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Abstract— In this paper we propose a new robust and
computationally efficient algorithm to solve the problem of
prioritized inverse kinematics (IK) tasks. The main idea of the
new algorithm is assuming that the sampling time is a free
variable and solving the IK problem with respect to an extended
variable that includes the joint variation and the sampling
time. The main advantage of the new formulation is that it
can always provide a physically consistent solution, moreover
the user only needs to provide a geometric description of the
desired operational space paths as the algorithm provides the
required time on the fly to convert those paths into trajectories
for the robot joints.

The proposed algorithm has been extensively validated in
simulation, and the results revealed its efficiency to deal with
the priority of tasks as well as the robot physical limits,
furthermore, the algorithm always succeeded in providing an
admissible solution.

I. INTRODUCTION

The Inverse Kinematics (IK) problem is one of the most
important problems in robotics, and it has been extensively
studied in the literature [1], [2], [3], [4], [5]. Recently,
the concept of prioritized IK tasks has received a lot of
attention [4], [5], [6] as many robotic systems are nowadays
redundant, i.e. they have more Degrees of Freedom (DoF)
than required for a specific kinematic task, for instance 6 DoF
for a standard three-dimensional task. As the tasks cannot be
simultaneously achieved, the user role is to define the task
priority in accordance with their importance. However, if the
first priority task becomes infeasible, the other tasks with
lower priority will not be achieved.

The prioritized IK tasks problem is usually defined for n
kinematic tasks, however, without loss of generality we only
consider the case of two tasks as follows:

min
q̇(t)

q̇(t)TQq̇(t)

subject to
First priority: J1q̇(t) = ṙ1(t) +K1 e1(t)

Second priority: J2q̇(t) = ṙ2(t) +K2 e2(t)

(1)

where Q is a diagonal and positive semi-definite matrix,
J× is the Jacobian matrix, q̇ ∈ Rn is the joint velocity
and ṙ×(t) is the linear and angular velocity of the desired
trajectory, K is a positive definite (usually diagonal) matrix
and e is the operational space error defined as follows:

e = xd − xe (2)

(a) HRP-2 (b) HRP-3 (c) HRP-4

Fig. 1. Robots having similar kinematic structures but different velocity
and joint limits

where xd is the desired position and orientation and xe is
the actual one.

The optimization problem (1) can be efficiently solved
using the pseudo-inverse technique [4], [5] as follows:

q̇ =J†1(ṙ1 +K1 e1(t)) + · · ·
(I − J†1J1)Ĵ†2((ṙ2 +K2 e2(t))− J2J

†
1(ṙ1 +K1 e1(t)))

(3)
where:

J†× = Q−1JT
×
(
J×Q

−1 JT
×
)−1

Ĵ2 = J2(I − J†1J1)
(4)

If Q is the identity matrix, J†× becomes the well-known
Moore-Penrose pseudo-inverse.

Even though the analytical solution in (3) is very attractive
from a computational point of view, it cannot allow the
integration of constraints on the velocity and joint limits
or avoiding obstacles. Therefore, most of recent research in
the field are instead considering the following optimization
problem:



min
q̇(t)

q̇(t)TQq̇(t)

subject to

First priority:
{
J1q̇(t) = ṙ1(t) +K1 e1(t)
A1q̇(t) ≤ b1

Second priority:
{
J2q̇(t) = ṙ2(t) +K2 e2(t)
A2q̇(t) ≤ b2

ˆ̇q− ≤ q̇t ≤ ˆ̇q+

(5)

As in the previous case, Q is a diagonal and positive semi-
definite matrix. ˆ̇q− and ˆ̇q+ are respectively the generalized
lower and upper limits of the velocity defined as in [7], [8].
Those limits provide a compact and efficient way to deal
with both velocity and joint limits. A× and b× represent the
additional constraints that result from considering geometric
constraints, such as collision avoidance, or avoiding the
obstruction of the robot visual field, for more details the
reader is referred to [7], [9], [10], [11], [6].

The optimization problem (5) can be efficiently solved
by a Quadratic Programming (QP) solver. However, by
adding the inequality constraints the problem can easily
become infeasible, this is mainly true if the desired Cartesian
trajectories are not well defined. Defining a suitable Carte-
sian trajectory is tricky as robots having similar kinematic
structures can have very different velocity and joint limits,
an example is given in Fig. 1.

A possible solution to deal with the numerical infeasibility
issue would be relaxing the constraints, thus the optimization
problem (5) becomes:

min
q̇,w1,w2

q̇(t)TQq̇(t) + α1 w
T
1 w1 + α2 w

T
2 w2

subject to

J1q̇(t) = ṙ1(t) +K1 e1(t) + w0
1

A1q̇(t) ≤ b1 + w1
1

J2q̇(t) = ṙ2(t) +K2 e2(t) + w0
2

A2q̇(t) ≤ b2 + w1
2

ˆ̇q− ≤ q̇t ≤ ˆ̇q+

(6)
Where wT

1 =
[
w0

1
T
w1

1
T
]

and wT
2 =

[
w0

2
T
w1

2
T
]

are slack
variables, α1 and α2 are user-defined constants (α1 >> α2,
for instance α1 = 103 × α2). Even though the infeasibil-
ity issue is solved and the obtained motion is physically
consistent, the generated Cartesian (position and orientation)
trajectory might significantly diverge from the desired one
or have a collision with the environment as the constraints
are not fully satisfied [12].

In [12], we have proposed an approach that is based on
considering the sampling time as an additional parameter,
thus solving the infeasibility issue. The main contribution in
this paper is adapting that method to the case of prioritized
tasks and proposing an efficient and robust algorithm to solve
it in real time as well as solving the discontinuity issue of
discrete time control. We have also proposed an extension to
handle the case of floating-base robots, e.g. humanoid robots.

II. TIME-SPACE DECOUPLING

As above-mentioned the main idea is transforming the
sampling time (T ), which is usually supposed fixed, into
a free variable, and solving the inverse kinematics problem
as a function of ∆q and T . Thus, the IK problem in (5) is
transformed into the following equivalent QP problem:

min
∆q,T,w0,w1

∆qTQ∆q + βT 2 + α
[
wT

0 w
T
1

] [ w0

w1

]

subject to
J1∆q = ∆r1 +K1 e1 T

A1∆q ≤ b1 T
J2∆q = ∆r2 +K2 e2 T + w0

A2∆q ≤ b2 T + w1

ˆ̇q− T ≤ ∆q ≤ ˆ̇q+ T

ε ≤ T
(7)

where ∆r is defined in the same way as in [12]. 0 < ε� 1,
β > 0, and α > 0 are user-defined constants. In practice,
a possible choice for α and β is α = β = 103 × ‖Q‖,
where ‖Q‖ is the norm of the matrix Q. The role of the
slack variable w =

[
wT

0 w
T
1

]T ∈ Rp is defining the priority
between the tasks.

The QP problem (7) can be efficiently solved, in real time,
using an appropriate QP solver such as qpOASES solver
[13].

III. DISCRETE TIME CONTROL

As modern robotic systems are usually controlled by a
control unit with a fixed time step, the sampling time T
should satisfies the following additional constraint:

T = nTs (8)

where n ∈ N is a strictly positive integer and Ts is the robot
control loop fixed time step.

Thus, the optimization problem (7) becomes:

min
∆q,n,w0,w1

∆qTQ∆q + βn2 + α
[
wT

0 w
T
1

] [ w0

w1

]

subject to
J1∆q = ∆r1 +K1 e1 nTs

A1∆q ≤ b1 nTs
J2∆q = ∆r2 +K2 e2 nTs + w0

A2∆q ≤ b2 nTs + w1

ˆ̇q− nTs ≤ ∆q ≤ ˆ̇q+ nTs

1 ≤ n
(9)

The above optimization problem is a Mixed-Integer
Quadratic Programming (MIQP) problem, which is generally
more complex and computationally more expensive than a
standard QP.

However, as mentioned in [12], one does not need to solve
the above MIQP problem, but instead one can still solve (7)



by replacing ε by Ts, and once ∆q and T are obtained, the
parameter n can be obtained such as:

(n− 1)Ts +
Ts
2
< T ≤ nTs +

Ts
2

(10)

However, in practice, the operation in (10) could lead to
discontinuity in the joint velocity q̇t ∼= ∆q

nTs
.

To solve the discontinuity issue, a solution would be to
modulate the vector ∆q by the factor nTs

T , thus:

q̇t ∼=
nTs

T ∆q

nTs

∼= ∆q

T

As a result, the solution to (9) would be:

X ∗ =

[
nTs

T ∆q
nTs

]
(11)

where ∆q and T are the solutions to (7), and n satisfies
the constraint in (10).

IV. FLOATING-BASE ROBOTS

Since a humanoid robot is not fixed to the environment,
the robot has the same mechanical property of a free-floating
system. The base link of a humanoid robot is often modeled
as a floating base which has 6 DoF. In the case of classical
manipulators, the numerical integration of joint angles is
simply computed as follows.

qt = qt−1 + ∆q (12)

On the other hand, the generalized coordinates of a floating
base includes not only its position but also its orientation.
The integration of the generalized velocities cannot be com-
puted according to (12); the integration of rotational motion
needs to be considered.

Let us represent the generalized coordinates of a humanoid
robot by using the following variables:

p : the vector of the position of the base link
R : the orientation matrix of the base link
θ : the vector of the joint angles

Then, let us define the generalized velocities q̇ as follows:

q̇ =



ν
ω

θ̇




where, ν and ω are the linear and angular velocity (or the
spatial velocity) of the base link, and θ̇ indicates the joint
angle velocities. Note that, ν and ω are expressed in the local
coordinates, this is because the local expression is suitable
when computing the Jacobian matrices.

Let us consider the following vector ∆q by linearly
integrating q̇ with the small-time step ∆T .

∆q =




∆p̂
∆r̂
∆θ


 = q̇∆T (13)

where, ∆p̂(= ν∆T ), ∆r̂(= ω∆T ) and ∆θ(= θ̇∆T ) are
the sub-vectors of ∆q. Note that ∆q does not have physical

meaning due to the linear integration of the spatial velocity.
Then, the numerical integration of the generalized velocities
is formulated by using ∆q as follows:

pt = pt−1 +Rt−1∆p̂

Rt = Rt−1e
[(∆r̂)]∧

θt = θt−1 + ∆θ

(14)

where, eM means the matrix exponential of M , and [. ]
∧

designs the skew operator defined as follows:

[. ]
∧

: ω ∈ R3 → so(3)

[ω]
∧

=




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




When implementing the discrete time control for a hu-
manoid robot, the solution ∆q of the optimization problem
(7) needs to be integrated according to the update rule of
(14) and (13) in order to compute pt, Rt, and θt of the
robot at each time instance.

V. COMPLEXITY ANALYSIS

Let us compare the complexity of the new algorithm with
the conventional inverse kinematics algorithm with relaxed
constraints, i.e. Eq. (6).

The dimension of the optimization variable in the proposed
algorithm (X ) is n+ p+ 1 where n is the dimension of the
joint vector (qt), and p is the dimension of equality and
inequality constraints of the second priority task, while the
optimization variable in (6) is XT = [q̇Tt w

0
1
T
w1

1
T
w0

2
T
w1

2
T

]
has a dimension of n + 2 p if we suppose that both tasks
have the same number of equality and inequality constraints.
Regarding the equality and inequality constraints, the new
algorithm has one additional constraint in comparison with
the conventional method, this constraint is on the variable T .

As a result, the complexity of the new algorithm is com-
parable to the conventional inverse kinematics one. However,
it is important to recall that the proposed algorithm has the
advantage of overcoming the problem of infeasibility and
avoiding a significant deviation from the desired trajectory.

The numerical simulations in Section VI also confirmed
the above conclusions.

VI. SIMULATION RESULTS

We have conducted five simulation scenarios:

A. Scenario 1: Comparing with Conventional Method

To compare the performance of the proposed algorithm
with the conventional method in (6), we consider a planar
redundant manipulator, which has 4 degrees of freedom
(Fig. 2). We defined two prioritized kinematic tasks as
follows:
• First priority task: The end effector has to follow a path

that is designed as a Bezier curve as shown in Fig. 2.
• Second priority task: The path of third joint (Joint 3 in

Fig. 2) has to stay parallel to the vertical axis (y axis).



The above QP problem can be efficiently solved, in real-time,
using an appropriate QP solver such as qpOASES solver
[15].

III. DISCRETE TIME CONTROL

As modern robotic systems are usually controlled by a
discrete time control unit with a fixed time step, the sampling
time T should satisfies the following additional constraint:

T = n Ts (10)

where n 2 N is a strictly positive integer and Ts is the robot
control loop fixed time step.

Thus, the optimization problems (7) becomes:

min
�q,n,w0,w1

�qT Q�q + �n2 + ↵
⇥
wT

0 wT
1

⇤  w0

w1

�

subject to
J1�q = �r1

A1�q  b1 n Ts

J2�q = �r2 + w0

A2�q  b2 n Ts + w1

ˆ̇q� n Ts  �q  ˆ̇q+ n Ts

1  n

(11)

The above optimization problem is a Mixed-Integer
Quadratic Programming (MIQP) problem, which is generally
more complex and computationally more expensive than a
standard QP.

However, as mentioned in [14], one does not need to solve
the above MIQP problem, but instead one can still solve (7)
by replacing ✏ by Ts, and once �q, T are obtained, the
parameter n can be obtained such as:

(n � 1) Ts +
Ts

2
< T  n Ts +

Ts

2
(12)

However, in practice, the operation in (12) could lead to
discontinuity in the joint velocity q̇t

⇠= �q
n Ts

.
To solve the discontinuity issue, a solution would be to

modulate the vector �q by the factor n Ts

T , thus:

q̇t
⇠=

n Ts

T �q

n Ts

⇠= �q

T

(13)

As a result, the solution to (11) would be:

X ⇤ =


n Ts

T �q
n Ts

�

where �q and T are the solutions to (7), and n satisfies
the constraint in (12).

IV. COMPLEXITY ANALYSIS

Let us compare the complexity of the new algorithm with
the conventional inverse kinematics algorithm with relaxed
constraints, i.e. Eq. (6).

The dimension of the optimization variable in the proposed
algorithm (X ) is n + p + 1 where n is the dimension
of the joint velocity variable (q̇t), and p is the dimension
of equality and inequality constraints of the second prior-
ity task, while the optimization variable in (6) is XT =

[q̇T
t w0

1
T

w1
1

T
w0

2
T

w1
2

T
] has a dimension of n + 2 p if we

suppose that both tasks have the same number of equality
and inequality constraints.

As a result, the complexity of new algorithm is comparable
to the conventional inverse kinematics one. However, it
is important to recall that the proposed algorithm has the
advantage of overcoming the problem of infeasibility and
significant deviation form the desired trajectory.

The numerical simulations in Section V also confirmed
the above conclusions.

V. SIMULATION RESULTS

We have conducted three simulations scenarios:

A. Scenario 1: Comparing with Conventional Method

To compare the performance of the proposed algorithm
with the conventional method in (6), we consider a planar
redundant manipulator, which has 4 degrees of freedom
(Fig. ??). The end-effector path is a Bezier curve defined
by an initial, control and a goal positions. The joint velocity
limits have been chosen as follows:

q̇+ = �q̇� = 0.5 ⇥ [1 1 1 1]T (14)

0 1 2 3 4

�1

0

1

X (m)

Y
(m

)

Fig. 2. Planar robot configurations

Fig. 3(a) points out that the constraints on the joint velocity
are fully respected, and Fig. 3(c) shows that the error between
the executed trajectory and the desired one is less than
10�5m. To compare those results with a conventional inverse
kinematics algorithm, the end-effector path has been first
transformed into a trajectory by considering a uniform time
distribution with a sampling time T = 5 ⇥ 10�3s over the

Final position 

Initial position 

Control Point

Joint 3

Fig. 2. Planar robot configurations

The joint velocity limits have been chosen as follows:

q̇+ = −q̇− = 0.5× [1 1 1 1]T (15)

For comparison reasons, we also solved the IK problem
in (6) by transforming the end-effector path into a trajectory
using a uniform time distribution with a sampling time
T = 5× 10−3s and the final time Tf = 3.5 s is set equal to
the one obtained by the proposed algorithm. Both algorithms
generate a motion within the robot physical limits, however,
Fig. 3 shows that the tracking error of the end-effector
trajectory in the case of conventional method is significant
in comparison with the proposed algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4
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−0.4

−0.2

0

0.2

0.4
·10−2

Time(s)

m

Error in x
Error in y

(a) Proposed algorithm

0 1 2 3
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Time(s)

m Error in x
Error in y

(b) Conventional method Eq.(6)

Fig. 3. Scenario 1: End-effector tracking error

B. Scenario 2: Different Velocity Limits

In this scenario, we consider the same prioritized tasks as
in Scenario 1 but with two different sets of velocity limits:

1) Set 1:

q̇+ = −q̇− = [0.7 0.5 0.5 0.7]T

2) Set 2:

q̇+ = −q̇− = [0.5 0.3 0.5 0.3]T

0 0.5 1 1.5 2 2.5
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−0.4

−0.2

0
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0.6

Time(s)
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d
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1

Joint 1
Joint 2
Joint 3
Joint 4

(a) Set 1 of joint velocity limits
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0
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0.4

Time(s)

R
a
d
s−

1

Joint 1
Joint 2
Joint 3
Joint 4

(b) Set 2 of joint velocity limits

Fig. 4. Scenario 2: Impact of different joint velocity limits

Fig. 4 shows how the proposed algorithm automatically
modified the joint trajectories according to the joint velocity
limits and the trajectory time is also accordingly modified.

C. Scenario 3: Discrete Time Control

We consider again Scenario 1 with a control unit of fixed
sampling time Ts = 5 × 10−3 s, we compare the results
of applying the proposed algorithm in Section III without
and with modulation Eq. (11). Fig. 5 shows the results for
this scenario, one can observe that the modulation proposed
in Section III successfully solved the discontinuity problem
of joint velocity. Moreover, Fig. 5(a) shows that the joint
velocity limits are not satisfied because of the discontinuity
issue.



The profile of discretized sampling time is shown in Fig. 6,
recall that the sampling time is T = nTs.
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(a) Joint velocity without modulation
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(b) Joint velocity with modulation Eq.(11)

Fig. 5. Scenario 3: Discrete time control

0 200 400 600 800 1,000
1

2

3

4

5

6

Sampling

n

Fig. 6. Scenario 3: Discretized sampling time

D. Scenario 4: Avoiding Obstacles

We added an obstacle to Scenario 1, the obstacle is
represented by the red circle in Fig. 7. The new prioritized
tasks are:

• First priority task: The end effector has to follow a
Bezier curve as in Scenario 1 and the robot should avoid
the collision with the circle. The collision avoidance is
expressed as an inequality constraint, more details are
in [7].

• Second priority task: The path of the third joint has to
stay parallel to the vertical axis.

The joint velocity limit is the same as in Scenario 1.
Fig. 8 shows that the discretized sampling time rapidly

increased around the sampling 620, at that instance the
distance between the robot and the obstacle became smaller
than the interference distance. This increase of sampling
time, slowing down the motion, is the direct result of the
velocity damping in the collision avoidance formulation.

0 1 2 3

−1

0

1

X (m)

Y
(m

)

Fig. 7. Scenario 4: Planar robot trajectory and avoiding the obstacle (red
cercle)
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Fig. 8. Scenario 4: Discretized sampling time

E. Scenario 5: Real Time Motion Retargeting

The objective in this scenario is to convert human capture
data to the humanoid robot HRP-4 while considering the
velocity and joint limits of the robot. We have chosen a large
valve opening task which is similar to one of the tasks in
DARPA Robotics Challenge (DRC).



The first priority tasks are the positions and orientations of
the feet, they are fixed during the motion, the second priority
tasks are the positions and orientations of the hands and the
floating-base, which is the waist joint.

Snapshots of the robot obtained motion is shown in Fig. 9,
and the discretized sampling time is given in Fig. 10. We
consider that the control loop sampling time of the robot is
Ts = 10−3 s.

1 2 3

4 65

87 9

Fig. 9. Scenario 5: Snapshots of the retargeted motion with the humanoid
robot HRP-4

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robust algorithm to handle
the case of prioritized kinematics tasks, it has as input the
desired path instead of the conventional desired trajectory. As
a result, it is easier for the user to define the tasks without
worrying about the robot joint velocity limits, moreover, the
desired tasks can be applied to different robotic systems
having a similar kinematic structure, but different velocity
and joint limits. The method is simple to implement, as it
is formulated as Quadratic Programming (QP) problem that
can be efficiently solved in real time.

As a future work, we are planning to implement and
validate the proposed algorithm on real robotic systems such
as Baxter research robot or the humanoid robot HRP-4.
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Fig. 10. Scenario 5: Discretized sampling time
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