A Ternary Unification Framework for Optimizing
TCAM-Based Packet Classification Systems

Eric Norige

Alex X. Liu

Eric Torng

Dept. of Computer Science and Engineering, Michigan State University
East Lansing, Michigan, USA

{norigeer, alexliu, torng}@cse.msu.edu

ABSTRACT

Packet classification is the key mechanism for enabling many
networking and security services. Ternary Content Address-
able Memory (TCAM) has been the industrial standard for
implementing high-speed packet classification because of its
constant classification time. However, TCAM chips have
small capacity, high power consumption, high heat genera-
tion, and large area size. This paper focuses on the TCAM-
based Classifier Compression problem: given a classifier C',
we want to construct the smallest possible list of TCAM
entries T that implement C. In this paper, we propose the
Ternary Unification Framework (TUF) for this compression
problem and three concrete compression algorithms within
this framework. The framework allows us to find more opti-
mization opportunities and design new TCAM-based classi-
fier compression algorithms. Our experimental results show
that the TUF can speed up the prior algorithm TCAM Ra-
zor by twenty times or more and leads to new algorithms
that improve compression performance over prior algorithms
by an average of 13.7% on our largest real life classifiers.

1. INTRODUCTION

1.1 Background and Motivation

Packet classification is the core mechanism that enables
many networking devices, such as routers and firewalls, to
perform services such as packet filtering, virtual private net-
works (VPNs), network address translation (NAT), quality
of service (QoS), load balancing, traffic accounting and mon-
itoring, differentiated services (Diffserv), etc. A packet clas-
sifier is a function that maps packets to a set of decisions,
allowing packets to be classified according to some crite-
ria. These classifiers are normally written as a sequence of
rules where each rule consists of a predicate that specifies
what packets match the rule and a decision for packets that
match the rule. For convenience in specifying rules, more
than one predicate is allowed to match a given packet. In
such cases, the decision used comes from the first rule in the
sequence whose predicate matches the packet. Table 1 shows
a simplified example classifier with three rules. This packet
classifier’s predicates examine 5 fields of the packet, and has
decision set {accept, discard}, as might be used on a firewall.
Note that 1.2.0.0/16 denotes the IP prefix 1.2.*.* which rep-
resents the set of IP addresses from 1.2.0.0 to 1.2.255.255.
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The final rule, r3, is the default rule; it matches all packets,
guaranteeing a decision for each packet.

Rule | Source IP  Dest. IP  Source Port Dest. Port Protocol | Action
r1 1.2.0.0/16 192.168.0.1 [1,65534] [1,65534] TCP accept
o * * * 6881 TCP discard

* * * * *

3 accept

Table 1: An example packet classifier

Packet classification is often the performance bottleneck
for Internet routers as they need to classify every packet.
Current generation fiber optic links can operate at over 40
Gb/s, or 12.5 ns per packet for processing. With the explo-
sive growth of Internet-based applications, efficient packet
classification becomes more and more critical. The de facto
industry standard for high speed packet classification uses
Ternary Content Addressable Memory (TCAM). Since 2003,
most packet classification devices shipped were TCAM-based
[1]. Although a large body of work has been done on software-
based packet classification ( [23]), because of the parallel
search capability, TCAM remains the fastest and most scal-
able solution for packet classification because it is constant
time regardless of the number of rules.

The high speed that TCAM offers for packet classification
does not come for free. First, a TCAM chip consumes a large
amount of power and generates lots of heat. This is because
every occupied TCAM entry is tested on every query. The
power consumption of a TCAM chip is about 1.85 Watts
per Mb [3], which is roughly 30 times larger than an SRAM
chip of the same size [18]. Second, TCAM chips have large
die area on line cards - 6 times (or more) board space than
an equivalent capacity SRAM chip [10]. Area efficiency is
a critical issue for networking devices. Third, TCAMs are
expensive - often costing more than network processors [11].
This high price is mainly due to the large die area, not their
market size [10]. Finally, TCAM chips have small capac-
ities. Currently, the largest TCAM chip has 72 megabits
(Mb). TCAM chip size has been slow to grow due to their
extremely high circuit density. The TCAM industry has not
been able to follow Moore’s law in the past, and it is unlikely
to do so in the future. In practice, smaller TCAM chips are
commonly used due to lower power consumption, heat gener-
ation, board space, and cost. For example, TCAM chips are
often restricted to at most 10% of an entire board’s power
budget; thus, even a 36 Mb TCAM may not be deployable
on many routers due to power consumption reasons.

Furthermore, the well known range expansion problem ex-
acerbates the problem of limited capacity TCAMs. That is,



converting packet classification rules to ternary format typ-
ically results in a much larger number of TCAM entries. In
a typical packet classification rule, the three fields of source
and destination IP addresses and protocol type are speci-
fied as prefixes which are easily written as ternary strings.
However, the source and destination port fields are speci-
fied in ranges (i.e., integer intervals), which may need to be
expanded to one or more prefixes before being stored in a
TCAM. This can lead to a significant increase in the number
of TCAM entries needed to encode a rule. For example, 30
prefixes are needed to represent the single range [1,65534],
so 30 x 30 = 900 TCAM entries are required to represent
the single rule r; in Table 1.

1.2 Problem Statement

Formally, a classifier C' is a function from binary strings of
length w to some decision set D; that is, C : {0,1}* — D.
In firewalls, the classifier commonly takes 104 bits of packet
header and returns either Accept or Reject. A TCAM clas-
sifier T' is an ordered list of rules r1,ra, ..., 7,. Each rule has
a ternary predicate p; € {0,1,*}" and a decision d; € D. A
ternary predicate p matches a binary string b if all non-star
entries in p match the corresponding entries in b, that is,

w

/\(pi =b; Vp; = *).

i=1

The decision of a TCAM classifier 7" for an input p € {0, 1}*
T'(p) is the decision of the first matching rule in T; that is,
TCAMs use first-match semantics. A TCAM classifier T
implements a classifier C if T'(p) = C(p) for all p € {0,1}",
that is, if all packets are classified the same by both.

This paper focuses on the fundamental TCAM Classifier
Compression problem: given a classifier C, construct a min-
imum size TCAM classifier T' that implements C. TCAM
classifier compression helps to address all the aforementioned
TCAM limitations - small sizes, high power consumption,
high heat generation, and large die area. Note that even for
the same TCAM chip, storing fewer rules will consume less
power and generate less heat because the unoccupied entries
can be disabled in blocks.

1.3 Limitations of Prior Art

Prior TCAM Classifier Compression algorithms fall into
two categories: list based algorithms and tree based algo-
rithms. List based algorithms (e.g., Bit Weaving [18], Re-
dundancy Removal [13], Dong’s scheme [8]) take as input a
list of TCAM rules and search for optimization opportunities
between rules. These algorithms are sensitive to the repre-
sentation of their input ruleset which means they can pro-
duce very different results for equivalent inputs. Tree based
algorithms (e.g., TCAM Razor [14] and Ternary Razor [18])
convert the input rules into a decision tree and search for op-
timization opportunities in the tree. Tree based algorithms
typically produce better results because they can find op-
timization opportunities based on the underlying classifier
without being misled by a specific instantiation of that clas-
sifier. A key limitation of prior tree based algorithms is
that at each tree level, they only try to optimize the current
dimension and therefore miss some optimization opportuni-
ties.

1.4 Proposed Approach

In this paper, we propose the Ternary Unification Frame-
work (TUF) for TCAM classifier compression, which con-
sists of three basic steps. First, TUF converts the given
classifier to its BDD representation. Second, TUF collapses
the BDD, converting leaves into sets of equivalent ternary
data structures and combining these at internal nodes to
produce a set of ternary data structures that represent the
classifier. Finally, TUF converts the ternary data structures
to TCAM rules and chooses the smallest as the final result.
Broadly, the two decisions that define a specific TUF algo-
rithm are (1) the ternary data structure to represent the
intermediate classifiers and (2) the procedure to combine
intermediate classifiers.

TUF advances the state of the art on TCAM classifier
compression from two perspectives. First, it is a general
framework, encompassing prior tree based classifier com-
pression algorithms as special cases. Because of the struc-
ture that TUF imposes on tree based classifier compression
algorithms, it allows us to understand them better and to
easily identify optimization opportunities missed by those
algorithms. Second, this framework provides a fresh look at
the TCAM classifier compression problem and allows us to
design new algorithms along this direction.

1.5 Key Contributions

We make three key contributions in this paper. First,
we give a general framework for optimizing ternary classi-
fiers. The framework allows us to find more optimization
opportunities and design new TCAM classifier compression
algorithms. More specifically, the choices of which ternary
data structures to use and how to combine them give new
flexibility in designing such algorithms. Second, by design-
ing novel ternary data structures and combining procedures,
we develop three concrete compression algorithms for three
types of classifier compression. Third, we implemented our
algorithms and conducted side-by-side comparison with the
prior algorithms on both real-world and synthetic classifiers.
The experimental results show that our new algorithms out-
perform the best prior algorithms by increasing amounts as
classifier size and complexity increases. In particular, on our
largest real life classifiers, the TUF algorithms improve com-
pression performance over prior algorithms by an average of
13.7%.

2. RELATED WORK

Several papers have addressed the problem of optimiz-
ing TCAM packet classifiers. Some major categories of this
research include techniques for redundancy removal, com-
pressing one and two-dimensional packet classifiers and tech-
niques for compressing higher-dimensional packet classifiers.

Redundancy removal techniques identify rules within a
classifier whose removal does not change the semantics. Since
firewall policy is specified indirectly, redundant rules are
commonly introduced into real life classifiers. Discovering
these redundant rules and removing them reduces the stor-
age requirements of the classifier in TCAM, as well as po-
tentially simplifying maintenance of the classifier. This tech-
nique has been investigated by Liu [12,15], using FDD vari-
ants to efficiently identify a maximal set of redundant rules.
More recently, Acharya and Gouda [2] have shown a cor-
respondence between redundancy testing and firewall veri-



fication and used this to build a novel redundancy removal
algorithm not based on trees. Redundancy removal is an
important component of our algorithms, but alone it misses
many opportunities to combine or re-represent policy using
new rules.

While the problem of efficiently producing minimum pre-
fix classifiers for a one-dimensional classifier has been solved
[9,22], there are still ongoing efforts to solve the same prob-
lem in two dimensions. Suri et al. [22] solved the case of
optimizing a two-dimensional classifier where any two rules
are either disjoint or nested, and Applegate et al. [4] solved
the special case for strip rules where all rules must span
one dimension as well as providing approximation guaran-
tees for the general two-dimensional case. These solutions
do not generalize to higher dimensions, so they provide little
assistance with typical five-dimensional classifiers.

Dong et al. [8] proposed the first five-dimensional prefix
classifier minimization algorithm. Meiners et al. [14] im-
proved upon this in their TCAM Razor algorithm. Meiners
et al. [18] then developed two ternary classifier minimiza-
tion algorithms Bit Weaving and Ternary Razor. Ternary
Razor adds the bit merging algorithm from Bit Weaving
into TCAM Razor. McGeer et al. [17] demonstrated an al-
gorithm for finding the minimum representation of a given
classifier, but this algorithm is impractical for all but the
smallest classifiers due to its exponential runtime.

In addition to this work, there are many papers that
also try to optimize TCAM packet classification using non-
standard TCAM architectures [19-21] or by reencoding packet
fields [5—7,25]. While this type of work may have theoretical
elegance, the cost of engineering new TCAM architectures
or re-encoding makes these works less practical. Algorithms
like TUF that work within the constraints of the standard
TCAM architecture have the advantage that they can be
deployed immediately on existing hardware.

3. TUF FRAMEWORK

In this section, we outline our Ternary Unification Frame-
work (T'UF), which gives a general structure for ternary clas-
sifier compression algorithms. Section 3.1 gives the basic
structural recursion to compress a TCAM classifier. Section
3.2 specifies how TUF facilitates efficient merging of partial
solutions in the structural recursion step.

3.1 TUF Outline

We first present the basic steps of TUF. TUF takes a
TCAM classifier as input and returns an optimized TCAM
classifier as output. Because TCAM classifiers are written
as rule lists, determining a simple property such as whether
a TCAM classifier has a decision for every input is NP-
complete. The first step of TUF is to represent the classifier
as a BDD, where every node has zero or two children and
the decisions are in the leaves. An example BDD with three
leaves is shown in Figure la. Converting to BDD resolves
the priorities of overlapping classifier rules and gives exact
decisions for any input value or range. Note that the con-
struction is dependent on the order of the bits in the BDD,
and the resulting classifier can be different with different
orderings. By considering multiple bit orderings, typically
organized by packet header fields, better compression can
be achieved.

The second step of TUF converts the leaves of the BDD
into instances of a ternary data structure. As each leaf

(a) Input

(b) Leaves (c) Merge  (d) Output
Figure 1: Structural Recursion Example

represents some collection of input values assigned a sin-
gle decision, we can convert it into an equivalent ternary
data structure, such as a trie or a TCAM classifier. This
is demonstrated in Figure 1b, where the BDD leaves are re-
placed by TCAM classifiers. The predicate for each classifier
depends on the height of the leaf; in this case, the bottom-
most leaves are zero-bit classifiers, while the upper c leaf is
a one-bit classifier as its height is 1.

The third step, the core of TUF, merges these ternary
data structures to form ternary data structures that encode
larger sections of the input space. Figure 1c shows the result
of merging the left subtree of Figure 1b. It is in the merg-
ing process that compression is possible; similarities in the
two halves can be identified and a smaller merge result con-
structed. After all BDD nodes have been merged, a ternary
data structure that represents the entire classifier is created.
If the ternary data structure used is not a TCAM classifier,
then it is converted to a TCAM classifier as the final step.
The TCAM classifier for this example is shown in Figure 1d.

TUF can use a number of different ternary data structures
such as tries, nested tries (tries of tries), and TCAM classi-
fiers. To support a particular ternary data structure, TUF
requires that the data structure support two operations:
Singleton and LRMerge. Singleton converts a BDD leaf
to a ternary data structure and LRMerge joins two ternary
data structures A and B into one, A + B. Pseudocode for
the TUF Core recursive merging is given in Algorithm 1.

Algorithm 1: TUFCore(c)

Input: A 2-tree c representing a classifier
Output: An equivalent ternary data structure
1 switch ¢ do
case Leaf dec
| return Singleton (dec);

case Node(left,right)
LeftSol := TUFCore (left);
RightSol := TUFCore (right);
return LRMerge (LeftSol,RightSol);

N0 Uk W

To support classifier compression, the LRMerge operation
should find commonalities between the two halves and use
ternary rules to represent any found commonalities only once
in the ternary data structure. This may be a complex op-
eration, spending significant effort to both find and then
efficiently represent such commonalities. We next describe
how we can simplify the task required by LRMerge by track-
ing backgrounds.

3.2 Efficient Solution Merging

The goal of LRMerge is to combine two ternary data struc-
tures into one ternary data structure representing both. Us-
ing just a single ternary data structure at each step can cause
overspecialization. The minimum-size solution for a small



A o S
S >
—|3[=|8 Alg LRMerge
ol =Sl > + " |= =| (AB)
< N
z & =
alE
(a) Concat (b) LRMerge

A
z
A ﬂ LRMerge
(A,B)
+ —
z

(¢) LRMerge with EB
Figure 2: TUF operations w/ backgrounds

part of the input space is often not the best representation
for it in the context of the complete classifier. By keeping
multiple representations at each step, the right representa-
tion of a subtree can be used to create the final solution.
Spending more time to keep extra representations of each
subtree allows smaller ternary classifiers to be constructed.
Taking this idea to the logical extreme, an algorithm could
keep all combinations of sub-solutions every time two so-
lution sets are merged. This could cause an exponential
amount of work to be spent creating and combining them,
leading to an impractical algorithm. The rest of this sec-
tion explores the use of backgrounds as a way to limit the
number of combinations that are created, allow pruning of
useless solutions from the solution set and improve the speed
of merging solutions.

As ternary classifiers can have multiple matching deci-
sions for an input, they have a precedence structure. For
TCAM classifiers, earlier rules in the list have higher prece-
dence than rules later in the list. Using this relationship,
a ternary classifier can be divided into two classifiers: a
foreground of higher precedence and a background of lower
precedence. The operation Concat(A,7), denoted (A, Z),
joins a foreground and background ternary classifier into a
single ternary classifier, as shown in Figure 2a. Intuitively,
the joined classifier searches A first, and if no decision is
found, the result from searching Z is used. If the back-
ground is non-empty, the foreground classifier should be an
incomplete classifier so that some inputs do not have a de-
cision. We denote the classifier that has no decision for any
input as ) and note that it is the identity element for the
Concat operation, e.g. (z,0) =z = (0, z).

We write % to represent a classifier split into separate
foreground, F', and background, B, ternary data structures.
For each BDD leaf, we make will create a set of solutions
that encodes that leaf in different ways. This solution set
has two split classifiers, one that encodes the decision in the
foreground, and one that encodes it in the background. The
solution set for a BDD leaf with decision d is

{ Singleton(d) 0 }

0 " Singleton(d)

(1)

One of these two solutions will be used in the final classifier
to represent this part of the input having decision d. The
first solution will be used if the decision d is sufficiently rare
in this subtree that it is best to encode this part of the
classifier function as its own rule. The second solution will

be used if d is sufficiently common in this will be common in
this subtree, and that this decision will be encoded as part
of a rule with a more general predicate.

TUF maintains the invariant that every solution set will
have a solution with an empty background. Because the
empty background solution will be handled differently from
the other pairs, we give it the name EB, for Empty Back-
ground. In (1), the first solution is the EB as its background
is empty. The EB has the best complete encoding of the clas-
sifier represented by a BDD subtree, while the other solu-
tions are the best encoding that assumes some background.

TUF uses multiple solutions and backgrounds to efficiently
merge its two input sets of solutions into a new set of so-
lutions. TUF will create a new solution for every distinct
background in either input set. For a background found
in both input sets, TUF merges the two associated fore-
grounds together to make the solution for that background.
For ternary data structures A, B, and Z, to merge % with
g, the result is AJZFB, as shown in Figure 2b. When one child
has a solution with a background that the other lacks, TUF
substitutes the EB for the missing foreground. This will pro-
duce correct results because the EB is a complete classifier,
so can be placed over any background without changing the
semantics, as shown in Figure 2c. An example merge of two
solution sets can be written as

A B C D E\ (A+D B+E CH+E

RS R e A §
This is implemented as SetMerge(l,r) in Algorithm 2.

Backgrounds simplify LRMerge’s search for commonalities
by allowing LRMerge to focus on merging sibling ternary data
structures that have the same background. The use of back-
grounds also simplifies the merging process by producing the
most useful solutions; instead of trying to merge all pairs of
solutions (O(mn) merges), we instead merge solutions with
the same background (O(m + n) merges). Finally, the use
of backgrounds allow a set of solutions to be simplified.

To simplify a set of solutions, TUF incorporates a cost
function Cost(C') which returns the cost of any ternary clas-
sifier. Let A be the foreground of the EB in a solution
set. For any solution 3=, if Cost(A) < Cost(X), then TUF
removes % from the set. It is a useful simplification be-
cause substituting A for X in future merges will supply
LRMerge with lower cost inputs, which should produce a
lower cost result while maintaining correctness. TUF can
also replace the EB by %%) if there is a solution % for
which Cost(A) > Cost((X,Y)). The result of these simplifi-
cations is that the EB will have the highest cost foreground
of any solution, and the difference in cost between the EB
and any other solution must be less than that solution’s
background cost.

So far, we have treated the classifier as an unstructured
string of bits. In actual usage, the bits being tested are made
up of distinct fields, and there is structure to the classifier
rules related to these fields. For example, ACL rulesets often
have 5 fields: Protocol, Source IP, Source Port, Destination
IP, and Destination Port. Once we have developed a good
ternary classifier for a section of one field, it is often bene-
ficial to simply store that classifier without modification as
we extend it to consider bits from other fields. To support
this, we use a function Encap(d) that creates a field break by
encapsulating the ternary data structure as a decision of an-
other 1-dimensional classifier. The LRMerge operation is not




Algorithm 2: SetMerge(l,r)

Input: solution sets [ and r

Output: merged solution set

Out = empty solution set;

NullLeft = foreground of @ in I;

NullRight = foreground of () in r;

foreach bg in l.backgrounds U r.backgrounds do
ForeLeft = foreground of bg in 1 or NullLeft;
ForeRight = foreground of bg in r or NullRight;
Out.add(LRMerge (ForeLeft,ForeRight),bg);

return Out
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Algorithm 3: TUFCore(b) with backgrounds

Input: A BDD b
Output: A solution set of (fg,bg) pairs

1 switch b do
2 case Leaf d /* BDD Leaf w/ decision d */
3 return {(Singleton (d),0),
4 (#,8ingleton (d))};
5 case Node(left,right) /* Internal Node */
6 LeftPairs := TUFCore (left);
7 RightPairs := TUFCore (right);
8 //next line uses LRMerge;
9 MergedPairs := SetMerge (LeftPairs,
RightPairs);
10 Solutions := Concat to all of MergedPairs;
11 BestSol := lowest Cost solution in Solutions;
12 MergedPairs.removelf(Cost (z) > Cost
(BestSol));
13 MergedPairs.add(BestSol, ());
14 if at field boundary then
15 Encap (MergedPairs);
16 L MergedPairs.add (), Encap (BestSol));
17 return MergedPairs;

required to respect this field break, although doing so will
reduce the complexity of merging, as it will have fewer bits
to consider. While encapsulating, we also promote the EB
to be a background to make it easy to find as a commonality.

Pseudocode for this enhanced TUF Core is given in Algo-
r)i(thm 3. In it, the ordered pair (X,Y) is used to represent

v -

4. PREFIX MINIMIZATION USING TRIES

The TUF framework can be used to create a multi-dimen-
sional prefix classifier compression algorithm by using tries.
Prefix classifiers have prefix predicates where all stars follow
all 0’s and 1’s. TUF will represent multi-dimensional prefix
rules with tries of tries.

In this paper, tries are binary trees with nodes optionally
labeled with decisions. As with BDDs, the binary search key
determines a path from the root, taking the left (right) child
if the next bit is 0 (1). The decision of a trie for a search key
is the last label found on the path for that key. Each labeled
node corresponds to a prefix rule; the path to it from the
root matches a prefix of the search key, and all other bits
are ignored. Tries are commonly used to represent Internet
routing tables where the longest matching prefix determines

the route taken. To handle multi-dimensional prefix classi-
fiers, the solution is to use tries where the decision is another
trie.

We now describe 1-dimensional and multi-dimensional pre-
fix classifier minimization in TUF.

4.1 1-Dimensional Prefix Minimization

Adapting tries into the TUF framework is very natural.
The empty classifier, @, is a trie node with no decision. To
implement Singleton(d) and produce a classifier where all
inputs have decision d, simply create a trie node with de-
cision d. The Cost(t) of a trie ¢t is the number of nodes
with a decision, which corresponds to the number of TCAM
rules needed for that trie. To LRMerge(1l,r) two tries, we
create a new trie node with no decision and assign the left
child as [ and the right child as . The Concat (f,b) opera-
tion only has to handle the case where the foreground has a
root node without decision and the background is a single-
ton trie node with a decision. This is because backgrounds
are always singleton tries and because Concat is applied im-
mediately after LRMerge which produces a foreground trie
where the root has no decision. In this situation, Concat
just moves the decision of the background to the root node
of the foreground.

Figure 3 illustrates the compression of an example classi-
fier into a trie using these operations. The input classifier
assigns decision a to binary input value 01 and b to binary
input values 00, 10 and 11. The BDD representation of this
classifier is Figure 3a, which has a leaf labeled a in position
01 (left, right), and leaves with decision b elsewhere. At each
BDD leaf, two solutions are created, one with the decision in
the foreground and one with the decision in the background,
shown in Figure 3b. As backgrounds will always be a single-
ton trie, we will show them as the decision of that trie over
a shaded background. The merging step combines solutions
that have the same background. In the case where the other
solution set is missing a solution with the same background,
a solution is combined with the EB of the other solution set.
We will apply this merging step twice to our example BDD,
as shown in Figures 3c and 3d. The first merge produces
three solutions: the EB, one solution with a as background,
and one solution with b as background. To produce the EB,
the foregrounds of the existing EBs are merged. To produce
the solution with background a or b, the corresponding fore-
ground is merged with the EB of the opposite solution set.
Note that LRMerge is not symmetric, producing differently
shaped tries. The second merge is done similarly, with the
two b solutions merged, the two EBs merged, and the a
solution merged with the EB.

After we finish merging two solution sets, we optimize the
result. Optimization has no effect after the first merge in our
example, but it does improve the solution set after the sec-
ond merge. Recall that if any solution has total (foreground
+ background) cost less than the EB, then the EB can be
replaced by a Concat of that solution. In the example, the
total cost of the solution in Figure 3d with background b is
2; the foreground cost is 1 and the background cost is 1. The
EB has a higher cost of 3, which is greater than the total for
b, so we replace the EB. The result of Concat is to put the
background decision into the root node of the trie, as shown
in the final solution set, where the EB has decision b in its
root node. Next, recall that if any solution has foreground
cost no smaller than the EB, it is replaceable by the EB and
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Figure 4: Encapsulation at a field boundary

can be removed. In this case, we removed the solution with
background a because its foreground cost of 2 is the same
cost as that of the new EB. As we have finished reducing
our BDD to a single solution set, the result of compressing
this classifier is that newly created EB. The final result is
shown in Figure 3e.

4.2 Multi-dimensional prefix minimization

To represent a multi-dimensional prefix classifier, tries of
tries are the natural solution. In a trie of tries, each decision
of an n-dimensional trie is an (n — 1)-dimensional trie. The
lowest level 1-dimensional tries have the final decisions of the
classifier in them. Tries of tries are turned into decisions for
the next level trie at field boundaries using an Encap func-
tion which is run on both the foreground and background
classifiers. In this case, Encap simply takes the existing clas-
sifier and sets it as the decision of a singleton trie, producing
a (n + 1)-dimensional trie from an n-dimensional trie. For
the case of an empty trie such as the background of the EB,
Encap returns an empty trie. This is analagous to how leaf
solution sets are created for tries.

The result of encapsulating the solution set in Figure 3e
is shown in Figure 4. The two existing solutions have been
encapsulated as decisions of 2-dimensional tries, which is
shown with the existing trie inside a new, large trie node.
For the second solution, the background is just an empty
background as encapsulation of the empty background is a
null operation. One new solution is added at this step (the
rightmost solution in Figure 4) where the EB is set as a
background decision to an empty foreground.

0Top; | 1Top, 0Top, 1 Top,
0 Rule + 1Rule * Rule
0 Bot.; 1 Bot., 0 Bot.; + 1 Bot.,

Figure 5: Recursive merging left and right ACLs
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Figure 6: ACL pairing example
5. TERNARY MINIMIZATION USING ACLS

In this section, we use TCAM classifiers as the ternary
data structure in the TUF algorithm. Using tree structures
makes the LRMerge operation very natural to represent, but
limits the variety of TCAM classifiers that can be produced.
Using TCAM classifiers as the ternary data structure makes
the Concat operation trivial, but has additional complexity
in implementing a compressing LRMerge operation.

Merging TCAM classifiers without factoring out any com-
monalities can be done by prefixing all rules in the left input
by 0 and those from the right input by 1 and concatenating
them: A+ B = (0A,1B). As there is no overlap between
the two groups of rules, tThe order of concatenation doesn’t
matter, and the two prefixed inputs can be interleaved ar-
bitrarily. Factoring out commonalities is superficially easy;
find a rule that appears in both inputs and put a copy of
that rule prefixed by * into the result instead of the two rules
prefixed by 0 and 1. This simple method does not take into
account the ordering of rules in the inputs, so it produces
incorrect results. A rule that appears in both inputs may
be needed to shadow other rules. We must take this into
account when merging.

To preserve correctness in all cases, we must ensure that
rules combined in this way stay in the same order relative to
other rules in both inputs. Graphically, this is illustrated in
Figure 5. This leads to a recursive procedure to merge two
TCAM classifiers. After identifying a common rule, split
both ACLs into the part before the common rule and the
part after the common rule, called the tops and bottoms,
respectively. Next, merge the two tops and the two bottoms,
recursively and join the pieces back together. We can write
this algebraically as

(Tv, %, B1) + (T2, x, B2) = (11 + T2), *x, (B1 + Ba)).

Given two rulesets, we can maximize the number of rules
merged by examining the pattern of which rules could be
merged. Figure 6a shows an abstracted pair of ACLs, with
letters representing rules. Each pair of rules that can be
merged is connected by a line. Two pairs of rules conflict
if after merging one pair, the other pair cannot be merged.
Graphically, two pairs of rules conflict if their corresponding
lines intersect. We define a pairing to be a subset of the
pairs of rules that can be merged without conflict. Figure 6b
shows an invalid pairing, as splitting the rules for one pair
prevents the other pair from merging. A maximal pairing
is a valid pairing in which no pairs can be added without it



becoming invalid. Figure 6¢ shows a maximal pairing; when
we split the rulesets into tops and bottoms, we can see there
are no further pairings. A maximum pairing is a pairing with
the property that no other pairing has more pairs. Figure 6d
shows a maximum pairing; there is no larger set of pairs that
has no conflict.

The problem of finding a maximum pairing can be reduced
to the maximum common subsequence problem [16]. This
problem is NP-complete for an arbitrary number of input
sequences, but has polynomial-time solutions for the case
of two input sequences. In our experiments on the real-life
rulesets used in Section 7, we observe that there is little
difference in the number of pairings identified between the
optimal solution and our greedy solution.

6. REVISITING PRIOR SCHEMES IN TUF

TUF provides a new perspective for classifier compres-
sion that leads to new opportunities for compression and
more efficient implementations. We illustrate this feature by
studying previously developed one-dimensional and multi-
dimensional prefix classifier minimization algorithms from
the perspective of TUF. Specifically, we examine an ex-
isting algorithm for one-dimensional prefix classifier mini-
mization [22] and a non-optimal but effective algorithm for
multi-dimensional prefix classifier minimization [14]. Both
Suri et al.’s one-dimensional algorithm and Meiners et al.’s
multi-dimensional algorithms can be viewed as instantia-
tions of the TUF framework. Furthermore, when viewed
within TUF, we immediately find improvements to both al-
gorithms.

Suri et al. first build a BDD out of the input trie, then
apply a union/intersection operation to label interior nodes
with sets of decisions, and finally traverse the tree once more
from the root to give each tree node its final decision. The
TUF Trie algorithm presented in Section 4 follows a very
similar structure. The set of solutions generated at each
step follows the same pattern of union/intersection. Because
of the simple background structure, all foregrounds are al-
ways equal cost, except for the EB, which has a cost that is
greater by one. When the children of an internal node have
no matching backgrounds, all the merge results will have
the same cost and will be preserved for the next step; this
corresponds to the union case. When there are matching
backgrounds with the same decision, the resulting solution
will replace the EB and eliminate all non-paired solutions;
this corresponds to the intersection case.

There is one important difference between the algorithms
which is how they manage the tree. The existing algorithms
are in-place algorithms that modify an existing tree in mul-
tiple passes. This requires the whole BDD to be generated
and kept in memory. The TUF Trie algorithm does a reduc-
tion over the structure of the BDD, but does not require it
all to be generated, or in memory at once. The BDD can
be lazily generated, and only a few solution sets need be in
memory at once. In this way, TUF Trie can be more efficient
than existing algorithms for very large classifiers.

We next consider the multi-dimensional TCAM Razor al-
gorithm developed by Meiners et al.. TCAM Razor builds a

multi-dimensional algorithm from Suri et al.’s one-dimensional

algorithm. It first builds an FDD from the input classi-
fier and compresses the 1D classifiers at the leaves using a
weighted version of 1D compression. It then treats the re-
sults of this compression as a single decision with weight

(b) ® ®)
be-} 'e Q)O

Figure 7: Razor hoisting the null solution as a decision
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(a) Result of
TCAM Razor

(b) Result of TUF
Trie, same input

equal to the number of rules in the result, effectively reduc-
ing the dimension by one. By repeating this process until
all the dimensions of the FDD have been compressed, Razor
produces a single classifier as output.

Looking at TCAM Razor from the perspective of TUF,
we identify ways to improve compression speed. Razor’s
weighted one-dimensional compression keeps a full solution
for each decision. As the last dimension is compressed,
its decisions are compressed tries for the other dimensions.
There may be tens or hundreds of these, and it is wasteful
to do merges for all these solutions, when few of them will
be used. A TUF-based solution can remove solutions that
are strictly inferior and start with a small set of solutions
at the leaves to greatly decrease the amount of work done.
These changes give an average of 20x speed improvement on
the classifiers that take more than 1/4 second to compress.

The compression level achievable by TCAM Razor can
also be improved. Looking at both algorithms from the per-
spective of solution sets, we see that when Razor finishes
compressing a field, it keeps only a best solution (the EB).
When the next level is processed, only this one solution is
used, and it is treated as an opaque value. The resulting
transformation is illustrated in Figure 7, which can be com-
pared with Figure 4. The classifier with background b is dis-
carded, and the EB is shown encapsulated on the far right
and promoted as a new background in the middle.

The Multi-dimensional TUF Trie improves compression
by encapsulating more solutions at field boundaries which
can lead to the discovery of more potential similarities. Fig-
ures 8a and 8b give example outputs of TCAM Razor and
the simple multi-dimensional prefix TUF algorithm described
in section 4. TCAM Razor treats the rulesets from already
compressed fields as opaque values, so once the last field is
processed, the results have no flexibility. Because of TUF’s
ability to keep multiple possible solutions for already com-
pressed fields, it is able to apply the default rule across the
field boundary, resulting in better compression.

7. EXPERIMENTAL RESULTS

7.1 Evaluation Metrics

The critical metric of a classifier compression algorithm is
the number of rules in the output TCAM classifier. As the
input classifiers are in range form, they may contain rules
that must be rewritten to be stored in TCAM. When com-
puting compression ratios, we compare against the result of
direct range expansion. This means we replace each non-
ternary rule with a collection of prefix rules that compose
the same predicate. We denote the result of this process
Direct(C') for a classifier C. We denote the size of the result



of running algorithm A on classifier C' as |[A(C)|. For exam-
ple, |Razor(C)| is the number of rules after running TCAM
Razor on a classifier C. Then, the compression ratio for an
algorithm A on a classifier C' is

[AO)]

CR(4,C) = |Direct(C)|

A smaller compression ratio indicates that the algorithm
produced a smaller output and thus needs less TCAM space.
To measure an algorithm’s performance on a set of classi-
fiers, we use Average Compression Ratio (ACR). For a set
of classifiers S, the ACR of algorithm A is the mean com-
pression ratio across those classifiers;

ACR(A,S) = ﬁ > CR(A,0).

ces

We evaluate how much TUF advances TCAM classifier
compression using the following improvement metric. First,
for any classifier C, we define CRprior(C) to be the best
possible compression ratio for C' using any algorithm exclud-
ing TUF algorithms. We then define C'Rpew(C) to be the
best possible compression ratio for C' using any algorithm
including TUF algorithms. In both cases, we use the best
possible field permutation order for each algorithm for the
given classifier. We define the percent improvement of TUF

as 1 — gg%, In this case, a higher Improvement percent-

prior

age means that TUF performs better and saves more TCAM
space.

7.2 Results on real-world classifiers

We test these algorithms on a collection of real-life clas-
sifiers in three categories. The categories are based on the
number of non-redundant rules and difficulty converting the
rules to ternary format. Table 2 gives a breakdown and
statistics on these categories.

Avg # Avg. #
Cat. Count Non-Red. Prefix Exp.
Small 13 9 1578
Large 8 3221 7525
Med. 17 209 641

Table 2: Classifier categories

Classifiers with an expansion ratio over 20 are categorized
as Small RL. These 13 classifiers have an average of 9 non-
redundant rules each, yet their prefix expansions have 1600
ternary rules. The remaining classifiers with more than 800
non-redundant rules are categorized as Large RL. The re-
maining 17 classifiers have neither extreme expansion ratios
nor are extremely large, so we categorize them as Medium
RL.
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Figure 9: Razor vs. Redundancy Removal, for classifier
grouping purposes

These groupings are visually distinguishable by plotting
|Direct(RR(C))|, the prefix expansion of non-redundant rules,
against the compressed size using TCAM Razor, as shown
in Figure 9.

To test the sensitivity of algorithms to the number of de-
cisions, we also compressed a variant of each of these classi-
fiers. These variants are modified to have a unique decision
for each rule. One practical reason for considering unique
decisions is that we may need to know which rule matched;
for example, we may be tracking hit counts for each rule.

Algorithm All  Large Med. Small
TUF Trie 26.2% 30.8 41.8 0.8
TUF ACL 22.8 22.8 384 0.7
TUF Trie  45.3 56.9  70.2 2.4
TUF ACL 43.3 50.9 68.8 2.1

Orig.

Uniq.

Table 3: ACR on real world classifiers

Table 3 shows the results of compressing the real-life clas-
sifiers and their unique variants with TUF Trie and TUF
ACL. Both variants are very effective at compressing classi-
fiers, but TUF ACL does outperform TUF Trie by roughly
13% on all classifiers and 26% on the Large classifiers where
there are more compression opportunities to be exploited by
a full ternary compression algorithm.

7.2.1 Sensitivity to number of unique decisions

When the input classifier has a unique decision for each
rule, less compression is possible because there is less poten-
tial to apply a background that applies to multiple rules. As
a result, TUF ACL and TUF Trie both have reduced com-
pression performance, needing two to three times as many
TCAM rules to represent the classifiers. TUF ACL still out-
performs TUF Trie but by a smaller amount, roughly 4.5%
on all classifiers and 10.5% on Large classifiers.

7.2.2  Comparison with state-of-the-art results

We present a direct comparison between TUF algorithms
and the previous best algorithms in Figure 10. For pre-
fix compression, Cprior(C') uses only TCAM Razor [14] and
Chrew(C) uses the best of TCAM Razor and TUF Trie. For
ternary compression, Cprior(C) uses the best of Ternary
Razor and BitWeaving [18] and Chew(C) uses the best of
Ternary Razor, BitWeaving, and TUF ACL. Each graph
shows the percent improvement of the TUF algorithm over
the comparable state of the art for each of our real-life clas-
sifiers. The x-axis of each graph is broken into three parts
corresponding to the Small, Medium and Large classifiers.
Within each group, classifiers are sorted in order of increas-
ing improvement from left to right.

We first consider prefix compression. In Figure 10a, we
can see that adding TUF Trie improves performance by an
average of 1.9 % on all classifiers. The improvement is small
but does increase as we move from Small to Medium to
Large classifiers from 0% to 2.6% to 3.0%. Furthermore,
while the improvement is generally small, the percentage
of classifiers where adding TUF Trie improves performance
increases as we move to larger classifiers. Adding TUF Trie
improves performance on 0 of the 13 Small classifiers (0%),
8 of the 17 Medium classifiers (47%), and 7 of the 8 Large
Classifiers (87.5%). There is one notable outlier where TUF
trie outperforms TCAM Razor by 34%.
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Figure 10: Improvement of TUF over the state of the art for real life classifiers

We next consider ternary compression. In Figure 10b, we
see how much adding TUF ACL improves compression over
using only Ternary Razor and BitWeaving on our set of real
life classifiers. We see that the improvement is greater than
for prefix compression. Specifically, adding TUF ACL im-
proves performance by an average of 5.4 % on all classifiers.
As with prefix compression, the improvement does increase
as we move from Small to Medium to Large classifiers from
0.6% to 4.9% to 13.7%. As with prefix compression, the
number of classifiers where adding TUF ACL improves per-
formance increases as we move to larger classifiers. Specif-
ically, adding TUF ACL improves performance on 1 of the
13 Small classifiers (7.7%), 11 of the 17 Medium classifiers
(64.7%), and 8 of the 8 Large Classifiers (100%).

For prefix compression with unique decisions, TUF Trie
offers almost no improvement over the state of the art, giving
a maximum of 1.7% improvement and only improving 3 of
the classifiers. We omit the plot for this uninteresting result.

For ternary compression with unique decisions, from Fig-
ure 10c, we see that TUF ACL improves performance but
the pattern of improvement is quite different. Adding TUF
ACL improves performance by an average of 6.2% on all clas-
sifiers with unique decisions, but now the best performance
is on the Small Classifiers followed by the Large classifiers,
with almost no improvement for the Medium classifiers. As
we move from Small to Medium to Large classifiers, the av-
erage improvment goes from 11.4% to 1.8% to 10.3%. For
the Medium classifiers, many of them are already in prefix
form, so with unique decisions, the only optimization possi-
ble is removing redundant rules. The remainder are nearly
in prefix form, so there is little opportunity for compression
not already found by prior algorithms, although we still find
some. For the Small classifiers, TUF ACL achieves improved
performance by better ordering backgrounds to minimize the
effects of prefix expansion. For the Large classifiers, TUF
ACL is still better able to find global commonalities than
previous algorithms.

7.3 Synthetic Rules

We also use a collection of 110 synthetic classifiers which
were created by ClassBench [24]. These include 10 classifiers
from each of 11 sizes from 250 rules to 32K rules. Note
that the size of the synthetic classifiers is not comparable to
real-life classifiers as large (> 2000 rule) synthetic classifiers
contain about 90% redundant rules. This means that the
complexity of the classifier function to be optimized is much
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Figure 11: Improvement of TUF over the state of the art
ternary algorithms for synthetic classifiers

lower than a real-life classifier with the same number of rules.
The ACR values for TUF ACL across this group ranges from
23% for the smallest classifiers to 6.1% for the largest.

The improvement in compressing these classifiers over the
state of the art is shown in Figure 11. These figures show box
plots for each same-size group of 10 classifiers. Each box-
plot shows the median value as a line in the middle of the
box, the 1st and 3rd quartile shown as the top and bottom
of the box, and the most extreme values plotted as points.
Figure 11a shows that adding TUF ACL leads to a 1% im-
provement across the synthetic rule sets, even though 38% of
rulesets had improvement. On the other hand, Figure 11b
show that adding TUF ACL leads to larger improvement
for the synthetic rule sets with unique decisions. In this
case, 73% of classifiers experience improvement, including
93% from the groups with between 1000 and 22000 rules.
Overall, the average improvement in the state of the art was
4.5%. The improvement percentage generally increases as
the synthetic classifiers increase in size, up to 28000 rules,
possibly indicating a saturation point in the complexity of
the classifier where less compression is available. We omit
prefix results as there is a less than 0.1% improvement in
prefix compression of the synthetic classifiers.

7.4 Efficiency

For prefix compression, TUF-based TCAM Razor is much
faster than the original TCAM Razor. For small classifiers,
TUF-based Razor can be more than 1000 times faster than
the original TCAM razor. For larger classifiers, the speed
difference is an average of twenty times faster, achieving the
exact same level of compression in much less time.



Ternary compression algorithms take longer, as their search
for commonalities throughout the classifier increases the work
they have to do. On a desktop PC with an AMD 3GHz Phe-
nom CPU, these algorithms usually complete in under one
minute. For some of our classifiers and some of our algo-
rithms and some field permutations, the running time occa-
sionally exceeds one minute; fortunately, these cases can be
ignored as they almost always result in poor compression.
That is, we can set a reasonable limit such as one minute or
five minutes for running a compression algorithm and termi-
nate the algorithm and discard the result for the given field
permutation if it exceeds the given time limit. Furthermore,
for many applications, a slow worst case compression time
is acceptable as updates are performed offline.

8. CONCLUSIONS

In this paper, we propose a new framework for compress-
ing TCAM-based packet classifiers and three new algorithms
for implementing this framework. This framework allows us
to look at the classifier compression problem from a fresh
angle, unify many seemingly different algorithms, and dis-
cover many unknown compression opportunities. Our ex-
perimental results show that TUF gives insights that (1)
significantly improve the speed of the existing TCAM Ra-
zor algorithm with no loss in compression and (2) lead to
new algorithms that compress better than prior algorithms.
More importantly, this framework opens a new direction for
further work on TCAM-based packet classifier compression.
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