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Abstract—We revisit the binary adversarial wiretap channel
(AWTC) of type II in which an active adversary can read a
fraction r and flip a fraction p of codeword bits. The semantic-
secrecy capacity of the AWTC II is partially known, where
the best-known lower bound is non-constructive, proven via a
random coding argument that uses a large number (that is
exponential in blocklength n) of random bits to seed the random
code. In this paper, we establish a new derandomization result
in which we match the best-known lower bound of 1−H2(p)−r
where H2(·) is the binary entropy function via a random code
that uses a small seed of only O(n2) bits. Our random code
construction is a novel application of pseudolinear codes – a class
of non-linear codes that have k-wise independent codewords when
picked at random where k is a design parameter. As the key
technical tool in our analysis, we provide a soft-covering lemma
in the flavor of Goldfeld, Cuff and Permuter (Trans. Inf. Theory
2016) that holds for random codes with k-wise independent
codewords.

I. INTRODUCTION

Consider a communication setting in which a sender Alice
wishes to communicate a message to a receiver Bob by
sending a sequence of bits over a noisy wiretap channel.
The channel is controlled by an (active) adversary who can
both read a fraction r ∈ [0, 1] and flip a fraction p ∈ [0, 1]
of Alice’s transmitted bits. In this setting, Alice’s and Bob’s
communication goal under any adversarial strategy is two-fold:

1) (Reliability) Bob must decode Alice’s message with small
probability of error.

2) (Secrecy) The adversary must extract negligible informa-
tion of the Alice’s message via its observation of Alice’s
sequence.

Critically, we make no assumptions about the adversary’s com-
putational limitations, and thus, secrecy must be guaranteed
in an information theoretic sense by “hiding” the message
in the adversary’s bit-limited observation. Furthermore, the
adversary may choose the location of the bit reads and bit
flips in an arbitrary manner using knowledge of Alice and Bob
communication scheme. In the literature, the above setting is
known as the binary adversarial wiretap channel of type II
(denoted as (p, r)-AWTC II) [1], [2].

Much is known about the fundamental limits of communi-
cation over the (p, r)-AWTC II. Roughly defined, the secrecy
capacity of the (p, r)-AWTC II is the largest rate at which
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Alice and Bob can communicate while meeting the above
goals under a given secrecy measure. The measure we focus on
is semantic secrecy (SS) [3], [4], which is widely recognized
as the cryptographic gold standard for evaluating secrecy [5].
The SS capacity, denoted C(p, r), is partially known where
the best-known lower bound [6] and upper bound [6], [7] are

max{1−H2(p)−r, 0} ≤ C(p, r) ≤ 1−H2(p)−r− min
x∈[0,1]

f(x)

(1)
where H2(·) is the binary entropy function and f(x) =
H2((2p− 1)x+ 1− p)−H2(p)− rH2(x). Note that the two
bounds are close for small r and tight for p = 0.

While the limits of communication over the (p, r)-AWTC
II are mostly understood, less is known on how to construct
efficient codes to achieve these limits. The proof of the lower
bound (1), as given in [6], is non-constructive and follows
an ordinary random coding argument in which codewords are
chosen uniformly and independently from space {0, 1}n where
n is the blocklength of the code. As a tool for probabilistic
constructions, the practical use of this random code distribu-
tion is limited. For example, to represent a code picked in
this way, one would need to remember at least n2Rn random
bits where R is the coding rate.1 Thus, codes picked from a
distribution with mutual independence property lack a succinct
representation. Furthermore, the high degree of randomness
used in the construction obscures insight into the structure of
a good code. Without sufficient structure, efficient encoding
and decoding algorithms are likely to be elusive.

In this paper, we work towards an efficient code construc-
tion for the (p, r)-AWTC II by partially derandomizing the
random code used in [6] to establish the lower bound (1).
We do so by relaxing the requirement that codewords be
mutually independent and consider random codes with k-wise
independent codewords for some positive integer k << n.
We show that random codes under this weaker notation of
independence can achieve the lower bound (1) for some
parameter k large enough but constant in n. As a result,
these codes have both a more succinct representation and
additional structure compared to random codes with mutually
independent codewords.

The approach we take is the following. We focus on a class
of non-linear codes known as pseudolinear codes (precisely
defined in Section II-C), which was initially proposed by

1Additional random (seed) bits are needed if one considers codes with
private randomness at the encoder (i.e., stochastic codes).
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Guruswami and Indyk [8] outside of the AWTC setting. In
the AWTC setting, pseudolinear codes have a number of nice
properties, including succinct representations (i.e., O(kn2)
bits), efficient encoding algorithms, some linear structure, and
k-wise independent codewords when chosen at random for a
designable parameter k. We initiate the study of pseudolinear
codes for achieving both secrecy and reliability in the wiretap
setting. As our main result, we show that random pseudolinear
codes achieve the best-known SS capacity lower bound (1).
Conversely, we show that non-linear codes are necessary to
achieve this lower bound for some values of p and r. To
prove our main result, we provide a new lemma on the soft-
covering phenomenon [9], [10] under random coding with k-
wise independent codewords.

II. PRELIMINARIES, RESULTS & RELATED WORK

A. Notation
Unless stated otherwise, we denote random variables in

uppercase font (e.g., X), realizations of random variables in
lowercase font (e.g., x), and sequences in bold font (e.g.,
X , x). An exception to the above rules occurs when we
denote codes: we denote random codes with script typeset
(e.g., C ) and realizations of random codes with calligraphic
typeset (e.g., C). We denote the set of all possible distributions
over a set X as P(X ), and denote the uniform distribution
over X as Unif(X ). We denote that X is distributed as
P ∈ P(X ) by writing X ∼ P . For PMFs P and Q such that
supp(P ) ⊆ supp(Q) (absolute continuity), the relative en-
tropy of P and Q is D(P ||Q) ≜

∑
x∈supp(P ) P (x) log2

P (x)
Q(x) .

For α > 0 and α ̸= 1, the Rényi divergence of order α
is Dα(P ||Q) ≜ 1

α−1 log2
∑

x∈supp(P ) P (x)(P (x)
Q(x) )

α−1. Define
the special case D1(P ||Q) ≜ limα→1 Dα(P ||Q) = D(P ||Q).
For an event A, we let 1{A} denote the indicator of A.

B. Setup
Code: A (binary) code Cn of blocklength n is a subset of

{0, 1}n. We will associate a code Cn with an encoding function
x(·), which performs a mapping from the message space M
to codewords in {0, 1}n. As is common for wiretap codes, we
will consider stochastic encoding in which x takes as argument
a private random key w ∈ W that is known only to Alice.
Specifically, for a message rate R = log2 |M|

n and a (private)
key rate R′ = log2 |W|

n , an [n,Rn,R′n] code Cn is a set

Cn = {x(m,w) : (m,w) ∈ M×W}

where we refer to x(w,m) as the (n-bit) codeword corre-
sponding to message m and key w. In turn, a family of codes
is a sequence {Cn}∞n=1 where for each n ≥ 1, Cn is an
[n,Rn,R′n] code.

Encoding/Decoding: For an [n,Rn,R′n] code Cn, probabil-
ity mass function (PMF) PM ∈ P(M), a message M ∼ PM

and a private key W ∼ Unif(W) where M and W are
independent, Alice encodes M into a codeword x(M,W ) and
transmits it over the channel. Subsequently, Bob receives a
corrupted version of the codeword and performs decoding by

choosing a message estimate M̂ ∈ M. We say that a decoding
error occurs if M̂ ̸= M .

The AWTC II: For a read fraction r ∈ [0, 1] and an error
fraction p ∈ [0, 1/2], the adversary can observe rn bits and
flip up to pn bits of x(M,W ). The location of the read bits
are indexed by a coordinate set S, which the adversary can
choose from the set S consisting of all subsets of [n] of size
rn. In turn, the adversary observes Z = x(M,W,S) where
x(M,W,S) denotes the rn bits of x(M,W ) indexed at S ,
and subsequently, chooses the location of the bit flips. We
emphasize that the location of the bit flips need not coincide
with S. In general, the adversary can randomize its above
choices by choosing a distribution on S that can depend on
the code, as well as a distribution on the bit flip locations that
can depend on both the code and the observation Z.

Secrecy: Define the semantic leakage as

Sem(Cn) = max
PM∈P (M),S∈S

IS(M ;Z) (2)

where IS(M ;Z) denotes the mutual information between
M ∼ PM and Z = x(M,W,S). In turn, a family of codes
{Cn}∞n=1 is said to be semantically-secret if Sem(Cn) =
2−Ω(n). We remark that this mutual-information based notation
of SS is shown in [5] to be (asymptotically) equivalent to the
operational definition of SS given in [3], [4]. Further, SS is a
stronger notation of secrecy than strong secrecy.2

Reliability: The (maximum) probability of decoding error
is defined as

Pmax
error(Cn) = max

m∈M
P
(
M̂ ̸= m|M = m

)
where the probability is taken w.r.t. the distribution of Alice’s
key and the worst-case distribution of the adversary’s bit
read/flip locations. A family of codes {Cn}∞n=1 is said to be
reliable if for any δ > 0, Perror(Cn) ≤ δ for large enough n.

SS Capacity: The rate R > 0 is said to be achievable
over the (p, r)-AWTC II if there exists a family of codes
{Cn}∞n=1 (where for each n, Cn is an [n,Rn,R′n] code for
some R′ ≥ 0) that is both semantically-secret and reliable.
The SS capacity C(p, r) is the supremum of rates achievable
over the (p, r)-AWTC II.

C. Results
Our first result is on the necessity of non-linear codes

for achieving the SS capacity. We say that a [n,Rn,R′n]
code Cn is linear3 if there exists a generator matrix G ∈
{0, 1}(R+R′)n×n such that the codeword corresponding to any
message m ∈ M ≜ {0, 1}Rn and key w ∈ W ≜ {0, 1}R′n is
x(m,w) =

[
m w

]
G. A corollary of the following Theorem

is that for any r ∈ (0, 1] and p = 0 (i.e., the channel to
Bob is noiseless), linear codes cannot achieve SS capacity
C(0, r) = max{1− r, 0}.

2A family of codes is said to achieve strong secrecy if
limn→∞ maxS∈S IS(M ;Z) = 0 where the message distribution is
fixed s.t. PM ∼ Unif(M).

3Examples of linear codes in the wiretap setting include Ozarow’s and
Wyner’s linear coset coding scheme [1] and some polar code and LDPC code
based schemes (e.g., [11]).
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Fig. 1: Bounds on linear code performance compared to the
semantic secrecy capacity of the (p, r)-AWTC II when the
channel from Alice to Bob is noiseless (i.e., p = 0).

Theorem 1. Let p = 0, r ∈ (0, 1], R > max{1 − 2r, 0} and
R′ ∈ [0, 1−R]. For large enough n, every linear [n,Rn,R′n]
code Cn has either semantic leakage Sem(Cn) ≥ 1 or
probability of error Perror(Cn) ≥ 1/2 over the (0, r)-AWTC
II.

Remark 1. Theorem 1 can be extended to non-zero values of
p. In particular, together with the lower bound (1), Theorem
1 implies that linear codes cannot achieve C(p, r) for either
any p ∈ [0, 1/2) and r ∈ (0, 1/2] such that H2(p) < r, or
any p ∈ [0, 1/2] and r ∈ [1/2, 1], except for the trivial case
when C(p, r) is 0.

A proof of Theorem 1 is given in Section III, which
involves a specific construction of the adversary’s coordi-
nates S together with the Plotkin bound to upper bound
the minimum distance of a code. We remark that tighter
distance bounds can be used in place of the Plotkin bound.
For instance, if one uses the Elias-Bassalygo bound [12]–
[14], the rate lower bound in Theorem 1 can be tightened
to R > max{1 − H

(
1−√

1−2r
2

)
, 0}. All bounds discussed

thus far are plotted in Fig. 1.
In light of Theorem 1, non-linear codes must be considered

to achieve the lower bound (1) for at least some values of
p ∈ [0, 1/2] and r ∈ [0, 1]. We turn now to non-linear codes.

Definition 1 (Pseudolinear Code). For R ∈ (0, 1], R′ ∈
[0, 1 − R] and positive integers n and k, let H be the parity
check matrix of any binary linear code with the following
parameters:

• blocklength 2(R+R′)n − 1
• dimension 2(R+R′)n−1−ℓ for some ℓ = O(k(R+R′)n)
• minimum distance at least k + 1.

An [n,Rn,R′n, k] psuedolinear code Cn is any [n,Rn,R′n]

code that satisfies the following two step encoding process.
First, a message-key pair (m,w) ∈ M×W is mapped to the
row of HT indexed by (m,w), which we denote as h(m,w).4

Second, h(m,w) is linearly mapped to an n-bit codeword by
some “generator” matrix G ∈ {0, 1}ℓ×n, i.e.,

x(m,w) = h(m,w)G.

Thus, the non-linearity of Cn is confined to the first stage of
encoding.

Towards the goal of derandomizing the random code of
[6], pseudolinear codes have the following three attractive
properties [8].5 First, a pseudolinear code has a succinct
representation as only ℓn = O(k(R + R′)n2) bits are
needed to describe the generator matrix. Second, encoding
is computationally efficient if h(m,w) can be obtained in
time polynomial in n for each (m,w) ∈ M × W . For
instance, we can let H be the parity check matrix of a
binary Bose–Chaudhuri–Hocquenghem (BCH) code of design
distance k+1, in which case H has an explicit representation
and h(m,w) can be efficiently obtained by computing powers
of a primitive (2(R+R′)n − 1)-th root of unity from the
extension field GF(2(R+R′)n), e.g., see [16].

Third, if we consider a random pseudolinear code by choos-
ing the generator matrix G at random while fixing the parity
check matrix H , then the codewords of the random code are
uniformly distributed in {0, 1}n and k-wise independent, i.e.,
any subset of codewords of size k are mutually independent.6

This final property is the key to showing that pseudolinear
codes achieve the best-known lower bound of C(p, r).

Theorem 2. Let p ∈ [0, 1/2] and r ∈ [0, 1] such that 1 −
H2(p) − r is positive. For any R < 1 − H2(p) − r and for
large enough (but fixed) k, there exists a family pseudolinear
codes {Cn}∞n=1 (where for n ≥ 1, Cn is an [n,Rn,R′n, k]
pseudolinear code for some R′ ≥ 0) that is both reliable and
semantically-secret.

A proof of Theorem 2 is provided in Section V. The key
technical tool in the proof is a new version of Wyner’s soft-
covering lemma which holds for codes with k-wise indepen-
dent codeword. However, our version differs significantly from
Wyner’s [9, Theorem 6.3], which we state and prove in Section
IV.

Our version is closest to (and proved similarly to) the
soft-covering lemma of Goldfeld, Cuff and Permuter [10],
which roughly states that if the key rate R′ is larger than
the mutual information between Alice’s channel input and the
adversary’s observation, then a random code with mutually
independent codewords satisfies an exponential number of
secrecy constraints with probability at least 1−2−2Ω(n)

. Here,
the double-exponential probability bound is important as it

4To account for the message-key pair (0, 0), we define h(0, 0) to be the
all zeros vector.

5See [15] for further discussion of pseudolinear codes.
6In contrast, random linear codes have codewords that are pair-wise (i.e.,

2-wise) independent in non-trivial cases.
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allows one to take a union bound over an exponential number
of events. Our version of the lemma states that when we
restrict the random code to a k-wise independent distribution,
the same constraints hold with probability at least 1−2−kΩ(n).
Critically, while our probability bound tends to 1 more slowly
than double-exponentially, it remains fast enough to take a
union bound over an exponential number of events when k is
large enough.

D. Related Work
Linear Codes and Semantic-Secrecy: Recall that Theorem

1 states that linear codes cannot achieve the SS capacity for
the (noiseless) (0, r)-AWTC II for any r ∈ (0, 1]. Prior to this
work, some special classes of linear codes were known to not
achieve the SS capacity. In particular, Ozarow’s and Wyner’s
linear coset coding scheme [1] does not achieve SS capacity
of the (0, r)-AWTC II for any r ∈ (0, 1]. We provide a proof
of this result in Appendix A. We remark that the necessity of
non-linear codes for achieving the secrecy capacity is a product
of the joint consideration of the semantic secrecy metric and
the type II property of the wiretap channel. In contrast, linear
codes are sufficient to achieve the weak secrecy capacity
over the noiseless WTC II [1]. Furthermore, linear codes are
sufficient to achieve both the weak and strong secrecy capacity
of the noisy (but non-adversarial) WTC I [11].

Code Constructions: Explicit (and efficient) constructions
that achieve the best known lower bound of the (p, r)-AWTC
II are not known in general, except for the special cases
of p = 0 [17], [18] and r = 0 [19]. In the general case,
one promising approach is use modular constructions, which
combine an existing error-control code with an invertible
extractor [5], [18], [20] or algebraic manipulation detection
code [2]. However, constructing binary error-control codes
that are both efficiently encodable/decodable and achieve the
(reliability) capacity of the (p, r)-AWTC is an open problem.
In contrast to the above modular constructions, pseudolinear
codes offer a non-modular approach. Recently, random (and
thus non-explicit) pseudolinear codes were shown to achieve
the (reliability) capacity of the (p, r)-AWTC II [21].

III. PROOF OF THEOREM 1

Notation: For message rate R > 0, key rate R′ ∈
[0, 1 − R], and blocklength n ≥ 1 define M ≜ {0, 1}Rn

and W ≜ {0, 1}R′n. For an [n,Rn,R′n] linear code Cn,
let G denote the (R + R′)n × n generator matrix of Cn,

which can be partitioned such that G =

[
GM

GW

]
where

GM ∈ {0, 1}Rn×n and GW ∈ {0, 1}R′n×n. In turn, the
codeword corresponding to message m ∈ M and key w ∈ W
is x(m,w) = mGM + wGW . For a coordinate set S ∈ S ,
let the matrices GM (S) and GW (S) denote the columns of
GM and GW indexed by S, respectively. Using this notation, if
Alice transmits codeword x(m,w) then the adversary observes
z = mGM (S) + wGW (S).

Preliminaries: Let Cn be an [n,Rn,R′n] linear code with
generator matrix G. We make the following assumption.

Assumption 1. Without loss of generality (w.l.o.g.), we assume
that G is full rank, i.e., rank(G) = (R+R′)n.

The claim being w.l.o.g. is roughly as follows: if G is
not full rank, then either Pmax

error(Cn) ≥ 1/2 or both W and
G can be replaced with a smaller key set and full rank
generator matrix, respectively, without changing the code. A
detailed discussion is provided in Appendix B. We remark that
following Assumption 1, we have that rank(GM ) = Rn and
rank(GW ) = R′n.

Before proving the converse result (Theorem 1), we state a
few preliminary results relating the semantic leakage to the
rank of GM (S) and GW (S) for S ∈ S . For a code Cn
and coordinate set S ∈ Z , we denote the mutual information
between M and Z as IS(M ;Z) (where the dependency on
Cn is implied).

Lemma 1. For S ∈ S and M uniformly distributed over M,

IS(M ;Z) = rank (G(S))− rank (GW (S)) .

Proof of Lemma 1. Let S ∈ S . We first characterize the joint
PMF of M , W and Z, which we denote as PM,W,Z . We drop
the subscripts from the PMF PM,W,Z and its marginal PMFs
when the meaning is clear from the use of the realization
variables m, w and z.

For z ∈ {0, 1}rn and m ∈ M, we have that

P (z|m) =
∑
w∈W

P (z, w|m)
(a)
=
∑
w∈W

P (z|m,w)P (w)

(b)
= Tm,z2

−R′n (3)

where (a) follows from the independence of M and W , (b) fol-
lows from W ∼ Unif(W), and where Tm,z ≜

∑
w∈W 1{z =

mGM (S) + wGW (S)}.
To simplify (3), define

T ≜ {(m′, z′) ∈ M× {0, 1}rn : Tm′,z′ ≥ 1}

and suppose that (m, z) ∈ T . By definition, there exists
an w ∈ W such that wGW (S) = mGM (S) + z. In
turn, since the mapping GW (S) : W → {0, 1}rn is a
linear transformation, there must be 2nullity(GW (S)) num-
ber of w ∈ W such that wGW (S) = mGM (S) + z
where nullity(GW (S)) is the dimension of the null space
of GW (S). By the rank-nullity theorem [22, Theorem 2],
2nullity(GW (S)) = 2dim(W)−rank(GW (S)) = 2R

′n−rank(GW (S)).
In turn,

Tm,z =

{
2R

′n−rank(GW (S)), (m, z) ∈ T
0, (m, z) ̸∈ T ,

and in turn, following (3),

P (z|m) =

{
2−rank(GW (S)), (m, z) ∈ T
0, (m, z) ̸∈ T .

(4)
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Repeating the above approach for the PMF of Z, one can
show using the assumption that m is uniformly distributed
over M = {0, 1}Rn that

P (z) =

{
2−rank(G(S)), ∃m ∈ M s.t. (m, z) ∈ T
0, ∀m ∈ M, (m, z) ̸∈ T .

(5)

Using the above PMFs, we evaluate the mutual information
between M and Z:

IS(M ;Z) ≜
∑

m∈M

∑
z∈{0,1}rn

P (m, z) log2
P (z|m)

P (z)

(c)
=

∑
(m,z)∈T

P (m, z) log2 2
rank(G(S))−rank(GW (S))

(d)
= rank (G(S))− rank (GW (S)) .

where (c) follows from (4), (5), and P (m, z) = 0 ∀(m, z) ̸∈
T , and (d) follows from

∑
(m,z)∈T P (m, z) = 1. ■

Corollary 1.1. If R′ +R ≤ r, then limn→∞ Sem(Cn) = ∞.

Proof of Corollary 1.1. Suppose that M is uniformly dis-
tributed and that R+R′ ≤ r. Recall that G has rank (R+R′)n
(c.f. Assumption 1). Since R+R′ ≤ r, there exists a S ∈ S
such that rank(G(S)) = rank(G) = (R + R′)n. Let S be
this coordinate set. It follows that rank(GW (S)) = R′n, and
in turn, IS(M ;Z) = Rn following Lemma 1. In conclusion,
Sem(Cn) ≥ Rn. ■

For the converse analysis, we will need the following
version of the Plotkin bound [23].

Lemma 2 (Extended Plotkin bound [24]). Suppose that Ψ
is an [n,Rn] code (not necessarily linear) with minimum
distance dmin ∈ (0, n/2]. Then for δ ≜ dmin/n,

R ≤ 1− 2δ + o(1)

where the o(1) term tends to 0 as n tends to infinity.

Converse (Proof of Theorem 1) Setup: Set p = 0 and let
r ∈ [0, 1]. For any ϵ > 0, let R = max{1 − 2r, 0} + ϵ and
let R′ ∈ [0, 1 − R] such that R + R′ > r (c.f. Corollary
1.1). In turn, we let Cn be an [n,Rn,R′n] linear code with
generator matrix G. W.l.o.g., we assume that G is full rank
(c.f. Assumption 1).

Converse Attack: The adversary orchestrates it attack in two
steps. First, the adversary chooses an index set V ⊆ [n] of
size (R + R′)n such that all columns of G(V) are linearly
independent. Note that such a set exists following our as-
sumption that G is rank (R + R′)n. Second, the adversary
chooses a coordinate set S∗ ∈ S to be a subset of V that
minimizes the rank of GW (S∗). Once Alice transmits her
codeword x(M,W ), the adversary reads the codeword bits
Z = x(M,W,S∗) corresponding to the coordinates S∗ with
corresponding mutual information IS∗(M ;Z).

Converse Analysis: The goal of the converse analysis is to
show that IS∗(M ;Z) ≥ 1. We remark that S∗ is a strict
subset of V following the inequality r < R + R′. This fact

together with the fact that all |V| column of G(V) are linearly
independent implies that the rank of G(S∗) is rn. In turn,
following Lemma 1,

IS∗(M ;Z) = rn− rank(GW (S∗)). (6)

In the converse analysis, we show that rn−rank(GW (S∗)) ≥
1.

We proceed with the following dual code perspective. Con-
sider GW (V) as the R′n×(R+R′)n generator matrix of some
[(R + R′)n,R′n] linear code Ψ. In turn, let G⊥

W (V) denote
the Rn× (R+R′)n generator matrix of the [(R+R′)n,Rn]
dual code Ψ⊥ of Ψ. By definition, GW (V) is the parity check
matrix corresponding to the generator matrix G⊥

W (V). Let
d⊥min denote the minimum distance of Ψ⊥. By the definition
of the parity check matrix (e.g., see [16]), there exists d⊥min

linearly dependent columns of the parity check matrix GW (V).
Hence, if d⊥min ≤ rn, then the adversary’s choice of S∗

contains the indices of these d⊥min linearly dependent columns
of GW , i.e, the rank of GW (S∗) is bounded above by rn−1.
In turn, IS∗(M ;Z) ≥ 1 via (6). To complete the proof, we
show that d⊥min ≤ rn.

Applying the Plotkin bound (Lemma 2) to the dual code
Ψ⊥, we have that

R

R+R′ ≤ 1− 2δ⊥ + o(1) (7)

for the distance parameter δ⊥ ≜ d⊥
min

(R+R′)n and where the o(1)
term tends to 0 as n tends to infinity. In turn, for large enough
n,

d⊥min

(d)

≤ R′n
2

+ o(n)

(e)

≤ 2r − ϵ

2
+ o(n)

(f)
< rn

where (d) follows from a rearrangement of (7), (e) follows
from the setting of rate R = max{1 − 2r, 0} + ϵ and the
trivial inequalities R+R′ ≤ 1 and max{1− 2r, 0} ≥ 1− 2r,
and (f) follows for large enough n. In conclusion, for large
enough n, IS∗(M ;Z) ≥ 1 and thus Sem(Cn) ≥ 1.

IV. A SOFT-COVERING LEMMA FOR k-WISE
INDEPENDENT CODEWORDS

Notation: In this section only, we consider a more general
code model than that introduced in Section II-B. For an
alphabet U which is not necessarily binary, a blocklength n
and a (private) key rate R′ > 0, we define an [n,R′n] code
Cn as a subset of Un of size |Cn| = 2R

′n. We will often
describe Cn by its set of codewords {u(w, Cn)}w∈W for a
key set W = [2R

′n].
We introduce the soft-covering problem, depicted in Fig. 2.

The problem setup is as follows. For a blocklength n ≥ 1,
let Cn = {u(w, Cn)}w∈W be an [n,R′n] code. Given a finite
input alphabet U , an input distribution QU , a finite output
alphabet V and channel QV |U , consider the PMFs induced
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Cn = {u(w)}
W u(W )

Qn
V |U

V ∼ P
(Cn)
V

Fig. 2: The soft-covering problem: the goal is to design the
code Cn to make P

(Cn)
V ≈ Qn

V .

on the output sequence V ∈ Vn when an input sequence
U ∈ Un is sent through the n-shot memoryless channel Qn

V |U :
for v ∈ Vn,

1) The PMF of V when U is drawn randomly from Qn
U ,

i.e.,

QV (v) = Qn
V (v) =

∑
u∈U

Qn
V |U (v|u)Qn

U (u).

2) The PMF of V when U is the codeword u(W, Cn) for
W ∼ Unif(W), i.e.,

P
(Cn)
V (v) ≜

∑
w∈W

Qn
V |U (v|u(w, Cn))2−Rn. (8)

The soft-covering problem asks how to design a code Cn
such that the induced PMF P(Cn)

V is approximately Qn
V in the

limit as n tends to infinity. The following lemma states that if
R′ > I(U ;V ), then for any integer k large enough a random
[n,R′n] code Cn with k-wise independent codewords each
drawn from distribution Qn

U results in P
(Cn)
V ≈ Qn

V for large
enough n. Recall that we denote random codes with script
typeface (e.g., Cn) and we denote realizations of random codes
with calligraphic typeface (e.g., Cn).

Lemma 3 (Soft-covering lemma for k-wise independent
codewords). Suppose that the random code Cn has k-wise
independent codewords for some even integer k ≥ 4, each
drawn from a PMF Qn

U for finite U . Let QV |U be any
conditional PMF where |V| is finite and let R′ > I(U ;V ).
There exists some γ0 > 0 and γ1 > 0 that depend only on R′

and I(U ;V ) such that for large enough n

PCn

(
D
(
P

(Cn)
V

∣∣∣∣∣∣Qn
V

)
> 2−γ1n

)
≤ 2(−kγ0+log2 |V|)n

where we recall that D is the relative entropy.

A. Overview of Proof of Lemma 3
Setup: Let the blocklength n ≥ 1 and key rate R′ >

I(U ;V ), and let k be a positive integer that will be set later.
In turn, let Cn be a random [n,R′n] code drawn from any
distribution that has k-wise independent codewords each with
marginal PMF Qn

U .
The proof of Lemma 3 follows a two step approach. In

the first step, the proof closely follows the proof outline of
[10] in which we construct an upper bound on the relative
entropy D(P

(Cn)
V ||Qn

V ) based on a typical set construction of
n-symbol sequences. In the second step, the proof diverges
from [10] to analyze how the relative entropy upper bound
concentrates. This second step uses the k-wise independent
property of the random code Cn.

Define the information density of a scalar pair (u, v) ∈
U × V as iQU,V

(u; v) ≜ log2
QV |U (v|u)

QV (v) . In turn, define the
information density of an n-symbol sequence pair (u,v) ∈
Un × Vn,

iQn
U,V

(u;v) ≜
n∑

j=1

iQU,V
(uj ; vj).

For ϵ > 0, define a typical set of n-symbol sequence pairs

Aϵ ≜
{
(u,v) ∈ Un × Vn : iQn

U,V
(u;v) < (I(U ;V ) + ϵ)n

}
.

Recall that for an [n,R′n] code Cn, the PMF P
(Cn)
V is the

PMF of V when U is a codeword drawn from the code Cn
(c.f. (8)). We split P (Cn)

V into two terms based on the typical
set Aϵ: for v ∈ Vn, define

P
(Cn)
V ,1 (v) ≜

2−Rn
∑
w∈W

Qn
V |U (v|u(w, Cn))1{(u(w, Cn),v) ∈ Aϵ},

and define

P
(Cn)
V ,2 (v) ≜

2−Rn
∑
w∈W

Qn
V |U (v|u(w, Cn))1{(u(w, Cn),v) ̸∈ Aϵ}.

By inspection, P (Cn)
V = P

(Cn)
V ,1 + P

(Cn)
V ,2 ; note that P (Cn)

V ,1 and
P

(Cn)
V ,2 may not be PMFs. We also define the ratios

∆
(Cn)
V ,1 (v) ≜

P
(Cn)
V ,1 (v)

Qn
V (v)

and ∆
(Cn)
V ,2 (v) ≜

P
(Cn)
V ,2 (v)

Qn
V (v)

.

We restate a result from [10] that bounds the relative entropy
of P (Cn)

V and Qn
V in terms of the introduced quantities.

Lemma 4 ([10, Lemma 3]). For every [n,R′n] code Cn,

D
(
P

(Cn)
V

∣∣∣∣∣∣Qn
V

)
≤ H2

(∑
v∈Vn

P
(Cn)
V ,2 (v)

)
+D

(
P

(Cn)
V ,1

∣∣∣∣∣∣Qn
V

)
+D

(
P

(Cn)
V ,2

∣∣∣∣∣∣Qn
V

)
.

We remark that the RHS of the inequality of Lemma 4 is
well defined if we extend the definition of relative entropy
D(·||·) in the natural way to account for functions P

(Cn)
V ,1

and P
(Cn)
V ,2 which may not be PMFs. The following sufficient

condition for Lemma 3 follows from Lemma 4.

Lemma 5 (Sufficient Condition for Lemma 3). Suppose that
for some π0 ∈ [0, 1] and with probability at least 1− π0 over
the random code distribution, for some π1 > 0∑

v∈Vn

P
(Cn)
V ,2 (v) < 2−π1n (9)

and
∆

(Cn)
V ,1 (v) < 1 + 2−π1n for all v ∈ Vn. (10)

Then
PCn

(
D
(
P

(Cn)
V

∣∣∣∣∣∣Qn
V

)
≥ qn2

−π1n
)
≤ π0 (11)
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where qn = 2 log2 e+ π1n+ n log2

(
max

v∈supp(QV )

1
QV (v)

)
.

Proof of Lemma 5. Let π1 > 0 and suppose that Cn is a
realization of Cn such that both (9) and (10) hold. We bound
each of the 3 terms in the inequality of Lemma 4 using (9)
and (10).

Consider the first term. Following (9) and the inequality7

H2(x) ≤ x log2
e
x for x ∈ [0, 1], we have that

H2

(∑
v∈Vn

P
(Cn)
V ,2 (v)

)
≤ H2(2

−π1n) < 2−π1n(log2 e+ π1n).

(12)
Moving on to the second term, following (10) and the inequal-
ity log2(1 + x) ≤ x log2 e for x > 0, we have that

D(P
(Cn)
V ,1 ||Qn

V ) ≜
∑
v∈Vn

P
(Cn)
V ,1 (v) log2 ∆

(Cn)
V ,1

<
∑
v∈Vn

P
(Cn)
V ,1 log2(1 + 2−π1n)

≤ log2(1 + 2−π1n) ≤ 2−π1n log2 e. (13)

Moving to the last term, we will use the following inequality
which uses the assumption that |V| is finite: ∆

(Cn)
V ,2 (v) ≜

P
(Cn)
V ,2 (v)

Qn
V (v) ≤ max

v′∈supp(Qn
V )

1
Qn(v′) = ( max

v′∈supp(QV )

1
Q(v′) )

n for all

v ∈ Vn. Following this inequality and (9), we have that

D(P
(Cn)
V ,2 ||Qn

V ) ≜
∑
v∈Vn

P
(Cn)
V ,2 (v) log2 ∆

(Cn)
V ,2

≤
∑
v∈Vn

P
(Cn)
V ,2 (v)n log2

(
max

v′∈supp(QV )

1

QV (v′)

)
< 2−π1nn log2

(
max

v′∈supp(QV )

1

QV (v′)

)
. (14)

Combining the bounds (12), (13) and (14) together with
Lemma Lemma 4, the desired inequality (11) immediately
follows. ■

In the remainder of the proof of Lemma 3, we apply the
framework of the sufficient condition (Lemma 10) and show
that inequalities (9) and (10) hold with probability 1−π0 over
the distribution of Cn for a value π0 = 2−kΩ(n)+n log2 |V| and
some π1 > 0. As the primary technical tools of the proof,
we use the concentration inequalities of Schmidt, Siegel and
Srinivasan [25] and Bellare and Rompel [26] for sums of k-
wise independent random variables.

B. Proof of Lemma 3
First, we show that inequality (9) holds with high probability

over the random code Cn for some π1 > 0. Consider the

7This inequality follows from an application of both the inequality x
1+x

≤
ln(1 + x) for x > −1 and the definition of H2(x).

quantity∑
v∈Vn

P
(Cn)
V ,2 (v)

=
∑

w∈W
2−R′n

∑
v∈Vn

Qn
V |U (v|U(w,Cn))1 {(U(w,Cn),v) ̸∈ Aϵ}

=
∑

w∈W
2−R′nPV ∼Qn

V |U

(
(U(w,Cn),V ) ̸∈ Aϵ

∣∣∣U = U(w,Cn)
)

(15)

Note that (15) is a sum of |W| = 2R
′n k-wise-independent

terms following that the codewords of Cn are k-wise indepen-
dent.

For w ∈ W , the expectation of the wth term in the sum of
(15) is

2−R′nECn
PV ∼Qn

V |U

(
(U(w,Cn),V ) ̸∈ Aϵ

∣∣∣U = U(w,Cn)
)

(a)
= 2−R′nP(U ,V )∼Qn

U,V
((U ,V ) ̸∈ Aϵ)

(b)
= 2−R′nP(U ,V )∼Qn

U,V

(
iQn

U,V
(U ;V ) ≥ (I(U ;V ) + ϵ)n

)
(c)
= 2−R′nP(U ,V )∼Qn

U,V

(
2
λiQn

U,V
(U ;V ) ≥ 2λ(I(U ;V )+ϵ)n

)
(d)
≤ 2−R′n

E(U,V )∼QU,V

[
2λiQU,V

(U ;V )
]

2λ(I(U ;V )+ϵ)

n

= 2
−λ

(
I(U ;V )+ϵ− 1

λ log2 E(U,V )∼QU,V

[
2
λiQU,V

(U;V )
])

n−R′n

(e)
= 2−λ(I(U ;V )+ϵ−Dλ+1(QU,V ||QUQV ))n−R′n

= 2−(αλ,ϵ+R′)n (16)

where (a) follows from the fact that U(w,Cn) is distributed
as Qn

U , (b) follows from the definition of Aϵ, (c) holds for
any λ > 0, (d) follows from Markov’s inequality and the
product form of the joint PMF Qn

U,V , (e) follows from the
definition of Rényi divergence of order λ+1, and where αλ,ϵ ≜
λ (I(U ;V ) + ϵ−Dλ+1(QU,V ||QUQV )).

For ϵ > 0, we remark that i) αλ,ϵ tends to 0 as λ tends
to 0, and ii) αλ,ϵ is positive for small enough λ > 0;
these follow from the facts that Dλ+1(QU,V ||QUQV ) is a
continuous and non-decreasing function of λ > 0 and that
D1(QU,V ||QUQV ) = I(U ;V ). In the sequel, for a given
ϵ > 0, we let λ > 0 be small enough such that αλ,ϵ ∈ (0, R′).
Moving forward, we write αλ,ϵ as simply α when the depen-
dency on λ and ϵ is clear from context.

Lemma 6 ([25, Theorem 3]). Suppose that {Tw}w∈W are
random variables that take values in [0, 1], and define T ≜∑

w∈W Tw and µ ≜ E[T ]. For τ > 0, if the variables are
k-wise independent for some k ≥ k∗(|W|, µ, τ) ≜ ⌈ µτ

1− µ
|W |

⌉,
then

P (T ≥ µ(1 + τ)) ≤
(|W|
k∗

) (
µ

|W|

)k∗

(
µ(1+τ)

k∗

) .

Using the framework of Lemma 6, we set Tw for each w ∈
W to be the wth term in the sum of (15), i.e.,

Tw = 2−R′nPV ∼Qn
V |U

((U(w,Cn),V ) ̸∈ Aϵ|U = U(w,Cn)) ,

7



and in turn, we have that T ≜
∑

w∈Tw
Tw =∑

v∈Vn P
(Cn)
V ,1 (v). Note that the expectation µ ≜ ECn

[T ] is
bounded above by 2−αn following (16). For a parameter β ∈
(0, α) that will be set later, set τ such that µ(1+τ) = 2(β−α)n.

Before applying Lemma 6, we normalize the random vari-
ables {Tw}w∈W to optimize the parameter k∗. For some
parameter θ ∈ (0, 1] which we will soon set, define T ′

w =
θ2R

′nTw and note that T ′
w ∈ [0, 1]. Similarly, define the

normalized sum T ′ = θ2R
′nT , its normalized expectation

µ′ = θ2R
′nµ which is bounded above by θ2(R

′−α)n, and
note that µ′(1+ τ) = θ2(R

′+β−α). Now consider the quantity
k∗(|W|, µ′, τ) as a function of θ, and let n be large enough
and choose θ ∈ (0, 1] such that k∗(|W|, µ′, τ) is equal to
k; such a choice exists for fixed k and large enough n since
k∗(|W|, µ′, τ) ≥ µ′τ = θ2(R

′+β−α)n−µ′ ≥ θ2(R
′−α)n(2βn−

1) is tending larger than k for fixed θ > 0 as n tends to infinity
following α < R′.

We apply Lemma 6 to the normalized random variables
{T ′

w}w∈W . We have for large enough n

PCn

( ∑
v∈Vn

P
(Cn)
V ,2 (v) ≥ 2(β−α)n

)
= PCn

(
T ≥ 2(β−α)n

)
(f)
= PCn

(
T ′ ≥ θ2(R+β−α)n

)
(g)
≤
(
2R

′n

k

) (
µ′

2R′n

)k
(
θ2(R′+β−α)n

k

)
(h)
≤ kk

k!

(
µ′

θ2(R′+β−α)n

)k

(i)
≤ kk

k!
2−kβn (17)

where (f) follows from the normalization T ′ = θ2R
′nT , (g)

follows for large enough n from Lemma 6 and the choice of
θ such that k∗ = k, (h) follows from the inequalities mk

kk ≤(
m
k

)
≤ mk

k! for any 1 ≤ k ≥ m, and (i) follows from the bound
µ′ ≤ θ2(R

′−α).

Next, we show that inequality (10) holds with high probabil-
ity over the random code Cn. For v ∈ Vn, expand ∆

(Cn)
V ,1 (v):

∆
(Cn)
V ,1 (v) ≜

P
(Cn)
V ,1 (v)

Qn
V (v)

=
∑
w∈W

2−R′n
Qn

V |U (v
∣∣U(w,Cn))

Qn
V (v)

1 {(U(w,Cn),v) ∈ Aϵ} .

(18)

Note that (18) is a sum of |W| = 2R
′n k-wise independent

terms following that the codewords of Cn are k-wise indepen-
dent. For w ∈ W , the expectation of the wth term in the sum

of (18) is

2−R′nECn

[
Qn

V |U (v|U(w,Cn))

Qn
V (v)

1 {(U(w,Cn),v) ∈ Aϵ}
]

(j)
≤ 2−R′nECn

[
Qn

V |U (v|U(w,Cn))

Qn
V (v)

]
(k)
= 2−R′n

∑
u∈Un

Qn
U (u)

Qn
V |U (v|u)
Qn

V (v)

= 2−R′n (19)

where (j) follows from the trivial bound 1{·} ≤ 1 and (k)
follows from the distribution of codeword U(w,Cn) ∼ Qn

U .

Lemma 7 ([26, Lemma 2.3]). Let k ≥ 4 be an even integer.
Suppose that {Tw}w∈W are k-wise independent random vari-
ables that take values in [0, 1], and define T ≜

∑
w∈W Tw

and µ ≜ E[T ]. For any τ > 0,

P(T ≥ µ(1 + τ)) ≤ 8

(
kµ+ k2

(µτ)2

)k/2

.

Using the framework of Lemma 7, fix v ∈ Vn and set Tw

for each w ∈ W to be

Tw = 2(−I(U ;V )−ϵ)n
(

Qn
V |U (v|U(w,Cn))

Qn
V (v)

)
1 {(U(w,Cn),v) ∈ Aϵ}

which coincides with the wth term in the sum of (18) nor-
malized by the factor 2(R

′−I(U ;V )−ϵ)n. This normalization
factor was chosen to ensure Tw is bounded above by 1 which
follows from that fact that for any (u,v) ∈ Aϵ we have
that

Qn
V |U (v|u)

Qn
V (v) < 2(I(U ;V )+ϵ)n. Set T =

∑
w∈W Tw and

note that µ ≜ ECn
[T ] is bounded above by 2(R

′−I(U ;V )−ϵ)n

following (19) and the choice of normalization factor. Finally,
set τ such that µ(τ + 1) = 2(R

′−I(U ;V )−ϵ)n(1 + 2(β−α)n)
and note that µτ = 2(R

′−I(U ;V )−ϵ)n(1 + 2(β−α)n) − µ ≥
2(R

′−I(U ;V )−ϵ+β−α)n. Applying Lemma 7, we have that for
for even integer k ≥ 4, small enough ϵ > 0 and large enough
n

PCn

(
∆

(Cn)
V ,1 (v) ≥ 1 + 2(β−α)n

)
= PCn (T ≥ µ(1 + τ))

(ℓ)

≤ 8

(
k2(R

′−I(U ;V )−ϵ)n + k2

22(R′−I(U ;V )−ϵ+β−α)n

)k/2

(m)

≤ 8

(
(k + 1)2(R

′−I(U ;V )−ϵ)n

22(R′−I(U ;V )−ϵ+β−α)n

)k/2

= 8(k + 1)k/2 · 2−kηn. (20)

where (ℓ) follows from Lemma 7 and the bounds µ ≤
2(R

′−I(U ;V )−ϵ)n and µτ ≥ 2(R
′−I(U ;V )−ϵ+β−α)n, and (m)

follows for small enough ϵ > 0 and large enough n such
that k2(R

′−I(U ;V )−ϵ)n >> k2, and where

η =
R′ − I(U ;V )− ϵ+ 2(β − α)

2
(21)
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In turn, by a simple union bound over all v ∈ Vn, and by
letting k ≥ 4 be an even integer, ϵ > 0 be small enough and
n be large enough,

PCn

(
∃v ∈ Vn s.t. ∆(Cn)

V ,1 (v) ≥ 1 + 2(β−α)n
)

≤ 8k(k + 1)k/2 · 2−(kη1+log2 |V|)n.
(22)

To complete the proof, we put together the above results and
apply the sufficient condition (Lemma 3). In the framework
of Lemma 3, we set π1 = α − β. If π1 > 0, then it follows
from Lemma 3 that the inequalities (9) and (10) hold with
probability at least 1− π0 where

π0 =
kk

k!
2−kβn + 8k(k + 1)k/2 · 2(−kη+log2 |V|)n

where the expression for π0 follows from (17) and (22)
together with a simple union bound.

The last step is to show that for some choice of the free
parameters ϵ > 0, λ > 0 and β ∈ (0, α) we have that π1 > 0
and π0 = 2−kΩ(n)+n log2 |V|. Recall that for a fixed ϵ > 0,
α = αλ,ϵ tends to 0 as λ tends to 0, and αλ,ϵ is positive for
small enough λ > 0. Furthermore, recall that R′ > I(U ;V )
by assumption, and thus, η given by (21) is positive for small
enough ϵ > 0, small enough αλ,ϵ > 0, and any β ∈ (0, αλ,ϵ).
Thus, given even k ≥ 4, we can pick ϵ > 0 small enough,
and in turn, pick λ > 0 small enough such that both αλ,ϵ

and η1 are positive. In turn, picking β ∈ (0, αλ,ϵ) ensures that
αλ,ϵ − β > 0 and thus π1 > 0. Thus, π0 = 2−kΩ(n)+log2 |V|.
This completes the proof of Lemma 5.

V. PROOF OF THEOREM 2

Setup: Let p ∈ [0, 1/2] and r ∈ [0, 1] such that 1−H2(p)−
r > 0. For ϵ > 0 and ϵ′ ∈ (0, ϵ), let R = 1 − H2(p) −
r − ϵ and R′ = r + ϵ′. Let k be a positive integer to be
set in the proof. The goal of the proof is to show that for
large enough k constant in n and for large enough n, there
exists an [n,Rn,R′n, k] pseudolinear code Cn such that both
Sem(Cn) = 2−Ω(n) and Pmax

error(Cn) = o(1).
Encoding: Alice uses an [n,Rn,R′n] code Cn =

{x(m,w)}(m,w)∈M×W to encode her message M . That is, for
a message distribution PM ∈ P(M), Alice draws M ∼ PM

and W ∼ Unif(W) and transmits x(M,W ).
Decoding: Upon receiving the channel output y, Bob

performs min-distance decoding by choosing the message
estimate m̂ and key estimate ŵ such that

(m̂, ŵ) = arg min
(m,w)∈M×W

dH (x(m,w),y)

where dH denotes the Hamming distance.

A. Code Distribution
We show the existence of a good code via a random coding

argument. As our random code distribution, we will use the
following distribution over [n,Rn,R′n, k] pseudolinear codes.

Definition 2 (Random Code Dist.). Let F [n,Rn,R′n, k] be
the distribution over all [n,Rn,R′n, k] pseudolinear codes

Cn(S) = {x(m,w, S)} QZ|X(S) = 1{z = x(S)}

(m,W ) x(m,W, S) Z ∼ P
(Cn,S)
Z|M=m

Fig. 3: A mapping of the quantities in (25) to the soft-covering
problem of Fig. 2.

where the parity check matrix H (c.f. Definition 1) is fixed and
the generator matrix G is chosen uniformly from {0, 1}ℓ×n.

The following property of F [n,Rn,R′n, k] is useful.

Lemma 8 ([15, Lemma 9.1]). The codewords of Cn ∼
F [n,Rn,R′n, k] are uniformly distributed over {0, 1}n and
are k-wise independent.

B. Secrecy Analysis
For a given S ∈ S , let Q

(S)
Z denote the PMF of the

adversary’s observation Z ∈ {0, 1}rn when Alice sends a
random n-bit sequence X ∼ Qn

X ≜ Unif({0, 1}n) through
the channel. We have that

Q
(S)
Z (z) = QX(S)(z) = Qrn

X (z), for all z ∈ {0, 1}rn. (23)

Furthermore, for an [n,Rn,R′n] code Cn, let P (Cn,S)
M,Z denote

the joint PMF of message M and observation Z when Alice
sends the codeword x(M,W, Cn) through the channel. Then
for marginal PMF PM ∈ P(M),

ICn
(M ;Z) ≜ D

(
P

(Cn,S)
M,Z ||PMP

(Cn,S)
Z

)
(a)
= D

(
P

(Cn,S)
M,Z ||PMQ

(S)
Z

)
−D

(
P

(Cn,S)
Z ||Q(S)

Z

)
(b)
≤ D

(
P

(Cn,S)
M,Z ||PMQ

(S)
Z

)
≤
∑

m∈M
PM (m) max

m′∈M
D
(
P

(Cn,S)
Z|M=m′ ||Q(S)

Z

)
= max

m∈M
D
(
P

(Cn,S)
Z|M=m||Q(S)

Z

)
(24)

where (a) follows from the relative entropy chain rule and (b)
follows from the property D(·||·) ≥ 0. Thus,

Sem(Cn) = max
PM∈P(M),S∈S

ICn
(M ;Z)

(c)
≤ max

S∈S
max
m∈M

D
(
P

(Cn,S)
Z|M=m||Q(S)

Z

)
(d)
= max

S∈S
max
m∈M

D
(
P

(Cn,S)
Z|M=m||Qrn

X

)
(25)

where (c) follows from (24) and (d) follows from (23).
Consider the relative entropy D

(
P

(Cn,S)
Z|M=m||Qrn

X

)
in the

framework of the soft-covering lemma for k-wise independent
codewords (Lemma 3), as illustrated in Fig. 3. Here, (m,W )
is uniformly drawn from a message-key product set {m}×W
of rate R′/r, i.e., |{m} × W| = 2R

′n = 2rn
R′
r . Since rate

R′/r = (r + ϵ′)/r is greater than I(X;Z) = 1, it follows
from Lemma 3 that there exists γ0 > 0 and γ1 > 0 such that
for even integer k ≥ 4 and large enough n,

PCn

(
D
(
P

(Cn,S)
Z|M=m||Qrn

X

)
> 2−γ1rn

)
≤ 2(−kγ0+1)rn. (26)

9



In turn,

PCn

(
Sem(Cn) > 2−γ1rn

)
(e)
≤ PCn

(
max
S∈S

max
m∈M

D
(
P

(Cn,S)
Z|M=m||Qrn

X

)
> 2−γ1rn

)
≤ PCn

( ⋃
S∈S

⋃
m∈M

{
D
(
P

(Cn,S)
Z|M=m||Qrn

X

)
> 2−γ1rn

})
(f)
≤ 2(−kγ0r+r+R+1)n (27)

where (e) follows from (25), and (f) follows for large enough
n from a simple union bound, the inequality |S | =

(
n
rn

)
≤ 2n

and (26).

C. Reliability Analysis
Unlike the above secrecy analysis, the reliability analysis

requires additional structure of the code Cn beyond the k-wise
independence property. In particular, we will use the pseudo-
linear structure of Cn. We restate a reliability result of [21]
without proof. For a code Cn and a message m ∈ M, define
the probability of decoding error conditioned on M = m as

P (m)
error(Cn) ≜ P(M̂ ̸= m|M = m)

where the probability is w.r.t. W ∼ Unif(W) and the adver-
sary’s choice of bit read/flip locations.

Lemma 9 ([21, Theorem 1]). Suppose that p ∈ (0, 1/2) and
r < 1 − H2(p). If the key rate R′ > r and the sum rate
R+R′ < 1−H2(p), then for large enough (but fixed) k and
any fixed δ > 0, there exists γ2 > 0 such that for large enough
n and any m ∈ M,

PCn

(
P (m)
error(Cn) > δ

)
≤ 2−kγ2n. (28)

We apply Lemma 9 to bound the maximum probability of
error Pmax

error(Cn) ≜ maxm∈M P
(m)
error(Cn). Note that our choice

of ϵ and ϵ′ ensures that R′ > r and R + R′ < 1 − H2(p).
Also, we have that R < 1−H2(p)− r. Thus, for δ > 0,

PCn

(
Pmax
error(Cn)

> δ
)
≜ PCn

(
max
m∈M

P (m)
error(Cn) > δ

)
(g)
≤
∑

m∈M
PCn

(
P (m)
error(Cn) > δ

)
(h)
≤ 2(−kγ2+1−H2(p)−r)n (29)

where (g) follows from a union bound and (h) follows for
large enough k and for large enough n via Lemma 9.

D. Combining Secrecy and Reliability Analysis
To complete the proof, we combine the secrecy and relia-

bility analysis. For large enough k and k even, and for large
enough n,

PCn
({Sem(Cn) > 2−γrn} ∪ {Pmax

error(Cn) > δ})
≤ 2(−kγ0r+2r+R)n + 2(−kγ2+1−H2(p)−r)n (30)

following both (27), (29) and a simple union bound. In
summary, for large enough k and k even (which is constant in

n) and large enough n, we have that (30) is less than 1, and
in turn, there exists an [n,Rn,R′n, k] pseudolinear code Cn
such that Sem(Cn) ≤ 2−γ1rn and Pmax

error(Cn) ≤ δ.

VI. CONCLUSION

We showed that random pseudolinear codes achieve the best
known lower bound of the semantic secrecy capacity of the
binary adversarial wiretap channel of type II. A necessary
condition on the non-linearity of a capacity achieving code was
also shown. One possible avenue for future research is to apply
further derandomization techniques to our random codes, e.g.,
in the spirit of [27]. The goal here is to replace random
pseudolinear codes with a significantly derandomized class
that can maintain the same error-correction and secrecy power
while being more amendable to efficient decoding algorithms.

APPENDIX A
LINEAR COSET CODING SCHEMES

In this appendix, we prove that the linear coset coding
scheme of Ozarow and Wyner [1] is not semantically-secret
for any positive message rate. We first define coset coding.

The linear coset coding scheme, proposed in [1], is as
follows: Let R > 0 be the message rate. For blocklength n,
let H be the Rn×n parity check matrix of some [n, n−Rn]
binary linear code. Encoding: Suppose that Alice wants to
transmit a message m ∈ {0, 1}Rn. Alice encodes m by
choosing the n bit codeword x randomly and uniformly from
the set of solutions {x′ ∈ {0, 1}n : x′HT = m} and
transmits x over the (noiseless) (0, r)-AWTC II. Decoding:
Upon receiving x, Bob performs decoding by choosing the
message estimate m̂ = xHT . It is easy to show that the above
linear coset coding scheme is an [n,Rn, (1−R)n] linear code.

We prove the following result.

Lemma 10. Let rate R > 0. For large enough n, any
[n,Rn, (1−R)n] binary code Cn that is a linear coset coding
scheme has semantic leakage Sem(Cn) ≥ 1.

For any R > 0, let Cn be an [n,Rn, (1 − R)n] binary
code that is a linear coset coding scheme and let H be
the corresponding Rn × n parity check matrix. Suppose that
Alice’s message is uniformly distributed over {0, 1}n. To
prove Lemma 10, we will use the following result due to
Ozarow and Wyner.

Lemma 11 ([1, Lemma 4]). For an index set I ⊆ [n], let H(I)
denote the |I| columns of H indexed by I. The adversary’s
equivocation is

∆ ≜ min
S∈S

H(M |Z) = min
I⊆[n]:|I|=(1−r)n

rank (H(I)) . (31)

Recall the following definitional inequalities:

Sem(Cn) ≥ max
S∈S

IS(M ;Z)

= H(M)− min
S∈S

H(M |Z) = Rn−∆.

Thus, to show that Sem(Cn) ≥ 1 for large enough n, it is
sufficient to show that ∆ ≤ Rn− 1.
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Let n be large enough and suppose by contradiction that
∆ = Rn. By Lemma 11, we have that rank(H(I)) = Rn
for every set I ⊆ [n] s.t. |I| = (1− r)n. This in turn by the
definition of H implies that the [n, (1−R)n] binary code with
parity check matrix H has minimum distance, denoted dmin,
of at least Rn+1. However, by the Plotkin bound of Lemma
2, we have that 1 − R ≤ 1 − 2dmin

n + o(1), or equivalently,
dmin ≤ Rn

2 +o(n). Thus, for n large enough such that the o(n)
term is negligible, we have a contradiction. This completes the
proof of Lemma 10.

APPENDIX B
DISCUSSION OF ASSUMPTION 1

We show that if the generator matrix G of an [n,Rn] linear
code Cn is not full rank, then either the probability of decoding
error is large such that Pmax

error(Cn) ≥ 1/2 or both W and G can
be replaced with a smaller key set W ′ and generator matrix G′,
respectively, without changing the code. Let Cn be an [n,Rn]
linear code and suppose that G is not full rank.

Suppose that GW is full rank. Since the channel is noiseless,
Bob’s received sequence is guaranteed to be a codeword in Cn.
Suppose that Bob receives the codeword c ∈ Cn. From Bob’s
perspective, the set of all possible message-key pairs that Alice
could have sent is

Mc = {(m,w) ∈ M×W :
[
m w

]
G = c}

= {(m,w) ∈ M×W : mGM + wGW = c}.

Since the mapping G : {0, 1}(R+R′)n → {0, 1}n is a
linear transformation, the number of pairs in Mc is |Mc| =
2nullity(G) = 2(R+R′)n−rank(G) where the second equality fol-
lows from the rank-nullity theorem. In turn, since rank(G) <
(R+R′)n, it follows that |Mc| ≥ 2. Now consider two unique
pairs in Mc, say (m1, w1) and (m2, w2). We show that m1 ̸=
m2 by considering 2 cases. (Case 1): Suppose that w1 = w2.
Then m1 ̸= m2 by the uniqueness of the pairs. Done. (Case
2): Suppose instead that w1 ̸= w2. Since GW is full rank, we
have that (w1 + w2)GW ̸= 0. In turn, [m1w1]G = [m2w2]G
implies that (m1 +m2)GM = (w1 + w2)GW ̸= 0, and thus,
m1 ̸= m2. Done. In summary, upon receiving c, Bob finds
that at least 2 messages could be Alice’s message. Thus, for
PMFs PM = Unif(M) and PW = Unif(W),

Pmax
error(Cn) ≥ P(M,W )∼PMPW

(
M̂ ̸= M

)
=
∑
c∈Cn

P(M,W )∼PMPW

(
M̂ ̸= M

∣∣∣Bob RXs c
) 1

|Cn|
≥ 1/2.

Suppose instead that GW is not full rank. Then each
(R′n)-bit sequence in the rowspace of GW corresponds to
multiple (i.e., redundant) keys in W . Hence, we can eliminate
this redundancy by shortening the key w from R′n bits to
rank(GW ) bits and replacing GW with full rank matrix G′

W

that has rowspace(G′
W ) = rowspace(GW ) without changing

the code Cn.
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