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Abstract—This paper shows that the design constraints of the 

Disturbance Observer (DOb) based robust motion control systems 

become stricter when they are implemented using computers or 

microcontrollers. The stricter design constraints put new upper 

bounds on the plant-model mismatch and the bandwidth of the 

DOb, thus limiting the achievable robustness against disturbances 

and the phase-lead effect in the inner-loop. Violating the design 

constraints may yield severe stability and performance issues in 

practice; therefore, they should be considered in tuning the control 

parameters of the robust motion controller. This paper also shows 

that continuous-time analysis methods fall-short in deriving the 

fundamental design constraints on the nominal plant model and 

the bandwidth of the digital DOb. Therefore, we may observe 

unexpected stability and performance issues when tuning the 

control parameters of the digital robust motion controllers in the 

continuous-time domain. To improve the robust stability and 

performance of the motion controllers, this paper explains the 

fundamental design constraints of the DOb by employing the 

generalised continuous and discrete Bode Integral Theorems in a 

unified framework. Simulation and experimental results are given 

to verify the proposed analysis method. 
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I. INTRODUCTION 

The DOb has been one of the most widely used motion 
control tools since it was proposed by K. Ohnishi in 1983 [1, 2]. 
In the last three decades, engineers and researchers have 
employed the DOb in many different motion control 
applications [2]. For example, it has been applied to i) precise 
positioning problems to improve the robustness of servo systems 
against disturbances [3 – 5], ii) physical robot-environment 
interaction tasks to estimate contact forces via Reaction Torque 
Observer (RTOb) without using a force/torque sensor [6 – 8], 
and iii) teleoperated robots to detect time-delay between master 
and slave robotic systems [9, 10]. The examples of high-
performance motion control applications have motivated many 
control theoreticians and practitioners to build advanced 
analysis and synthesis tools for the DOb and expand its 
application areas [2, 11 - 15].  

Although the DOb-based robust motion controller was 
originally proposed using Gopinath’s observer synthesis method 
(aka. auxiliary variable-based observer design method) in state 

space [1, 2, 16], it started to receive increasing attention with the 
established frequency domain analysis and synthesis techniques, 
particularly from control engineering practitioners [2]. Over the 
past decades, various classical frequency-based analysis and 
synthesis methods have been proposed for the DOb-based 
motion control systems, e.g., loop shaping control methods such 
as Bode/Nyquist plots and H∞ control and parametric 
uncertainty-based control [16 – 20].  

Although the robust motion controllers are always 
implemented using computers or micro-controllers, analysis and 
synthesis are generally conducted in the continuous-time 
domain due to simplicity [2]. However, continuous-time 
analysis methods fall-short in deriving the fundamental design 
constraints on the design parameters of the DOb-based robust 
motion control systems implemented by digital controllers. This 
may cause some unexpected stability and performance problems 
in practice [21 – 23]. For example, the digital robust position 
controller exhibits oscillatory and unstable responses as the 
bandwidth of the DOb increases, and this dynamic behaviour 
cannot be explained in the continuous-time domain [21]. Despite 
some attempts on explaining the stability of the DOb-based 
digital robust motion controllers, the fundamental design 
constraints on the nominal plant model and the bandwidth of the 
DOb have yet to be clearly discussed in the literature [24, 25]. 

To conduct high-performance motion control applications 
via DOb, the control parameters (viz. the bandwidth of the 
observer, nominal plant parameters, and the outer-loop 
performance controller) of the robust motion control systems 
should be properly tuned [23, 26, 27]. When the design 
constraints of the DOb are violated, the robust stability and 
performance of the motion controller may notably deteriorate 
[27]. Therefore, it is essential to determine the upper and lower 
bounds on the bandwidth of the DOb, nominal plant parameters, 
and outer-loop performance controller. It is a well-known fact 
that the bandwidth of the DOb (i.e., the robustness against 
disturbances) is limited by noise sensitivity [20]. As the 
bandwidth of the DOb is increased, the robustness against 
disturbances improves yet the motion controller becomes more 
sensitive to the noise of velocity measurement. This, however, 
is not the only design constraint on the bandwidth of the DOb. 
The achievable bandwidth is also limited by the fundamental 
constraint of feedback control systems. Moreover, this also puts 



an upper bound on the plant model mismatch, which limits the 
achievable phase-lead effect in the inner-loop [27]. 

This paper proposes a new analysis method to explain the 
design constraints of the DOb-based motion control systems in 
the continuous- and discrete- time domains. By employing the 
generalised Bode Integral Theorems in a unified framework 
[28], it shows that the design constraints on the nominal plant 
model and the bandwidth of the DOb become stricter when the 
robust motion controller is implemented using computers and/or 
microcontrollers. The stricter design constraints cannot be 
explained using continuous-time analysis methods, which may 
lead to severe stability and performance problems in real motion 
control applications. Therefore, the control parameters of the 
DOb-based robust motion controllers should be tuned using 
discrete-time analysis and synthesis methods.  

The rest of the paper is organised as follows. In section II, the 

DOb-based robust motion control is briefly introduced. In 

section III, the design constraints of the DOb are analysed in 

the continuous- and discrete- time domains. In section IV, 

simulation and experimental results are presented. In section V, 

the paper ends with conclusion.  

II. DISTURBANCE OBSERVER BASED ROBUST MOTION 

CONTROL 

This section briefly introduces the DOb-based control and 

its robust position and force control applications in the field of 

motion control. 

A. Disturbance Observer 

Figure 1 illustrates the block diagram of the DOb in the 
continues-time and discrete-time domains [16, 27]. In this 

figure, mJ and
nmJ are the uncertain and nominal motor inertias, 

respectively; K  and n
K are the uncertain and nominal motor 

torque coefficients, respectively; ,q q , q are the angle, velocity, 

and acceleration of motor shaft, respectively; 
1 s sT is the 

sampling frequency; DObg  is the bandwidth of the low-pass-

filter; I is the motor thrust current;  is noise; ZoH is Zero-

order Hold;  d is the external disturbance torque;  dis is the 

internal and external disturbance torque; ̂ is the estimation of 

 ; and des  is the desired  . 

To estimate the internal and external disturbances of a 
motion control system, a DOb is synthesised using the identified 
(i.e., nominal) system model, a low-pass-filter, and the velocity 
measurement of a servo system as illustrated in Fig. 1. The 
transfer functions between the exogenous inputs and output are 
derived from this figure as follows. 
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Equations (1) and (2) show that the robust stability and 

performance of the DOb can be adjusted by tuning the nominal 

plant parameters and the bandwidth of the DOb. For example, 

using the higher/lower values of inertia/torque coefficient can 

improve the stability by increasing the phase-lead effect in the 

inner-loop. Also, increasing the bandwidth of the DOb improves 

the robustness against disturbances as  DObS  gets smaller at 

low frequency range. This, however, deteriorates the noise-

sensitivity as  DObT  gets larger at high frequency range. The 

sensitivity and complementary sensitivity functions are very 

useful analysis and synthesis tools which we use in deriving the 

fundamental design constraints of the DOb in Section III. 

 
a) Continuous-time Domain. 

 
b) Discrete-time Domain. 

Fig. 1:  Block diagrams of the Disturbance Observer.  
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In the last two decades, various applications of this 

disturbance estimation tool, spaning from precise positioning of 

industrial machines to estimating time-delay in communication, 

have been proposed in the literature [4, 9]. The following 

subsections introduce the most frequently used DOb-based 

robust motion control systems, viz, the DOb-based robust 

position controller and the DOb-based robust force controller.  

B. Disturbance Observer-based Robust Position Control 

The block diagram of the DOb-based robust position 

controller is illustrated in Fig. 2. In this figure, PK and DK   

represent the proportional and derivative gains of the outer-loop 
PD controller, respectively,  represents the noise of position 

measurement, and ref represents the reference signal of  . The 

other parameters are same as defined earlier. For the sake of 
brevity, we only introduce the robust position controller in the 
discrete-time domain. Readers are referred to [29] for the 
continuous-time analysis and synthesis of the DOb-based robust 
position controller. 

The robust position controller consists of two feedback 

loops: an inner-loop in which the robustness of the controller is 

adjusted by the DOb and an outer-loop in which the performance 

of the controller is adjusted by the proportional and derivative 

control gains. The robustness of the position control system is 

intuitively achieved by feeding back the estimation of 

disturbances in the inner-loop. The outer-loop performance 

controller can be freely tuned by considering only the nominal 

plant parameters because disturbances, such as load, friction and 

parameter variations, are precisely suppressed in the inner-loop. 

Since the robustness and performance can be independently 

adjusted in the inner- and outer- loops, the DOb-based robust 

position controller has two-degrees-of-freedom.  

C. Disturbance Observer-based Robust Force Control 

Figure 3 illustrates the block diagram of the DOb-based 

robust force controller. In this figure, envK and envD represent the 

stiffness and damping of environment, respectively, RTObg

represents the bandwidth of the RTOb, i represents the 

identified  , and C represents the torque control gain. The 

other parameters are same as defined earlier. 

Similar to the robust position controller, the DOb-based 
robust force controller is synthesised by employing two 
feedback control loops. A DOb is employed in the inner-loop to 

improve the robustness of the force controller by suppressing 
disturbances. Another DOb (viz. RTOb) is employed in the 
outer-loop to estimate interaction torques and improve the 
performance of the torque control system. 

The superiorities of the DOb-based robust force controller 
over other force control methods have been reported in the 
literature. For example, the robust force controller can precisely 
track force trajectories using the DOb in the inner-loop, enabling 
real-haptic sensation in teleopearation. Also, the DOb-based 
robust force controller notably improves the stability of contact 
motion by estimating interaction forces within a large frequency 
range via RTOb in the outer-loop. Reader is referred to [8, 26] 
for further details on the DOb-based robust force control 
systems. 

III. DESIGN CONSTRAINTS OF THE DISTURBANCE OBSERVER-

BASED ROBUST MOTION CONTROL SYSTEMS 

Frequency responses of the sensitivity and complementary 
sensitivity functions have been widely used in adjusting the 
control parameters of the DOb-based robust motion control 
systems. For example, a well-known design trade-off between 
the robustness against disturbances and the noise-sensitivity of 
the DOb can be easily shown using the frequency responses of 
the sensitivity and complementary sensitivity functions given in 
Eq. (1). The bandwidth of the DOb is generally set as high as 
possible by considering the noise-sensitivity of the velocity 
measurement system in practice. 

The frequency domain analysis and synthesis of the DOb-
based robust digital motion control systems are generally 
conducted in the continuous-time domain due to simplicity. This 
section shows that this simplification may cause severe robust 
stability and performance problems in practice by employing the 
Bode Integral Theorem in the continuous- and discrete- time 
domains.   

A. Continuous-Time Analysis of the DOb 

Let us start with deriving the fundamental design constraints 
of the DOb-based robust motion control systems using the Bode 
Integral Theorem in the continuous-time domain.  

 
Fig. 2:  Block diagram of the DOb-based Robust Position Controller.  
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Fig. 3:  Block diagram of the DOb-based Robust Force Controller.  
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When the generalised Bode Integral Theorem is applied to 
the DOb-based robust motion controller illustrated in Fig. 1a, 
the following equation is obtained. 

         DOb DOb

0

log S Re lim L s
2 2

 
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


    ku DOb

s
k

j d p s g  (3) 

where is frequency, 2 1 j is a complex number,
kup is the 

kth unstable pole of the open-loop transfer function [28]. The 
continuous open-loop and sensitivity transfer functions, i.e., 

 DObL s and  DObS s , are given in Eq. (1). 

Equations (1) and (3) show that as the bandwidth of the DOb 
and/or the control parameter increases, the right hand side of 

the Bode’s integral equation gets smaller. Therefore, without 
suffering from a high-sensitivity peak, one can freely improve 
the robustness against disturbances and the phase-lead effect of 

the inner-loop by increasing
DObg and , respectively. In other 

words, Eq. (3) shows that the DOb-based robust motion 
controller is not subject to the waterbed effect and one can 
achieve good robust stability and performance for all values of 
the DOb’s design parameters. 

This, however, is not what we observe when conducting 

robust motion control experiments in practice. It is a well-known 

fact that not only the noise sensitivity but also the stability of the 

robust motion controller deteriorates as the bandwidth and 

nominal inertia of the DOb are increased [21 – 23]. To conduct 

high-performance robust motion control applications in 

practice, it is essential to derive the design constraints on the 

bandwidth and nominal plant parameters of the DOb.  

B. Discrete-Time Analysis of the DOb 

Let us now derive the fundamental design constraints of the 
DOb-based robust motion control systems in the discrete-time 
domain. 

The Bode’s integral equation of the DOb-based robust 
motion controller illustrated in Fig. 1b is as follows. 
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j T
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where e


 sj T
z is a complex number [28]. The discrete open-

loop and sensitivity transfer functions, i.e.,  DObL z and  DObS z , 

are given in Eq. (2).  

Compared to Eq. (3), the interval of the Bode’s sensitivity 
integral is finite, [-π, π], in Eq. (4). This causes a stricter design 
constraint in digital feedback control systems. Moreover, the 
right hand side of Eq. (4) is zero. Therefore, to hold the Bode’s 
integral equation, the peak of the frequency response of the 

sensitivity function  DObS e
 sj T

should increase at medium/high 

frequencies as the sensitivity function decreases at low 
frequency range by using higher values of  

DObg  and/or  . In 

other words, the digital DOb-based robust motion controller is 
subject to the waterbed effect; therefore, good robust stability 
and performance cannot be achieved for all values of  and 

DObg in practical motion control applications.   

This simple analysis clearly shows that the design 
constraints on the nominal plant model and the bandwidth of the 
DOb become stricter when implementing digital controllers. 

The analysis and synthesis conducted in the continuous-time 
domain may cause severe stability and performance problems in 
practice. Therefore, we need to employ discrete-time analysis 
and synthesis methods in implementing the DOb-based robust 
motion control systems. 

The proposed qualitative analysis, however, is not sufficient 
in analytically deriving the design constraints of the DOb-based 
robust motion control systems. Therefore, we need to put more 
effort to find the upper and lower bounds on the nominal plant 
model and the bandwidth of the DOb. Reader is referred to [27] 
for an example of analytical design constraints of the DOb in the 
discrete-time domain.  

C. Design Constraints of the Robust Motion Controller 

To conduct high-performance robust motion control 
applications, not only the inner-loop but also the outer-loop 
should be properly tuned. The Bode’s sensitivity integral can be 
similarly used to derive the fundamental design constraints of 
the DOb-based robust motion control systems in the outer-loop.  

Let us consider the robust position controller illustrated in 
Fig. 2. The transfer functions between the exogenous inputs and 
output can be directly derived from this figure as follows: 
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sensitivity and complementary sensitivity transfer functions of 
the outer-loop position controller in which the open-loop 

transfer function  PCL z is given in Eq. (6). 
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The generalised Bode’s integral equation of the DOb-based 
robust position controller illustrated in Fig. 2 is as follows. 

    PC PCln S e 2 ln ln 1 lim L 2 ln



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where 
ku is the kth unstable pole of the open-loop transfer 

function  PCL z [28]. 

Equation (7) shows that the DOb-based robust position 
controller is subject to the waterbed effect in the outer-loop. This 
design constraint becomes stricter when the inner-loop control 

parameters are not properly tuned so that  PCL z has an unstable 

pole. Although this analysis provides a clear insight into the 
fundamental design constraints of the DOb-based robust 
position controller, it is still a very challenging task to obtain the 
upper and lower limits of the control parameters using Eq. (7). 
Therefore, more effort should be made to establish analytical 
design tools for the DOb-based robust motion control systems. 

For the sake of brevity, the robust force controller is not 
considered in this section. However, the design constraints of 
the DOb-based robust force controller can be similarly analysed 
using the Bode’s Integral Theorem [30].  



IV. SIMULATIONS AND EXPERIMENTS 

This section verifies the proposed analysis method by 
providing simulation and experimental results.  

Let us first analyse the robust stability and performance of 
the DOb.  Figure 4 illustrates the frequency responses of the 
inner-loop’s sensitivity and complementary sensitivity functions 
in the continuous- and discrete- time domains. As shown in 
Figure 4a, continuous-time analysis shows that good robust 
stability and performance can be achieved for all values of    

and
DObg . Therefore, we can adjust the robustness and phase-lead 

of the inner-loop by only considering the noise sensitivity, i.e., 
high-frequency response of the complementary sensitivity 
function. This widely adopted analysis, however, cannot reflect 
the dynamic behaviour of the robust motion control systems in 
practice. In fact, the robust stability and performance of the DOb 
deteriorate due to the discrete-time design constraints as shown 
in Fig. 4b. To achieve good robust stability and performance, we 

need to limit either the robustness against disturbances or the 

phase-lead effect in the inner-loop using low values of 
DObg and

 in the design of the DOb, respectively. Figure 4c shows that 

the design constraints on the bandwidth of the DOb and nominal 
plant model can also be relaxed by decreasing the sampling time. 
This, however, generally increases cost.   

Figure 5 illustrates the root-loci of the robust motion control 
systems with respect to gDOb in the continuous- and discrete- 
time domains. It is assumed Jm = 0.01, and the environmental 
stiffness and damping are Kenv = 10000 and Denv =1, respectively. 
The robust position controller is synthesised using, KP = 5000 
and KD = 25, and the robust force controller is tuned using the 
exact inertia and torque coefficient values in the DOb and RTOb 
synthesis, Cf = 0.5, and gDOb = gRTOb. Right figures in Fig. 5 
clearly show that the stability of the DOb-based digital robust 
motion control systems deteriorates as the bandwidth of the DOb 
increases. This, however, cannot be observed when the stability 
analysis is conducted in the continuous-time domain (see left 
figures in Fig. 5). 

It is noted that the stability of the robust motion control 
systems can be improved by properly tuning the design 
parameters of the DOb and RTOb. For example, the stability of 
the robust position controller is improved using higher values of 
the nominal inertia, i.e., α, in the design of the DOb [29], and the 
stability of the robust force controller is improved using lower 
values of the identified inertia in the design of the RTOb [8]. 
However, the asymptotic behaviours of the robust motion 
controllers are similar to Fig. 5. 

Last, let us verify the proposed analysis method with an 
experiment. Figure 6 illustrates the robust position control 

 
a) Frequency responses in the continuous-time domain. 

 
b) Frequency responses in the discrete-time domain when Ts = 0.5 ms 

 
b) Frequency responses in the discrete-time domain when Ts = 100 μs 

Fig. 4. Inner-loop sensitivity (left-figures) and complementary sensitivity 

(right-figures) functions’ frequency responses. 

 
a) Root loci of the robust position controller with respect to gDOb. 

 
b) Root loci of the robust force controller with respect to gDOb. 

Fig. 5. Root-loci of the robust motion control systems in the continuous-time 
domain (left figure) and discrete-time domain (right figure). 



experiment when different values of gDOb are used in the DOb 
synthesis. It is clear from this figure that the stability of the 
robust position controller deteriorates when the bandwidth of the 
DOb does not satisfy the robust stability constraint described in 
Section III.  

V. CONCLUSIONS 

This paper shows that the design constraints on the nominal 
plant model and the bandwidth of the DOb become stricter when 
the robust motion controllers are synthesised using digital 
systems such as computers and microcontrollers. This limits the 
robustness against disturbances and flexibility in adjusting the 
nominal plant model in the DOb-based control. When the design 
constraints are violated, not only the noise sensitivity but also 
the robust stability and performance may notably deteriorate. 
This, however, cannot be explained in the continuous-time 
domain. Therefore, this paper recommends discrete-time 
analysis and synthesis methods for the DOb-based robust 
motion control systems.  
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Fig. 6. Robust position control experiment. 


