3

Preserving Sparsity and Privacy in

Straggler-Resilient Distributed Matrix Computations

Anindya Bijoy Das∗, Aditya Ramamoorthy†, David J. Love∗, Christopher G. Brinton∗

∗School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
†Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA

das207@purdue.edu, adityar@iastate.edu, djlove@purdue.edu, cgb@purdue.edu

Abstract—Existing approaches to distributed matrix compu-
tations involve allocating coded combinations of submatrices to
worker nodes, to build resilience to stragglers and/or enhance
privacy. In this study, we consider the challenge of preserving
input sparsity in such approaches to retain the associated
computational efficiency enhancements. First, we find a lower
bound on the weight of coding, i.e., the number of submatrices to
be combined to obtain coded submatrices to provide the resilience
to the maximum possible number of stragglers (for given number
of nodes and their storage constraints). Next we propose a
distributed matrix computation scheme which meets this exact
lower bound on the weight of the coding. Further, we develop
controllable trade-off between worker computation time and the
privacy constraint for sparse input matrices in settings where
the worker nodes are honest but curious. Numerical experiments
conducted in Amazon Web Services (AWS) validate our assertions
regarding straggler mitigation and computation speed for sparse
matrices.

Index Terms—Distributed computing, MDS Codes, Stragglers,
Sparsity, Privacy.

I. INTRODUCTION

Computing platforms are constantly stressed to meet the

growing demands of end users for data processing. The in-

creasing complexity of data tasks, such as deep neural network

AI/ML models, and the sheer volumes of data to be processed,

continue to hinder scalability.

Matrix computations serve as the fundamental building

blocks for many data processing tasks in AI/ML and optimiza-

tion. As data sizes increase, these computations involve high-

dimensional matrices, requiring larger runtimes with all else

constant. The underlying concept behind distributed computa-

tion is to break down the entire operation into smaller tasks

and distribute them across multiple worker nodes. However, in

these distributed systems, the overall execution time of a job

can be significantly affected by slower or failed worker nodes,

commonly known as “stragglers” [1].

Recently, a number of coding theory techniques [2]–[13]

have been proposed to mitigate the effect of stragglers. A

simple example is presented in [2] to illustrate a technique for

computing A
T
x using three workers. The technique involves

partitioning the matrix A into two block-columns, denoted as

A = [A0|A1]. The workers are then assigned specific tasks:

one computes A
T
0 x, another computes A

T
1 x, and the third

computes (A0 +A1)
T
x. Each worker then handles only half

of the computational load, the system can recover A
T
x if

any two out of the three workers return their results. This

means that the system is resilient to the failure or delay of

one straggler. In general, the recovery threshold is an important

metric defined as the minimum number of workers (τ) required

to complete their tasks, enabling the recovery of A
T
x from

any subset of τ worker nodes.

While there are several works that achieve the optimal

recovery threshold [3], [5], [12], [13] for given number of

nodes and storage constraints, they possess certain limitations.

Real-world datasets, utilized in various domains such as op-

timization, deep learning, power systems, computational fluid

dynamics etc. often consist of sparse matrices. An efficient

exploitation of this sparsity can significantly decrease the

overall time required for matrix computations [14]. However,

techniques based on MDS codes [3], [5], [12], [13] construct

dense linear combinations of submatrices; this eliminates the

inherent sparsity in the matrix structure. As a consequence, the

computation speed of worker nodes can be severely reduced.

In this work, one of our objectives is to develop approaches

that combine a relatively small number of submatrices while

maintaining an optimal recovery threshold.

Another significant issue in distributed computation is the

information leakage of the associated “input” matrix [15]–[18].

The assumption is that the input matrix A is known to the

central node, but the assigned smaller tasks should involve

a protection against information leakage at the worker nodes.

Several works [15]–[17] propose adding random matrices to

the linear combinations of submatrices introduced by MDS

codes with the goal of reducing the mutual information

between the assigned encoded submatrices and the original

matrix A. This is again problematic for sparse matrices since

the addition of dense random matrices can destroy the sparsity.

Thus, we also aim to develop codes that optimize the trade-off

between privacy and efficiency.

In this work, first we formulate the problem (Sec. II) and

find a lower bound on the number of submatrices to be

combined (Sec. III) for coded submatrices that will provide

resilience to the maximum number of stragglers in a given sys-

tem. Next, we develop a novel approach for distributed matrix-

vector multiplication (Sec. IV) which meets that lower bound,

maximizing sparsity preservation while providing resilience to

the maximum number of stragglers. Our proposed approach

involves a computationally efficient process to find a “good”

http://arxiv.org/abs/2308.04331v1

set of random coefficients that make the system numerically

stable. Our approach also addresses the privacy issue through

a controllable trade-off between privacy leakage and worker

computation time for sparse input matrices (Sec. IV-B). Finally,

we carry out experiments on an Amazon Web Services (AWS)

which verify the effectiveness of our proposed methodology

compared with baseline approaches in terms of different time,

stability, and privacy metrics (Sec. V).

II. PROBLEM FORMULATION

In this work, we examine a distributed system comprising

n worker nodes. The primary objective of this system is to

calculate the product A
T
x, where A ∈ R

t×r represents a

sparse matrix and x ∈ R
t denotes a vector. It is assumed that

the workers are identical in terms of their memory capacity

and computational speed. Specifically, each worker can store

γA = 1
kA

fraction of the whole matrix A, and also, the entire

vector x. In practical situations, stragglers may arise due to

variations in computational speed or failures experienced by

certain assigned workers at specific times [3].

In line with previous approaches, our initial step involves

partitioning matrix A into kA distinct block-columns. Subse-

quently, we will distribute to each worker node a random linear

combination of certain block-columns from A along with the

vector x. Nevertheless, as discussed in Sec. I, assigning dense

linear combinations could lead to the loss of inherent sparsity

in the corresponding matrices. To avoid this issue, our goal is

to allocate linear combinations involving a smaller number of

submatrices [9], [19]. In order to quantify this approach, we

introduce the concept of “weight” for the encoded submatrices.

This measure serves as a crucial metric when dealing with

sparse matrices in distributed computations.

Definition 1. We define the “weight” (ωA) of the submatrix

encoding procedure as the number of submatrices that are

linearly combined to obtain each encoded submatrix. We as-

sume homogeneous weights of the encoded submatrices across

the worker nodes, i.e., every node will be assigned linear

combinations of the same number of uncoded submatrices.

Thus, our goal is to obtain the optimal recovery threshold

(τ = kA) while maintaining ωA (for the assigned encoded

submatrices) as low as possible. We also consider the privacy

implications of our approach assuming that the worker nodes

are honest but curious.

III. MINIMUM WEIGHT OF CODING

We consider a coded matrix-vector multiplication scheme

with homogeneous weight, ωA, where matrix A is partitioned

into kA disjoint block-columns, A0,A1,A2, . . . ,AkA−1.

Now we state the following proposition which provides a

lower bound on ωA for any coded matrix-vector multiplication

scheme with resilience to s = n− kA stragglers.

Proposition 1. Consider a coded matrix-vector multiplication

scheme aiming at resilience to s = n − kA stragglers out

of n total nodes each of which can store 1/kA fraction of

W0 W1 W2 W3 W4 W5

{A0,A1} {A1,A2} {A2,A3} {A3,A0} {A0,A2} {A1,A3}

Fig. 1: Submatrix allocation for a system with n = 6, s = 2 and
γA = 1

4
according to Alg. 1. Here, the weight of every coded

submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉

= 2. Any {Ai,Aj} indicates a

random linear combination of Ai and Aj .

matrix A. Any scheme that partitions A into kA disjoint block-

columns has to maintain a minimum homogeneous weight

⌈ (n−s)(s+1)
n ⌉.

Proof. Since the scheme aims at resilience to any s stragglers,

any scheme needs to ensure the presence of any Ai (where

i = 0, 1, . . . , kA− 1) in at least s+1 different nodes. In other

words, Ai has to participate within the encoded submatrices in

at least s+ 1 different nodes. Now, we assume homogeneous

weight ωA, i. e., each of these n nodes is assigned a linear

combination of ωA uncoded submatrices from A. Thus, we

can say n ωA ≥ kA(s+ 1), hence,

ωA ≥
(n− s)(s+ 1)

n
.

Thus, the minimum homogeneous weight, ω̂A =
⌈

(n−s)(s+1)
n

⌉

.

�

Now we state the following corollary (of Proposition 1)

which considers different values of kA in terms of s, and

provides the corresponding optimal weights for coded sparse

matrix-vector multiplication.

Corollary 1. Consider the same setting as Prop. 1 for coded

matrix-vector multiplication. Now,

• (i) if kA > s2, then ω̂A = s+ 1.

• (ii) if s ≤ kA ≤ s2, then ⌈ s+1
2 ⌉ ≤ ω̂A ≤ s.

Proof. Since n = kA + s, from Prop. 1, we have

ω̂A =
⌈kA(s+ 1)

kA + s

⌉

=
⌈ 1 + s

1 + s
kA

⌉

; (1)

hence, ω̂A is a non-decreasing function of kA for fixed s.

Part (i): When kA > s2, we have s
kA

< 1
s , and 1+s

1+ s

kA

>
1+s
1+ 1

s

= s. Thus, from (1), ω̂A > s. In addition, from (1), for

any s ≥ 0, we have ω̂A ≤ s+ 1. Thus, we have ω̂A = s+ 1.

Part (ii): If kA = s2, from (1), we have ω̂A = s. Similarly,

if kA = s, from (1), we have ω̂A = ⌈ s+1
2 ⌉. Thus, the non-

decreasing property of ω̂A in terms of kA concludes the proof.

�

Now we describe a motivating example below where the

encoding scheme meets the lower bound mentioned in Prop.

1.

Example 1. Consider a toy system with n = 6 worker

nodes each of which can store 1/4 fraction of matrix A.

We partition matrix A into kA = 4 disjoint block-columns,

A0,A1,A2,A3. According to Prop. 1, the optimal weight ωA

can be as low as
⌈

kA(s+1)
kA+s

⌉

= 2. Now, we observe that the

way the jobs are assigned in Fig. 1 meets that lower bound,

where random linear combinations of ωA = 2 submatrices are

assigned to the nodes. It can be verified that this system has

a recovery threshold τ = kA = 4, and thus, it is resilient to

any s = 2 stragglers.

IV. PROPOSED APPROACH

In this section, we detail our overall approach for dis-

tributed matrix-vector multiplication which is outlined in

Alg. 1. We partition matrix A into kA block columns,

A0,A1,A2, . . . ,AkA−1, and assign a random linear combi-

nation of ωA (weight) submatrices of A to every worker node.

We show that for given n and kA, our proposed approach pro-

vides resilience to maximum number of stragglers, s = n−kA.

In addition, our coding scheme maintains the minimum weight

of coding as mentioned in Prop. 1.

Formally, we set ωA =
⌈

kA(s+1)
kA+s

⌉

,

and assign a linear combination of

Ai,Ai+1,Ai+2, . . . ,Ai+ωA−1 (indices modulokA) to

worker node Wi, for i = 0, 1, 2, . . . , kA − 1, where the

linear coefficients are chosen randomly from a continuous

distribution. Next, we assign a random linear combination of

AiωA
,AiωA+1,AiωA+2, . . . ,A(i+1)ωA−1 (indices modulokA)

to worker node Wi, for i = kA, kA + 1, . . . , n− 1. Note that

every worker node also receives the vector x. Once the fastest

τ = kA worker nodes finish and return their computation

results, the central node decodes A
T
x. Note that we assume

kA ≥ s, i.e., at most half of the nodes may be stragglers.

A. Straggler Resilience Guarantee

Next we state the following lemma which would assist us to

prove Theorem 1 which discusses straggler resilience of our

proposed scheme.

Lemma 1. Choose any m ≤ kA worker nodes out of all n
nodes in the distributed system. Now, if we assign the jobs

to the worker nodes according to Alg. 1, the total number of

participating uncoded A submatrices within those m worker

nodes is lower bounded by m.

Proof. First we partition all n worker nodes into two sets

where the first set, W0 includes the first kA nodes and the

second set, W1, includes the next s worker nodes, i.e., we

have

W0 = {W0,W1,W2, . . . ,WkA−1} ;

and W1 = {WkA
,WkA+1, . . . ,Wn−1} .

Thus, we have |W0| = kA and |W1| = s ≤ kA. Now, we

choose any m ≤ kA worker nodes, where we choose m0 nodes

from W0 and m1 nodes from W1, so that m = m0+m1. We

denote set of the participating uncoded A submatrices within

those nodes as A0 and A1, respectively. Hence, to prove the

lemma, we need to show |A0 ∪ A1| ≥ m, for any m ≤ kA.

Algorithm 1: Proposed scheme for distributed matrix-

vector multiplication

Input : Matrix A, vector x, n-number of workers,

s-number of stragglers, storage fraction

γA = 1
kA

, such that kA ≥ s.

1 Partition A into kA disjoint block-columns;

2 Set weight ωA =
⌈

kA(s+1)
kA+s

⌉

;

3 for i← 0 to n− 1 do

4 if i < kA then

5 Define T = {i, i+ 1, . . . , i+ ωA − 1} (reduced

modulo kA);

6 else

7 Define T = {iωA, iωA + 1, . . . , (i + 1)ωA − 1}
(reduced modulo kA);

8 end

9 Create a random vector r of length kA with entries

rm, 0 ≤ m ≤ kA − 1;

10 Create a random linear combination of Aq’s where

q ∈ T , thus Ãi =
∑

q∈T

rqAq;

11 Assign encoded submatrix Ãi and the vector x to

worker node Wi;

12 end

Output : The central node recovers A
T
x from the

returned results by the fastest kA nodes.

First, according to Alg. 1, we assign a random linear combi-

nation of Ai,Ai+1,Ai+2, . . . ,Ai+ωA−1 (indices modulokA)
to worker node Wi ∈ W0. Thus, the participating submatrices

are assigned in a cyclic fashion [20], and the total number of

participating submatrices within any m0 nodes of W0 is

|A0| ≥ min(m0 + ωA − 1, kA). (2)

Next, we state the following claim for the number of partici-

pating submatrices in W1, with the proof in Appendix A.

Claim 1. Choose any m1 ≥ ωA nodes fromW1. The number

of participating submatrices within these nodes, |A1| = kA.

Now, if m1 ≤ ωA − 1, from (2) we have

|A0 ∪ A1| ≥ |A0| = min(m0 + ωA − 1, kA)

≥ min(m0 +m1, kA) ≥ m,

since m = m0 +m1 ≤ kA. And, if m1 ≥ ωA, from Claim 1

we can say,

|A0 ∪ A1| ≥ |A1| = kA ≥ m,

which concludes the proof of the lemma. �

Example 2. Consider the same scenario in Example 1, where

kA = 4 and s = 2, therefore, W0 = {W0,W1,W2,W3}
and W1 = {W4,W5}. Now, choose m = 3 nodes, W0,W1

and W4. Thus, m0 = 2 and m1 = 1. Now, from the figure,

we have A0 = {A0,A1,A2} and A1 = {A0,A1}. Hence,

c0

c1

c2

c3

c4

b0

b1

b2

b3

b4

C B

Fig. 2: A bipartite graph G = C ∪ B with |C| = |B| = 5 where the
set of equations is C and the set of unknowns is B. Here, ωA = 3.

|A0 ∪A1| = 3 ≥ m. Similar properties can be shown for any

choice m ≤ kA = 4 different nodes.

Now we state the following theorem which provides the

guarantee of resilience to maximum number of stragglers for

given storage constraints.

Theorem 1. Assume that a system has n worker nodes each

of which can store 1/kA fraction of matrix A and the whole

vector x for the distributed matrix-vector multiplication A
T
x.

If we assign the jobs according to Alg. 1, we achieve resilience

to s = n− kA stragglers.

Proof. According to Alg. 1, first we partition matrix A into

kA disjoint block-columns. Thus, to recover the matrix-vector

product, AT
x, we need to decode all kA vector unknowns,

A
T
0 x,A

T
1 x,A

T
2 x, . . . ,A

T
kA−1x. We denote the set of these

kA unknowns as B. Now we choose an arbitrary set of kA
worker nodes each of which corresponds to an equation in

terms of ωA of those kA unknowns. Denoting the set of kA
equations as C, we can say, |B| = |C| = kA.

Now we consider a bipartite graph G = C∪B, where any ver-

tex (equation) in C is connected to some vertices (unknowns)

in B which participate in the corresponding equation. Thus,

each vertex in C has a neighborhood of cardinality ωA in B.

An example with kA = 5 and ωA = 3 is shown in Fig. 2.

Our goal is to show that there exists a perfect matching

among the vertices of C and B. To do so, we consider C̄ ⊆ C,

where |C̄| = m ≤ kA. Now, we denote the neighbourhood of C̄
as N (C̄) ⊆ B. Thus, according to Lemma 1, for any m ≤ kA,

we can say that |N (C̄)| ≥ m. So, according to Hall’s marriage

theorem [21], we can say that there exists a perfect matching

among the vertices of C and B.

Next we consider the largest matching where the vertex

ci ∈ C is matched to the vertex bj ∈ B, which indicates

that bj participates in the equation corresponding to ci. Now,

considering kA equations and kA unknowns, we construct the

kA × kA coding (or decoding) matrix H where row i corre-

sponds to the equation associated to ci where bj participates.

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

{A0,A1,A2} {A1,A2,A3} {A2,A3,A4} {A3,A4,A5}

{A4,A5,A6} {A5,A6,A7} {A6,A7,A8} {A7,A8,A0}

{A8,A0,A1} {A0,A1,A2} {A3,A4,A5} {A6,A7,A8}

Fig. 3: Submatrix allocation for n = 12 workers and s = 3
stragglers, with γA = 1

9
according to Alg. 1. Here, the weight of

every submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉

= 3. Any {Ai,Aj ,Ak} indi-

cates a random linear combination of the corresponding submatrices
where the coefficients are chosen i.i.d. at random from a continuous
distribution.

We replace row i of H by ej where ej is a unit row-vector

of length kA with the j-th entry being 1, and 0 otherwise.

Thus we have a kA × kA matrix where each row has only

one non-zero entry which is 1. In addition, since we have a

perfect matching, H will have only one non-zero entry in every

column. Thus, H is a permutation of the identity matrix, and

therefore, H is full rank. Since the matrix is full rank for a

choice of definite values, according to Schwartz-Zippel lemma

[22], the matrix continues to be full rank for random choices

of non-zero entries. Thus, the central node can recover all kA
unknowns from any set of kA worker nodes. �

Example 3. Consider a system with n = 12 nodes each of

which can store 1/9-th fraction of matrix A. We partition A as

A0,A1, . . . ,A8. According to Alg. 1, we set the weight ωA =
⌈

kA(s+1)
kA+s

⌉

= 3, and assign random linear combinations of ωA

submatrices to each node as shown in Fig. 3. It can be verified

that A
T
x can be recovered from any τ = kA = 9 nodes,

therefore, the scheme is resilient to any s = 3 stragglers.

Remark 1. While our proposed approach meets the lower

bound on the weight as mentioned in Prop. 1, the approach

in [11] assigns a weight min(s + 1, kA) which can often be

higher than ours (e.g., Examples 1 and 3), and thus, may lead

to reduction in worker computation speed.

1) Computational Complexity for a Worker Node: In this

work, we assume that the “input” matrix, A ∈ R
t×r, is sparse,

i.e., most of the entries of A are zero. Let us assume that the

probability for any entry of A to be non-zero is µ, where

µ > 0 is very small. According to Alg. 1, we combine ωA

submatrices (of size t×r/kA) to obtain the coded submatrices

and assign them to the worker nodes. Hence, the probability

for any entry of any coded submatrix to be non-zero is 1 −

(1 − µ)ωA which can be approximated by ωAµ. Thus, in our

approach, the per worker node computational complexity is

O
(

ωAµ×
rt
kA

)

where ωA =
⌈

kA(s+1)
kA+s

⌉

.

On the other hand, the dense coded approaches [5], [12],

[13] combine kA submatrices for encoding, hence, their per

worker node computational complexity is O
(

kAµ×
rt
kA

)

=

O (µ× rt) which is kA

ωA
≈ s+kA

s+1 times higher than that of ours.

Moreover, the recent sparse matrix computations approach

in [11] combines s + 1 submatrices for encoding (when

s < kA). Thus, its corresponding computational complexity

is O
(

(s+ 1)µ× rt
kA

)

; approximately (1 + s/k) times higher

than that of ours. We clarify this with the following example.

Example 4. Consider the same setting in Example 3 where

n = 12, kA = 9 and s = 3. In this scenario, the recent work

[11] assigns random linear combinations of min(s+1, kA) = 4
submatrices to each node. Thus, our proposed approach enjoys

a 25% decrease in computational complexity, which could

significantly enhance the overall computational speed.

2) Numerical Stability and Coefficient Determination Time:

In this section, we discuss the numerical stability of our

proposed distributed matrix computations scheme. The con-

dition number is widely regarded as a significant measure of

numerical stability for such a system [3], [12], [13]. In the

context of a system consisting of n workers and s stragglers,

the worst-case condition number (κworst) is defined as the

highest condition number among the decoding matrices when

considering all possible combinations of s stragglers. In meth-

ods involving random coding like ours, the idea is to generate

random coefficients multiple (e.g., 20) times and selecting the

set of coefficients that results in the lowest κworst among those

trials.

In our proposed method, we partition matrix A into kA
disjoint block-columns, which underscores the necessity to

recover kA vector unknowns. Consequently, in each attempt,

we must determine the condition numbers of
(

n
kA

)

decoding

matrices, each of size kA × kA. This whole process has

a total complexity of O
(

(

n
kA

)

k3A

)

. On the other hand, the

recent sparse matrix computation techniques, such as sparsely

coded straggler (SCS) optimal scheme discussed in [20] or

the class-based scheme discussed in [9] partition matrix A

into ∆A = LCM(n, kA) block-columns. Thus, in each attempt,

they need to ascertain the condition numbers of
(

n
kA

)

matrices,

each of which has a size ∆A × ∆A, resulting in a total

complexity of O
(

(

n
kA

)

∆3
A

)

. Since ∆A can be considerably

larger than kA, those methods involve significantly more

complexity compared to our proposed scheme. For instance,

if we consider a scenario where n and kA are co-prime,

then ∆A = nkA, and thus the complexity of the approaches

presented in [9], [20] is approximately O
(

n3
)

times higher

than our method.

B. Private Matrix-vector Multiplication

Now, we discuss how we can modify Alg. 1 to add protec-

tion against information leakage of the “input” matrix A in

Algorithm 2: Proposed scheme for Private distributed

matrix-vector multiplication for non-colluding nodes

Input : Matrix A ∈ F
t×r, vector x ∈ F

t×1, n-number

of nodes, storage fraction 1
kA

, where n > kA.

1 Create a sparse random matrix S ∈ F
t×r/kA , where the

probability of any entry to be non-zero is µ;

2 Create a random vector r of length n;

3 for i← 0 to n− 1 do

4 Create encoded submatrix Ãi according to Alg. 1;

5 Assign submatrix Āi = Ãi + riS to worker Wi;

6 Assign vector x to worker node Wi;

7 end

Output : The central node recovers A
T
x from the

returned results by the fastest kA + 1 nodes.

the worker nodes, which we assume are honest but curious.

The traditional idea developed in several private distributed

computations approaches [15], [16] is to add dense random

matrices to the submatrices of the “input” matrix. While

this can provide protection against information leakage up to

certain levels, it substantially increases the number of non-zero

entries in the encoded submatrices of an originally sparse input

matrix, which can reduce the overall computation speed.

In our scheme, we propose that the central node will

generate a sparse matrix S ∈ F
t×r/kA where the probability

of any entry being non-zero is µ. Next, the central node will

add S to all the encoded submatrices to be assigned to the

worker nodes according to Alg. 1. In other words, if the

central node was supposed to send the encoded submatrix Ãi

to worker node Wi according to Alg. 1, then for private sparse

matrix computations, the central node will send Āi = Ãi+S

to worker node Wi. The upcoming corollary proves that the

central node can recover the final result, AT
x from any kA+1

nodes (in a similar process as in Sec. IV). Note that the central

node sends the vector x to all n nodes. The overall procedure

for private matrix-vector multiplication is outlined in Alg. 2.

Corollary 2. Assume that a system has n worker nodes each

of which can store 1/kA fraction of matrix A for conducting

private matrix-vector multiplication A
T
x. If we assign the jobs

according to Alg. 2 to achieve our desired level of protection

against information leakage of A, we achieve resilience to

s = n− (kA + 1) stragglers.

Proof. We prove the corollary in a similar fashion as we

have proved Theorem 1. Instead of kA vector unknowns,

A
T
0 x,A

T
1 x,A

T
2 x, . . . ,A

T
kA−1x, to recover AT

x, we have one

more unknown, ST
x involved in this process. Similar to the

proof of Theorem 1, we denote the set of these kA + 1
unknowns as B, and choose an arbitrary set of kA +1 worker

nodes each of which corresponds to an equation in terms of

ωA+1 of those kA+1 unknowns. Denoting the set of kA+1
equations as C, we can say, |B| = |C| = kA + 1.

We again consider a bipartite graph G = C ∪ B, and claim

that a perfect matching exists between the vertices in C and B.

The reason is that the new unknown S
T
x participates in every

equation, hence, the size of the of neighborhood of C̄ ∈ C
will always increase by 1 (as compared to Theorem 1) when

|C̄| = m ≤ kA. Thus, for any C̄, when |C̄| = m ≤ kA +1, the

size of the neighborhood |N (C̄)| ≥ m. This proves the perfect

matching, and then, similar to the proof of Theorem 1, using

Schwartz-Zippel lemma [22], we can prove the corollary. �

We consider a system of non-colluding worker nodes which

are honest but curious. In this setting, in order to be private

from an information-theoretic standpoint, the encoded matrices

Āi should not leak any information about the data matrix A.

In this regard, denote the mutual information of two random

variables X and Y as I(X,Y). A perfectly private scheme in

our setting must satisfy the information-theoretic constraint,

I
(

Āi,A
)

= 0, for i = 0, 1, . . . , n− 1. Denoting H(X,Y) as

the joint entropy of two random variables X and Y , for our

scheme we can write

I
(

Āi;A
)

= I
(

Ãi + S;A
)

=H
(

Ãi + S

)

−H
(

Ãi + S|A
)

= H
(

Ãi + S

)

−H (S|A)

Now, for small η, the number of non-zero entries in any Ãi

is approximately ωAη ×
rt
kA

. Thus, we have

I
(

Āi;A
)

≈ (ωAη + µ − ωAηµ)
rt

kA
log|F| − µ

rt

kA
log|F|

= ωAη (1− µ)
rt

kA
log|F| (3)

Thus, I
(

Āi,A
)

decreases with the increase of µ; if the central

node uses a denser S, the system will have more protection,

at the expense of longer computation times due to sparsity

being destroyed. The system will be fully protected if µ = 1,

in other words, when S is fully dense.

Remark 2. A recent work [23] also studied this privacy

issue in sparse matrix computations for a different setting of

distributed computation. In that setting, the worker nodes are

partitioned into two non-communicating clusters, the untrusted

cluster and the partly trusted cluster, and different number of

tasks are assigned to different nodes. This objective is different

than our focus on being resilient to the maximum number of

stragglers.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed

approach by conducting numerical experiments and comparing

its performance with various competing methods [5], [9], [11]–

[13], [20]. Note that there are several other works specifically

developed for sparse matrix computations. Among them, the

approach in [14] does not provide resilience to maximum num-

ber of stragglers for given storage constraints. The approach

in [23] partitions the worker nodes into untrusted and partly

trusted cluster, which is not aligned to our assumption. The

approach in [24] assigns some jobs to the central node to re-

duce the probability of rank-deficiency in the decoding, which

is also not in line of our assumptions. So, in the numerical

experiment section, we do not consider these approaches.

We explore two different distributed systems: the first one

consists of n = 30 worker nodes with s = 5 stragglers and

the other consists of n = 36 nodes with s = 8 stragglers.

We focus on a sparse input matrix A sized 40, 000× 31, 500
and a dense vector x of length 40, 000. We consider two

distinct scenarios in which the sparsity of A is 98%, and

99%, respectively. This implies that randomly selected 98%
and 99% entries, respectively, in the matrix A are zero. It

is worth noting that there exist numerous practical instances

where data matrices demonstrate such (or, even more) levels of

sparsity (refer to [25] for specific examples). The experiments

are carried out on an AWS (Amazon Web Services) cluster,

utilizing a c5.18xlarge machine as the central node and

t2.small machines as the worker nodes.

Worker computation time: Table I presents a comparison

among different methods based on the computation time

required by worker nodes to complete their respective tasks.

In these scenarios, where kA = 25 or 28, the approaches

described in [5], [12], [13] allocate linear combinations of kA
submatrices to the worker nodes. Consequently, the original

sparsity of matrix A is lost within the encoded submatrices. As

a result, the worker nodes experience a significantly increased

processing time for their tasks compared to our proposed

approach or the methods outlined in [9], [11], [20], which are

specifically designed for sparse matrices and involve smaller

weights.

To discuss the effectiveness of our approach in more details,

we compare the weight of the coding of our approach against

the approach in [11]. In the first scenario, when n = 30

and s = 5, our approach sets the weight
⌈

(n−s)(s+1)
n

⌉

=
⌈

25×6
30

⌉

= 5, whereas the approach in [11] uses a weight

min(s+1, kA) = min(6, 25) = 6. Thus, our approach involves

around 17% less computational complexity per worker node,

which is supported by the results in Table I. Similarly, when

n = 36 and s = 8, our proposed approach involves a weight
⌈

28×9
36

⌉

= 7, which is smaller than the corresponding weight,

s+ 1 = 9, used by the approach in [11].

Communication delay: Table I also illustrates the delay

incurred during the transmission of encoded submatrices from

the central node to the worker node. The approaches presented

in [5], [12], and [13] employ dense linear combinations

of submatrices, resulting in a significant increase in the

number of non-zero entries within the encoded submatrices.

Consequently, transmitting these large number of non-zero

entries leads to a substantial communication delay within

the system. In contrast, our proposed scheme mitigates this

issue by utilizing encoded submatrices formed through linear

combinations of only a limited number of uncoded submatrices

which significantly reduces the corresponding communication

delay.

For example, consider the scenario when n = 36, s = 8 and

A is 99% sparse. In this scenario, the approach in [5] needs to

TABLE I: Comparison of worker computation time and communication delay (matrix transmission time) for matrix-vector multiplication

for n = 30, s = 5, and n = 36, s = 8, when randomly chosen 98% and 99% entries of matrix A are zero.

METHODS

n = 30 AND s = 5 n = 36 AND s = 8
COMP. TIME (IN MS) COMM. DELAY (IN S) COMP. TIME (IN MS) COMM. DELAY (IN S)
99% 98% 99% 98% 99% 98% 99% 98%

POLY. CODE [5] 61.4 62.3 0.67 1.14 55.7 56.3 0.52 0.95
ORTHO POLY [12] 62.2 61.7 0.69 1.17 56.2 56.4 0.49 0.91
RKRP CODE [13] 60.3 61.1 0.65 1.11 56.8 57.4 0.51 0.93

SCS OPT. SCH. [20] 24.1 38.3 0.24 0.37 28.1 41.3 0.28 0.42
CLASS-BASED [9] 17.3 28.2 0.20 0.31 22.1 33.7 0.24 0.35

CYCLIC CODE [11] 19.5 33.4 0.23 0.35 26.7 37.6 0.27 0.39
Proposed Scheme 16.7 27.7 0.19 0.32 21.8 33.9 0.24 0.34

TABLE II: Comparison among different approaches in terms of
worst case condition number (κworst) and the corresponding required
time for 10 trials to find a good set of random coefficients

METHODS
κworst FOR REQ. TIME FOR

n = 30, s = 5 10 TRIALS (IN S)

POLY. CODE [5] 1.47 × 1013 0
ORTHO-POLY [12] 1.40× 108 0
RKRP CODE [13] 1.76× 106 81.84

SCS OPT. SCH. [20] 4.68× 107 1138.6
CLASS BASED [9] 7.16× 106 1479.3

CYCLIC CODE [11] 1.06× 107 78.38
PROP. SCHEME 8.21× 10

6
77.41

transmit up to 0.01× 28× 40,000×31,500
28 = 1.26× 107 number

of non-zero entries to each node. The corresponding number

for the approach in [11], [19] is 0.01×(s+1)× 40,000×31,500
28 =

4.05× 106. On the other hand, the corresponding number for

our proposed method is 0.01 ×
⌈

kA(s+1)
n

⌉

× 40,000×31,500
28 =

3.15 × 106, which is smaller than the previous ones, and

clarifies the reduction of communication delay as mentioned

in Table I.

Numerical stability: Next, we assess the numerical stability

of distributed systems using different coded matrix computa-

tion techniques. We examine the condition numbers of the

decoding matrices for various combinations of n workers and

s stragglers. By comparing the worst-case condition number

(κworst) across different methods, we present the κworst

values in Table II. The polynomial code approach [5] involves

ill-conditioned Vandermonde matrices and demonstrates sig-

nificant numerical instability, as evidenced by its notably high

value of κworst. Our proposed approach, among the numeri-

cally stable methods, exhibits smaller κworst value compared

to the method in [12] where the condition numbers increases

exponentially in terms of s = n−kA. Note that the approach in

[13] provides slightly smaller κworst value than ours; however,

as mentioned in Table I, the worker computation time and

the communication delay are significantly higher in that case,

since they assign dense linear combinations to the worker

nodes.

Coefficient determination time: Next, Table II shows a

comparative analysis of various methods with respect to the

time required for performing 20 trials to obtain a “good”

set of random coefficients that ensures numerical stability

of the system. As explained in Section IV-A2, the tech-

niques proposed in [20] and [9] involve partitioning matrix A

into ∆A = LCM(n, kA) block-columns. For instance, when

n = 30 and s = 5, ∆A = 150 is significantly larger than

kA = 25, which denotes the partition level in our approach.

Consequently, when dealing with higher-sized matrices to

determine the condition number, the methods proposed in [20]

and [9] necessitate considerably more time compared to our

approach.

Trade-off between privacy and worker computation

time: Next, we compare the trade-off between protection

against information leakage and the worker node computation

time. Consider a 99% sparse matrix A of size 40, 000×31, 500,

i.e., 99% entries of A are zero. We assume the nodes to be

honest but curious. Now, according to the discussion in Sec.

IV-B, we add matrix S to the encoded submatrices of A. Fig.

4 shows the trade-off between the privacy (in terms of µ) and

the worker computation time for two different scenarios of n
and s. The extreme case µ = 0 indicates that the worker node

receives only the coded submatrices as outlined by Alg. 1, and

in that case, the computation speed is very high. On the other

extreme, as clarified in (3), when µ = 1, i.e., dense noise is

added to the assigned submatrices, then I
(

Āi;A
)

= 0, which

indicates the full protection against information leakage from

the honest but curious worker nodes. However, that comes

with a sacrifice in the worker node computation speed. In this

experiment, we see that the worker computation time is most

sensitive at small values of µ, i.e., when less than 20% non-

zero entries are being added. After this point, privacy can be

improved with little downside to computational time. Note that

the approaches in [9], [20], while being specifically suited to

sparse matrices, do not address the privacy issue.

VI. CONCLUSION

In this study, we devised a distributed scheme for mul-

tiplying large matrices by vectors, specifically designed for

sparse input matrices. First we found a lower bound on the

weight for the encoding of any scheme for the resilience to the

maximum number of stragglers for given storage constraints.

Our proposed straggler-optimal approach meets the lower

bound and maintains the inherent sparsity of the input matrix

A up to a certain extent. As a result, it substantially reduces

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Probability of an entry of S to be non-zero, µ

W
o

rk
er

co
m

p
u

ta
ti

o
n

ti
m

e
(i

n
m
s
)

n = 36, s = 8

n = 30, s = 5

Fig. 4: Trade-off between the protection against information leakage
and the worker computation time. A larger µ enhances the protection,
but reduces the computation speed.

both computation and communication delays compared to

dense coded methods. We also explored the privacy aspect

of sparse matrix computations when the nodes are honest

but curious. We achieved a controllable balance between the

preserved sparsity level and information leakage. Our claims

were corroborated through numerical experiments conducted

on an AWS cluster.

A future direction can include developing schemes for

sparse distributed matrix-matrix multiplication which meets

the lower bound on the weight. Another direction may include

developing sparsely coded schemes with protection against in-

formation leakage when the worker nodes can collude among

them.

APPENDIX

A. Proof of Claim 1

Proof. Consider the worker nodes in W1. According

to Alg. 1, we assign a linear combination of

AiωA
,AiωA+1,AiωA+2, . . . ,A(i+1)ωA−1 (indices modulokA)

to worker node Wi, for i = kA, kA + 1, . . . , n − 1.

Thus, the participating submatrices in worker node WkA

are A0,A1, . . . ,AωA−1 (indices reduced modulokA).
Similarly, the participating submatrices in WkA+1 are

AωA
,AωA+1, . . . ,A2ωA−1 (indices reduced modulokA). In

a consequence, ωA number of submatrices participate in each

of those s worker nodes sequentially in an increasing order

in terms of their indices (reduced modulo kA).

Now, denote the number of appearances of any submatrix

Ai within the nodes in W1 by vi ≥ 0. Thus, for any 0 ≤
j, k ≤ kA−1, we have |vj−vk| ≤ 1, where

∑kA−1
i=0 vi = sωA.

Thus, the average of these vi’s is ρ = sωA

kA
. If ρ is an integer,

then vi = ⌊ρ⌋ = ρ for i = 0, 1, 2, . . . , kA − 1, since for every

pair of j, k, we have |vj − vk| ≤ 1. Similarly, if ρ is not an

integer, then vi ≥ ⌊ρ⌋. Thus, within all s nodes of W1, every

submatrix participates in at least ⌊ρ⌋ times over ⌊ρ⌋ distinct

nodes. In other words, any submatrix may not participate in

at most s− ⌊ρ⌋ nodes within the nodes of W1.

First, consider the case, kA = s. Here, every submatrix

participates in ⌊ρ⌋ = ωA nodes, therefore, any submatrix does

not participate in s−ωA nodes. But, we choose any m1 ≥ ωA

nodes in W1, where ωA = ⌈ s+1
2 ⌉, since kA = s. Thus,

2ωA ≥ s+ 1 > s which indicates that, ωA > s− ωA.

In addition, since m1 ≥ ωA, we claim that m1 > s − ωA.

Thus, every submatrix will participate at least once within

those chosen m1 nodes, hence |A1| = kA.

Next, consider the other case when kA > s. Again, since we

choose any arbitrary m1 ≥ ωA nodes in W1, we are leaving

s−m1 nodes in W1. But

s−m1 ≤ s− ωA < s− ⌊ρ⌋.

The second inequality holds since s < kA. Thus, every

submatrix will participate at least once within those m1 ≥ ωA

nodes, hence |A1| = kA. �

REFERENCES

[1] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136–145,
2020.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.

Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.
[3] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust

distributed matrix computations via convolutional coding,” IEEE Trans.

Info. Th., vol. 67, no. 9, pp. 6266–6282, 2021.
[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in Proc. of Adv.

in Neur. Inf. Proc. Syst. (NeurIPS), 2016, pp. 2100–2108.
[5] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an

optimal design for high-dimensional coded matrix multiplication,” in
Proc. of Adv. in Neur. Inf. Proc. Syst. (NeurIPS), 2017, pp. 4403–4413.

[6] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for
coded computation that leverage stragglers,” in Proc. of IEEE Info. Th.

Workshop, 2018, pp. 1–5.
[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation

in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. Info. Th., vol. 66, no. 3, pp. 1920–1933, 2020.

[8] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.

on Mach. Learn. (ICML), 2017, pp. 3368–3376.
[9] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers

and sparse matrices in coded matrix computation,” IEEE Jour. on Sel.

Area. in Info. Th., vol. 3, no. 2, pp. 241–256, 2022.
[10] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and

factored raptor codes for large-scale distributed matrix multiplication,”
IEEE Jour. Sel. Area. Info. Th., vol. 2, no. 3, pp. 893–906, 2021.

[11] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Coded
matrix computations for D2D-enabled linearized federated learning,” in
Proc. of IEEE Intl. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP),
2023, pp. 1–5.

[12] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Trans. Info. Th., vol. 67, no. 5, pp. 2758–2785, 2021.

[13] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix mul-
tiplication,” in Proc. of Annu. Allerton Conf. Commun. Control Comput,
Sep. 2019, pp. 253–259.

[14] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
in Proc. of Intl. Conf. on Mach. Learn. (ICML), 2018, pp. 5152––5160.

[15] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in Proc. of IEEE Glob. Comm. Conf. (GLOBECOM),
2018, pp. 1–6.

[16] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.

Inf. Forensics Secur., vol. 15, pp. 2722–2734, 2020.
[17] J. Li and C. Hollanti, “Private and secure distributed matrix multipli-

cation schemes for replicated or mds-coded servers,” IEEE Trans. Inf.

Forensics Secur., vol. 17, pp. 659–669, 2022.

[18] Q. Yu and A. S. Avestimehr, “Coded computing for resilient, secure,
and privacy-preserving distributed matrix multiplication,” IEEE Trans.

on Comm., vol. 69, no. 1, pp. 59–72, 2021.
[19] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Distributed

matrix computations with low-weight encodings,” in Proc. of IEEE Intl.

Symp. on Info. Th., 2023.
[20] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation

schemes that leverage partial stragglers,” IEEE Trans. Info. Th., vol. 68,
no. 6, pp. 4156–4181, 2022.

[21] J. Marshall. Hall, Combinatorial theory. Wiley, 1986.
[22] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-

mial identities,” Jour. of the ACM, vol. 27, no. 4, pp. 701–717, 1980.
[23] M. Xhemrishi, R. Bitar, and A. Wachter-Zeh, “Distributed matrix-vector

multiplication with sparsity and privacy guarantees,” in Proc. of IEEE

Intl. Symp. on Info. Th., 2022, pp. 1028–1033.
[24] R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao

product codes for distributed matrix multiplication,” in Proc. of IEEE

Info. Th. Workshop, 2022, pp. 416–421.
[25] SuiteSparse Matrix Collection. [Online]. Available:

https://sparse.tamu.edu/

https://sparse.tamu.edu/

	Introduction
	Problem Formulation
	Minimum Weight of Coding
	Proposed Approach
	Straggler Resilience Guarantee
	Computational Complexity for a Worker Node
	Numerical Stability and Coefficient Determination Time

	Private Matrix-vector Multiplication

	Numerical Experiments
	Conclusion
	Appendix
	Proof of Claim 1

	References

