
User Space Network Drivers
Paul Emmerich

Technical University of Munich
emmericp@net.in.tum.de

Maximilian Pudelko
Technical University of Munich
Open Networking Foundation
max@opennetworking.org

Simon Bauer
Technical University of Munich

bauersi@net.in.tum.de

Stefan Huber
Technical University of Munich

hubestef@net.in.tum.de

Thomas Zwickl
Technical University of Munich

zwickl@net.in.tum.de

Georg Carle
Technical University of Munich

carle@net.in.tum.de

ABSTRACT
The rise of user space packet processing frameworks like
DPDK and netmap makes low-level code more accessible
to developers and researchers. Previously, driver code was
hidden in the kernel and rarely modified—or even looked at—
by developers working at higher layers. These barriers are
gone nowadays, yet developers still treat user space drivers
as black-boxes magically accelerating applications. We want
to change this: every researcher building high-speed net-
work applications should understand the intricacies of the
underlying drivers, especially if they impact performance.
We present ixy, a user space network driver designed for
simplicity and educational purposes to show that fast packet
IO is not black magic but careful engineering. ixy focuses on
the bare essentials of user space packet processing: a packet
forwarder including the whole NIC driver uses less than
1,000 lines of C code.

This paper is partially written in tutorial style on the case
study of our implementations of drivers for both the Intel
82599 family and for virtual VirtIO NICs. The former allows
us to reason about driver and framework performance on
a stripped-down implementation to assess individual opti-
mizations in isolation. VirtIO support ensures that everyone
can run it in a virtual machine.
Our code is available as free and open source under the

BSD license at https://github.com/emmericp/ixy.

KEYWORDS
Tutorial, performance evaluation, DPDK, netmap

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS’19, 2019
© 2019 Association for Computing Machinery.

1 INTRODUCTION
Low-level packet processing on top of traditional socket APIs
is too slow for modern requirements and was therefore often
done in the kernel in the past. Two examples for packet for-
warders utilizing kernel components are Open vSwitch [40]
and the Click modular router [32]. Writing kernel code is
not only a relatively cumbersome process with slow turn-
around times, it also proved to be too slow for specialized
applications. Open vSwitch was since extended to include
DPDK [7] as an optional alternative backend to improve per-
formance [36]. Click was ported to both netmap [41] and
DPDK for the same reasons [2]. Other projects also moved
kernel-based code to specialized user space code [24, 43].
Developers and researchers often treat DPDK as a black-

box that magically increases speed. One reason for this is
that DPDK, unlike netmap and others, does not come from
an academic background. It was first developed by Intel and
thenmoved to the Linux Foundation in 2017 [27]. This means
that there is no academic paper describing its architecture
or implementation. The netmap paper [41] is often used as
surrogate to explain how user space packet IO frameworks
work in general. However, DPDK is based on a completely
different architecture than seemingly similar frameworks.

Abstractions hiding driver details from developers are an
advantage: they remove a burden from the developer. How-
ever, all abstractions are leaky, especially when performance-
critical code such as high-speed networking applications
are involved. We therefore believe it is crucial to have at
least some insights into the inner workings of drivers when
developing high-speed networking applications.
We present ixy, a user space packet framework that is

architecturally similar to DPDK [7] and Snabb [15]. Both use
full user space drivers, unlike netmap [41], PF_RING [34],
PFQ [4], or similar frameworks that rely on a kernel driver.
ixy is designed for educational use only, i.e., you are meant to
use it to understand how user space packet frameworks and
drivers work, not to use it in a production environment. Our
whole architecture, described in Section 3, aims at simplicity

1

ar
X

iv
:1

90
1.

10
66

4v
2

 [
cs

.N
I]

 8
 S

ep
 2

01
9

https://github.com/emmericp/ixy

ANCS’19, 2019 Paul Emmerich et al.
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do more in user space?

NIC NIC NIC NIC

User Space

Kernel Space

Control API

Driver

Magic Kernel Module

Magic Library

Application

OS

mmap’ed
Memory

mmap’ed
Memory

Paul Emmerich — Demystifying Network Cards 18

Figure 1: Architecture of user space packet processing
frameworks using an in-kernel driver, e.g., netmap,
PF_RING ZC, or PFQ.

and is trimmed down to the bare minimum.We currently sup-
port the Intel ixgbe family of NICs (cf. Section 4) and virtual
VirtIO NICs (cf. Section 6). A packet forwarding application
is less than 1,000 lines of C code including the whole poll-
mode driver, the implementation is discussed in Section 4.
It is possible to read and understand drivers found in other
frameworks, but ixy’s driver is at least an order of magnitude
simpler than other implementations. For example, DPDK’s
implementation of the ixgbe driver needs 5,400 lines of code
just to handle receiving and sending packets in a highly op-
timized way, offering multiple paths using different vector
SIMD instruction sets. ixy’s receive and transmit path for
the same driver is only 127 lines of code.
It is not our goal to support every conceivable scenario,

hardware feature, or optimization. We aim to provide an
educational platform for experimentation with driver-level
features or optimizations. ixy is available under the BSD
license for this purpose [38].

2 BACKGROUND AND RELATEDWORK
A multitude of packet IO frameworks have been built over
the past years, each focusing on different aspects. They can
be broadly categorized into two categories: those relying
on a driver running in the kernel (Figure 1) and those that
re-implement the whole driver in user space (Figure 2).

Examples for the former category are netmap [41], PF_RING
ZC [34], PFQ [4], and OpenOnload [44]. They all use the de-
fault driver (sometimes with small custom patches) and an
additional kernel component that provides a fast interface
based on memory mapping for the user space application.
Packet IO is still handled by the kernel driver here, but the dri-
ver is attached to the application directly instead of the kernel
datapath, see Figure 1. This has the advantage that integrat-
ing existing kernel components or forwarding packets to the
default network stack is feasible with these frameworks. By
default, these applications still provide an application with
exclusive access to the NIC. Parts of the NIC can often still

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do even more in user space?

NIC NIC NIC NIC

User Space

Kernel Space

mmap’ed
BAR0

Application

OS

DMA
Memory

Packets

Paul Emmerich — Demystifying Network Cards 21

Figure 2: Architecture of full user space network dri-
vers, e.g., DPDK, Snabb, or ixy.

be controlled with standard tools like ethtool to configure
packet filtering or queue sizes. However, hardware features
are often poorly supported, e.g., netmap lacks support for
most offloading features [11].
Note that none of these two advantages is superior to

the other, they are simply different approaches for a similar
problem. Each solution comes with unique advantages and
disadvantages depending on the exact use case.
netmap [41] and XDP [23] are good examples of inte-

grating kernel components with specialized applications.
netmap (a standard component in FreeBSD and also avail-
able on Linux) offers interfaces to pass packets between the
kernel network stack and a user space app, it can even make
use of the kernel’s TCP/IP stack with StackMap [46]. Fur-
ther, netmap supports using a NIC with both netmap and
the kernel simultaneously by using hardware filters to steer
packets to receive queues either managed by netmap or the
kernel [3]. XDP is technically not a user space framework:
the code is compiled to eBPF which is run by a JIT in the
kernel, this restricts the choice of programming language to
those that can target eBPF bytecode (typically a restricted
subset of C is used). It is a default part of the Linux kernel
nowadays and hence very well integrated. It is well-suited
to implement firewalls that need to pass on traffic to the
network stack [14]. More complex applications can be built
on top of it with AF_XDP sockets, resulting in an architec-
ture similar to netmap applications. Despite being part of the
kernel, XDP does not yet work with all drivers as it requires
a new memory model for all supported drivers. At the time
of writing, XDP in kernel 4.19 (current LTS) supports fewer
drivers than DPDK [5, 22] and does not support forwarding
to different NICs.

DPDK [7], Snabb [15], and ixy implement the driver com-
pletely in user space. DPDK still uses a small kernel module
with some drivers, but it does not contain driver logic and
is only used during initialization. Snabb and ixy require no
kernel code at all, see Figure 2. A main advantage of the full
user space approach is that the application has full control

2

User Space Network Drivers ANCS’19, 2019

over the driver leading to a far better integration of the ap-
plication with the driver and the hardware. DPDK features
the largest selection of offloading and filtering features of
all investigated frameworks [6]. The downside is the poor
integration with the kernel, DPDK’s KNI (kernel network
interface) needs to copy packets to pass them to the kernel
unlike XDP or netmap which can just pass a pointer. Other
advantages of DPDK are its support in the industry, mature
code base, and large community. DPDK supports virtually
all NICs commonly found in servers [5], far more than any
other framework we investigated here.
ixy is a full user space driver as we want to explore writ-

ing drivers and not interfacing with existing drivers. Our
architecture is based on ideas from both DPDK and Snabb.
The initialization and operation without loading a driver is
inspired by Snabb, the API based on explicit memory man-
agement, batching, and driver abstraction is similar to DPDK.

3 DESIGN
Function names and line numbers referring to our imple-
mentation are hyperlinked to the source code on GitHub.

The language of choice for the explanation here and initial
implementation is C as the lowest common denominator of
systems programming languages. Implementations in other
languages are also available [8]. Our design goals are:

• Simplicity. A forwarding application including a driver
should be less than 1,000 lines of C code.

• No dependencies. One self-contained project including
the application and driver.

• Usability. Provide a simple-to-use interface for appli-
cations built on it.

• Speed. It should be reasonable fast without compro-
mising simplicity, find the right trade-off.

It should be noted that the Snabb project [15] has similar
design goals; ixy tries to be one order of magnitude simpler.
For example, Snabb targets 10,000 lines of code [25], we
target 1,000 lines of code and Snabb builds on Lua with
LuaJIT instead of C limiting accessibility.

3.1 Architecture
ixy only features one abstraction level: it decouples the used
driver from the user’s application. Applications call into ixy
to initialize a network device by its PCI address, ixy choses
the appropriate driver automatically and returns a struct
containing function pointers for driver-specific implementa-
tions. We currently expose packet reception, transmission,
and device statistics to the application. Packet APIs are based
on explicit allocation of buffers from specializedmemory pool
data structures.

Applications include the driver directly, ensuring a quick
turn-around time when modifying the driver. This means

that the driver logic is only a single function call away from
the application logic, allowing the user to read the code
from a top-down level without jumping between complex
abstraction interfaces or even system calls.

3.2 NIC Selection
ixy is based on custom user space re-implementation of the
Intel ixgbe driver and the VirtIO virtio-net driver cut down to
their bare essentials. We tested our ixgbe driver on Intel X550,
X540, and 82599ES NICs, virtio-net on qemu with and with-
out vhost, and on VirtualBox. All other frameworks except
DPDK are also restricted to very few NIC models (typically 3
or fewer families) and ixgbe is (except for OpenOnload only
supporting their own NICs) always supported.
We chose ixgbe for ixy because Intel releases extensive

datasheets and the ixgbe NICs are commonly found in com-
modity servers. These NICs are also interesting because they
expose a relatively low-level interface to the drivers. Other
NICs like the newer Intel XL710 series orMellanox ConnectX-
4/5 follow a more firmware-driven design: a lot of function-
ality is hidden behind a black-box firmware running on the
NIC and the driver merely communicates via a message in-
terface with the firmware which does the hard work. This
approach has obvious advantages such as abstracting hard-
ware details of different NICs allowing for a simpler more
generic driver. However, our goal with ixy is understanding
the full stack—a black-box firmware is counterproductive
here and we have no plans to add support for such NICs.
VirtIO was selected as second driver to ensure that ev-

eryone can run the code without hardware dependencies. A
second interesting characteristic of VirtIO is that it is based
on PCI instead of PCIe, requiring a different approach to
implement the driver in user space.

3.3 User Space Drivers in Linux
There are two subsystems in Linux that enable user space
drivers: uio and vfio, we support both.
uio exposes all necessary interfaces towrite full user space

drivers viamemorymapping files in the sysfs pseudo filesys-
tem. These file-based APIs give us full access to the device
without needing to write any kernel code. ixy unloads any
kernel driver for the given PCI device to prevent conflicts,
i.e., there is no driver loaded for the NIC while ixy is running.

vfio offers more features: IOMMU and interrupts are only
supported with vfio. However, these features come at the
cost of additional complexity: It requires binding the PCIe
device to the generic vfio-pci driver and it then exposes
an API via ioctl syscalls on special files.

One needs to understand how a driver communicates with
a device to understand how a driver can be written in user
space. A driver can communicate via two ways with a PCIe

3

ANCS’19, 2019 Paul Emmerich et al.

device: The driver can initiate an access to the device’s Base
Address Registers (BARs) or the device can initiate a direct
memory access (DMA) to access arbitrary main memory lo-
cations. BARs are used by the device to expose configuration
and control registers to the drivers. These registers are avail-
able either via memory mapped IO (MMIO) or via x86 IO
ports depending on the device, the latter way of exposing
them is deprecated in PCIe.

3.3.1 Accessing Device Registers. MMIO maps a memory
area to device IO, i.e., reading from or writing to this memory
area receives/sends data from/to the device. uio exposes all
BARs in the sysfs pseudo filesystem, a privileged process
can simply mmap them into its address space. vfio provides
an ioctl that returns memory mapped to this area. Devices
expose their configuration registers via this interface where
normal reads and writes can be used to access registers. For
example, ixgbe NICs expose all configuration, statistics, and
debugging registers via the BAR0 address space. Our imple-
mentations of these mappings are in pci_map_resource()
in pci.c and in vfio_map_region() in libixy-vfio.c.

VirtIO (in the version we are implementing for compatibil-
ity with VirtualBox) is unfortunately based on PCI and not
on PCIe and its BAR is an IO port resource that must be ac-
cessed with the archaic IN and OUT x86 instructions requiring
IO privileges. Linux can grant processes the necessary privi-
leges via ioperm(2) [16], DPDK uses this approach for their
VirtIO driver. We found it too cumbersome to initialize and
use as it requires either parsing the PCIe configuration space
or text files in procfs and sysfs. Linux uio also exposes IO
port BARs via sysfs as files that, unlike their MMIO coun-
terparts, cannot be mmaped. These files can be opened and
accessed via normal read and write calls that are then trans-
lated to the appropriate IO port commands by the kernel. We
found this easier to use and understand but slower due to the
required syscall. See pci_open_resource() in pci.c and
read/write_ioX() in device.h for the implementation.
A potential pitfall is that the exact size of the read and

writes are important, e.g., accessing a single 32 bit register
with 2 16 bit reads will typically fail and trying to read mul-
tiple small registers with one read might not be supported.
The exact semantics are up to the device, Intel’s ixgbe NICs
only expose 32 bit registers that support partial reads (except
clear-on-read registers) but not partial writes. VirtIO uses
different register sizes and specifies that any access width
should work in the mode we are using [35], in practice only
aligned and correctly sized accesses work reliably.

3.3.2 DMA in User Space. DMA is initiated by the PCIe
device and allows it to read/write arbitrary physical ad-
dresses. This is used to access packet data and to transfer the
DMA descriptors (pointers to packet data) between driver
and NIC. DMA needs to be explicitly enabled for a device

via the PCI configuration space, our implementation is in
enable_dma() in pci.c for uio and in vfio_enable_dma()
in libixy-vfio.c for vfio. DMAmemory allocation differs
significantly between uio and vfio.

uio DMAmemory allocation. Memory used for DMA trans-
fer must stay resident in physical memory. mlock(2) [26]
can be used to disable swapping. However, this only guar-
antees that the page stays backed by memory, it does not
guarantee that the physical address of the allocated memory
stays the same. The linux page migration mechanism can
change the physical address of any page allocated by the user
space at any time, e.g., to implement transparent huge pages
and NUMA optimizations [28]. Linux does not implement
page migration of explicitly allocated huge pages (2MiB or
1GiB pages on x86). ixy therefore uses huge pages which also
simplify allocating physically contiguous chunks of memory.
Huge pages allocated in user space are used by all investi-
gated full user space drivers, but they are often passed off
as a mere performance improvement [21, 42] despite being
crucial for reliable allocation of DMA memory.

The user space driver hence also needs to be able to trans-
late its virtual addresses to physical addresses, this is possi-
ble via the procfs file /proc/self/pagemap, the translation
logic is implemented in virt_to_phys() in memory.c.

vfio DMA memory allocation. The previous DMA mem-
ory allocation scheme is specific to a quirk in Linux on x86
and not portable. vfio features a portable way to allocate
memory that internally calls dma_alloc_coherent() in the
kernel like an in-kernel driver would. This syscall abstracts
all the messy details and is implemented in our driver in
vfio_map_dma() in libixy-vfio.c. It requires an IOMMU
and configures the necessary mapping to use virtual ad-
dresses for the device.

DMA and cache coherency. Both of our implementations
require a CPU architecture with cache-coherent DMA access.
Older CPUs might not support this and require explicit cache
flushes to memory before DMA data can be read by the
device. Modern CPUs do not have that problem. In fact, one
of the main enabling technologies for high speed packet IO
is that DMA accesses do not actually go to memory but to
the CPU’s cache on any recent CPU architecture.

3.3.3 Interrupts in User Space. vfio features full support
for interrupts, vfio_setup_interrupt() in libixy-vfio.c
enables a specific interrupt for vfio and associates it with
an eventfd file descriptor. enable_msix_interrupt() in
ixgbe.c configures interrupts for a queue on the device.
Interrupts are mapped to a file descriptor on which the

usual syscalls like epoll are available to sleep until an inter-
rupt occurs, see vfio_epoll_wait() in libixy-vfio.c.

4

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c#L42
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L101
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c#L54
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/device.h#L122
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/device.h
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c#L27
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L21
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/memory.c#L23
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/memory.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L113
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c#L150
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/driver/ixgbe.c#L160
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/driver/ixgbe.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c#L181
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c

User Space Network Drivers ANCS’19, 2019

3.4 Memory Management
ixy builds on an API with explicit memory allocation similar
to DPDKwhich is a very different approach from netmap [41]
that exposes a replica1 of the NIC’s ring buffer to the applica-
tion. Memory allocation for packets was cited as one of the
main reasons why netmap is faster than traditional in-kernel
processing [41]. Hence, netmap lets the application handle
memory allocation details. Many forwarding cases can then
be implemented by simply swapping pointers in the rings.
However, more complex scenarios where packets are not for-
warded immediately to a NIC (e.g., because they are passed
to a different core in a pipeline setting) do not map well to
this API and require adding manual buffer management on
top of this API. Further, a ring-based API is very cumbersome
to use compared to one with memory allocation.

It is true that memory allocation for packets is a significant
overhead in the Linux kernel, we have measured a per-packet
overhead of 100 cycles2 when forwarding packets with Open
vSwitch on Linux for allocating and freeing packet memory
(measured with perf). This overhead is almost completely
due to (re-)initialization of the kernel sk_buff struct: a large
data structure with a lot of metadata fields targeted at a
general-purpose network stack. Memory allocation in ixy
(with minimum metadata required) only adds an overhead
of 30 cycles/packet, a price that we are willing to pay for the
gained simplicity in the user-facing API.
ixy’s API is the same as DPDK’s API when it comes to

sending and receiving packets and managing memory. It
can best be explained by reading the example applications
ixy-fwd.c and ixy-pktgen.c. The transmit-only example
ixy-pktgen.c creates a memory pool, a fixed-size collection
of fixed-size packet buffers and pre-fills them with packet
data. It then allocates a batch of packets from this pool, adds
a sequence number to the packet, and passes them to the
transmit function. The transmit function is asynchronous: it
enqueues pointers to these packets, the NIC fetches and sends
them later. Previously sent packets are freed asynchronously
in the transmit function by checking the queue for sent pack-
ets and returning them to the pool. This means that a packet
buffer cannot be re-used immediately, the ixy-pktgen exam-
ple looks therefore quite different from a packet generator
built on a classic socket API.
The forward example ixy-fwd.c can avoid explicit han-

dling of memory pools in the application: the driver allocates
a memory pool for each receive ring and automatically al-
locates packets. Allocation is done by the packet reception
function, freeing is either handled in the transmit function as

1Not the actual ring buffers to prevent user-space applications from crashing
the kernel with invalid pointers.
2Forwarding 10 Gbit/s with minimum-sized packets on a single 3.0 GHz
CPU core leaves a budget of 200 cycles/packet.

before or by dropping the packet explicitly if the output link
is full. Exposing the rings directly similar to netmap could
significantly speed up this simple example application at the
cost of usability.

3.5 Security Considerations
User space drivers effectively run with root privileges even
if they drop privileges after initializing devices: they can use
the device’s DMA capabilities to access arbitrary memory lo-
cations, negating some of the security advantages of running
in user space. This can be mitigated by using the IO mem-
ory management unit (IOMMU) to isolate the address space
accessible to a device at the cost of an additional (hardware-
accelerated) lookup in a page table for each memory access
by the device.

IOMMUs are available on CPUs offering hardware virtual-
ization features as they were designed to pass PCIe devices
(or parts of them via SR-IOV) directly into VMs in a secure
manner. Linux abstracts different IOMMU implementations
via the vfio framework which is specifically designed for
“safe non-privileged userspace drivers” [29] beside virtual
machines. Our vfio backend allows running the driver and
application as an unprivileged user. Of the investigated other
frameworks only netmap supports this. DPDK also offers a
vfio backend and has historically supported running with
unprivileged users, but recent versions no longer support
this with most drivers. Snabb’s vfio backend was removed
because of the high maintenance burden and low usage.

4 IXGBE IMPLEMENTATION
All page numbers and section numbers for the Intel datasheet
refer to revision 3.3 (March 2016) of the 82599ES datasheet [20].
Function names and line numbers referring to our implemen-
tation are hyperlinked to the source code on GitHub.
ixgbe devices expose all configuration, statistics, and de-

bugging registers via the BAR0 MMIO region. The datasheet
lists all registers as offsets in this configuration space in
Section 9 [20]. We use ixgbe_type.h from Intel’s driver
as machine-readable version of the datasheet3, it contains
defines for all register names and offsets for bit fields.

4.1 NIC Ring API
NICs expose multiple circular buffers called queues or rings
to transfer packets. The simplest setup uses only one receive
and one transmit queue.Multiple transmit queues aremerged
on the NIC, incoming traffic is split according to filters or a
hashing algorithm if multiple receive queues are configured.

3This is technically a violation of both our goals about dependencies and
lines of code, but we only effectively use less than 100 lines that are just
defines and simple structs. There is nothing to be gained from manually
copying offsets and names from the datasheet or this file.

5

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-fwd.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-fwd.c

ANCS’19, 2019 Paul Emmerich et al.
16

B 2 kiB

ixgbe_adv_rx_desc.pkt_addr

Descriptor Ring Memory Pool
Physical Memory

Figure 3: DMA descriptors pointing into a memory
pool, note that the packets in the memory are un-
ordered as they can be free’d at different times.

Both receive and transmit rings work in a similar way: the
driver programs a physical base address and the size of the
ring. It then fills the memory area with DMA descriptors,
i.e., pointers to physical addresses where the packet data is
stored with some metadata. Sending and receiving packets is
done by passing ownership of the DMA descriptors between
driver and hardware via a head and a tail pointer. The driver
controls the tail, the hardware the head. Both pointers are
stored in device registers accessible via MMIO.
The initialization code is in ixgbe.c starting from line

114 for receive queues and from line 173 for transmit queues.
Further details are in the datasheet in Section 7.1.9 and in
the datasheet sections mentioned in the code.

4.1.1 Receiving Packets. The driver fills up the ring buffer
with physical pointers to packet buffers in start_rx_queue()
on startup. Each time a packet is received, the correspond-
ing buffer is returned to the application and we allocate a
new packet buffer and store its physical address in the DMA
descriptor and reset the ready flag. We also need a way to
translate the physical addresses in the DMA descriptor found
in the ring back to its virtual counterpart on packet reception.
This is done by keeping a second copy of the ring populated
with virtual instead of physical addresses, this is then used
as a lookup table for the translation.

Figure 3 illustrates the memory layout: the DMA descrip-
tors in the ring to the left contain physical pointers to packet
buffers stored in a separate location in a memory pool. The
packet buffers in the memory pool contain their physical ad-
dress in a metadata field. Figure 4 shows the RDH (head) and
RDT (tail) registers controlling the ring buffer on the right
side, and the local copy containing the virtual addresses to
translate the physical addresses in the descriptors in the ring
back for the application. ixgbe_rx_batch() in ixgbe.c im-
plements the receive logic as described by Sections 1.8.2 and
7.1 of the datasheet. It operates on batches of packets to in-
crease performance. A naïve way to check if packets have
been received is reading the head register from the NIC in-
curring a PCIe round trip. The hardware also sets a flag in the

rx index

Virt. addr. of buffer 0
Virt. addr. of buffer 1
Virt. addr. of buffer 2
Virt. addr. of buffer 3

Buffer Table

RDT

RDH

RX Desc.
Ring

descn

desc0 desc1

desc2

Figure 4: Overview of a receive queue. The ring uses
physical addresses and is shared with the NIC.

descriptor via DMA which is far cheaper to read as the DMA
write is handled by the last-level cache on modern CPUs.
This is effectively the difference between an LLC cache miss
and hit for every received packet.

4.1.2 Transmitting Packets. Transmitting packets follows
the same concept and API as receiving them, but the function
is more complicated because the interface between NIC and
driver is asynchronous. Placing a packet into the ring does
not immediately transfer it and blocking to wait for the trans-
fer is infeasible. Hence, the ixgbe_tx_batch() function in
ixgbe.c consists of two parts: freeing packets from previous
calls that were sent out by the NIC followed by placing the
current packets into the ring. The first part is often called
cleaning and works similar to receiving packets: the driver
checks a flag that is set by the hardware after the packet
associated with the descriptor is sent out. Sent packet buffers
can then be free’d, making space in the ring. Afterwards,
the pointers of the packets to be sent are stored in the DMA
descriptors and the tail pointer is updated accordingly.

Checking for transmitted packets can be a bottleneck due
to cache thrashing as both the device and driver access the
same memory locations [20]. The 82599 hardware imple-
ments two methods to combat this: marking transmitted
packets in memory occurs either automatically in config-
urable batches on device side, this can also avoid unneces-
sary PCIe transfers. We tried different configurations (code
in init_tx()) and found that the defaults from Intel’s driver
work best. The NIC can also write its current position in
the transmit ring back to memory periodically (called head
pointer write back) as explained in Section 7.2.3.5.2 of the
datasheet. However, no other driver implements this fea-
ture despite the datasheet referring to the normal marking
mechanism as “legacy”. We implemented support for head
pointer write back on a branch [31] but found no measurable
performance improvements or effects on cache contention.

6

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L114
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L114
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L173
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L64
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L389
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L442
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L173

User Space Network Drivers ANCS’19, 2019

1.2 1.3 1.5 1.7 1.9 2 2.25 2.4
0

10

20

30 Line Rate

CPU Frequency [GHz]

P
a
ck
et

R
a
te

[M
p
p
s]

Ixy 1 Dual-Port NIC Ixy 2 NICs

DPDK 1 Dual-Port NIC DPDK 2 NICs

Figure 5: Bidirectional single-core forwarding perfor-
mance with varying CPU speed, batch size 32.

4.1.3 Batching. Each successful transmit or receive op-
eration involves an update to the NIC’s tail pointer register
(RDT or TDT for receive/transmit), a slow operation. This is
one of the reasons why batching is so important for perfor-
mance. Both the receive and transmit function are batched
in ixy, updating the register only once per batch.

4.1.4 Offloading Features. ixy currently only enables CRC
checksum offloading. Unfortunately, packet IO frameworks
(e.g., netmap) are often restricted to this bare minimum of
offloading features. DPDK is the exception here as it sup-
ports almost all offloading features offered by the hardware.
However, its receive and transmit functions pay the price for
these features in the form of complexity.

We will try to find a balance and showcase selected simple
offloading features in ixy in the future. These offloading
features can be implemented in the receive and transmit
functions, see comments in the code. This is simple for some
features like VLAN tag offloading and more involved for
more complex features requiring an additional descriptor
containing metadata information.

5 PERFORMANCE EVALUATION
We run the ixy-fwd example under a full bidirectional load
of 29.76 million packets per second (Mpps), line rate with
minimum-sized packets at 2x 10Gbit/s, and compare it to a
custom DPDK forwarder implementing the same features.
Both forwarders modify a byte in the packet to ensure that
the packet data is fetched into the L1 cache to simulate a
somewhat realistic workload.

5.1 Throughput
To quantify the baseline performance and identify bottle-
necks, we run the forwarding example while increasing the
CPU’s clock frequency from 1.2GHz to 2.4 GHz. Figure 5
compares the throughput of our forwarder on ixy and on
DPDK when forwarding across the two ports of a dual-port

1 2 4 8 16 32 64 128 256
0

10

20

30 Line Rate

Batch Size

P
a
ck
et

R
a
te

[M
p
p
s]

Ixy 1.2 GHz Ixy 2.4 GHz

DPDK 1.2 GHz DPDK 2.4 GHz

Figure 6: Bidirectional single-core forwarding perfor-
mance with varying batch size.

NIC and when using two separate NICs. The better perfor-
mance of both ixy and DPDK when using two separate NICs
over one dual-port NIC indicates a hardware limit (likely at
the PCIe level). We run this test on Intel X520 (82599-based)
and Intel X540 NICs with identical results. ixy requires 96
CPU cycles to forward a packet, DPDK only 61. The high
performance of DPDK can be attributed to its vector trans-
mit path utilizing SIMD instructions to handle batches even
better than ixy. This transmit path of DPDK is only used
if no offloading features are enabled at device configura-
tion time, i.e., it offers a similar feature set to ixy. Disabling
the vector TX path in the DPDK configuration, or using an
older version of DPDK, increases the CPU cycles per packet
to 91 cycles packet, still slightly faster than ixy despite do-
ing more (checking for more offloading flags). Overall, we
consider ixy fast enough for our purposes. For comparison,
performance evaluations of older (2015) versions of DPDK,
PF_RING, and netmap and required ≈100 cycles/packet for
DPDK and PF_RING and ≈120 cycles/packet for netmap [12].

5.2 Batching
Batching is one of the main drivers for performance. DPDK
even requires a minimum batch size of 4 when using the
SIMD transmit path. Receiving or sending a packet involves
an access to the queue index registers, invoking a costly PCIe
round-trip. Figure 6 shows how the performance increases
as the batch size is increased in the bidirectional forwarding
scenario with two NICs. Increasing batch sizes have dimin-
ishing returns: this is especially visible when the CPU is
only clocked at 1.2 GHz. Reading the performance counters
for all caches shows that the number of L1 cache misses
per packet increases as the performance gains drop off. Too
large batches thrash the L1 cache, possibly evicting lookup
data structures in a real application. Therefore, batch sizes
should not be chosen too large. Latency is also impacted by
the batch size, but the effect is negligible compared to other
buffers (e.g., NIC ring size of 512).

7

ANCS’19, 2019 Paul Emmerich et al.

Intr./polling Load Median 99th perc. 99.99th perc. Max
Polling 0.1Mpps 3.8 µs 4.7 µs 5.8 µs 15.8 µs
Intr., no throttling 0.1Mpps 7.7 µs 8.4 µs 11.0 µs 76.6 µs
Intr., ITR 10 µs 0.1Mpps 11.3 µs 11.9 µs 15.3 µs 78.4 µs
Intr., ITR 200 µs 0.1Mpps 107.4 µs 208.1 µs 240.0 µs 360.0 µs

Polling 0.4Mpps 3.8 µs 4.6 µs 5.8 µs 16.4 µs
Intr., no throttling 0.4Mpps 7.3 µs 8.2 µs 10.9 µs 53.9 µs
Intr., ITR 10 µs 0.4Mpps 9.0 µs 14.0 µs 25.8 µs 86.1 µs
Intr., ITR 200 µs 0.4Mpps 105.9 µs 204.6 µs 236.7 µs 316.2 µs

Polling 0.8Mpps 3.8 µs 4.4 µs 5.6 µs 16.8 µs
Intr., no throttling 0.8Mpps 5.6 µs 8.2 µs 10.8 µs 81.1 µs
Intr., ITR 10 µs 0.8Mpps 9.2 µs 14.1 µs 31.0 µs 70.2 µs
Intr., ITR 200 µs 0.8Mpps 102.8 µs 198.8 µs 226.1 µs 346.8 µs

Table 1: Forwarding latency by interrupt/poll mode.

5.3 Interrupts
Interrupts are a common mechanism to reduce power con-
sumption at low loads. However, interrupts are expensive:
they require multiple context switches. This makes them
unsuitable for high packet rates. NICs commonly feature in-
terrupt throttling (ITR, configured in µs between interrupts
on the NIC used here) to prevent overloading the system.
Operating systems often disable interrupts periodically and
switch to polling during periods of high loads (e.g., Linux
NAPI). Our forwarder loses packets in interrupt mode at
rates of above around 1.5Mpps even with aggressive throt-
tling configured on the NIC. All other tests except this one
are therefore conducted in pure polling mode.

A commonmisconception is that interrupts reduce latency,
but they actually increase latency. The reason is that an inter-
rupt first needs to wake the system from sleep (sleep states
down to C6 are enabled on the test system), trigger a context
switch into interrupt context, trigger another switch to the
driver and then poll the packets from the NIC4. Permanently
polling for new packets in a busy-wait loop avoids this at
the cost of power consumption.

Table 1 shows latencies at low rates (where interrupts are
effective) with and without interrupt throttling (ITR) and
polling. Especially tail latencies are affected by using inter-
rupts instead of polling. All timestamps were acquired with
a fiber-optic splitter and a dedicated timestamping device
taking timestamps of every single packet.
These results show that interrupts with a low throttle

rate are feasible at low packet rates. Interrupts are poorly
supported in other user space drivers: Snabb offers no inter-
rupts, DPDK has limited support for interrupts (only some
drivers) without built-in automatic switching between dif-
ferent modes. Frameworks relying on a kernel driver can
use the default driver’s interrupt features, especially netmap
offers good support for power-saving via interrupts.
4The same is true for Linux kernel drivers, the actual packet reception is
not done in the hardware interrupt context but in a software interrupt

App/Function RX TX Forwarding Memory Mgmt.
ixy-fwd 44.8 14.7 12.3 30.4
ixy-fwd-inline 57.0 28.3 12.5 ?∗
DPDK l2fwd 35.4 20.4 †6.1 ?∗
DPDK v1.6 l2fwd‡ 41.7 53.7 †6.0 ?∗

∗Memory operations inlined, separate profiling not possible.
†DPDK’s driver explicitly prefetches packet data on RX, so this is faster

despite performing the same action of changing one byte.
‡Old version 1.6 (2014) of DPDK, far fewer SIMD optimizations, measured

on a different system/kernel due to compatibility.
Table 2: Processing time in cycles per packet.

5.4 Profiling
We run perf on ixy-fwd running under full bidirectional
load at 1.2 GHz with two different NICs using the default
batch size of 32 to ensure that the CPU is the only bottle-
neck. perf allows profiling with the minimum possible effect
on the performance: throughput drops by only ≈5% while
perf is running. Table 2 shows where CPU time is spent
on average per forwarded packet and compares it to DPDK.
Receiving is slower because the receive logic performs the
initial fetch, the following functions operate on the L1 cache.
ixy’s receive function still leaves room for improvements,
it is less optimized than the transmit function. There are
several places in the receive function where DPDK avoids
memory accesses by batching compared to ixy. However,
these optimizations were not applied for simplicity in ixy:
DPDK’s receive function is quite complex and full of SIMD
intrinsics leading to poor readability. We also compare an
old version of DPDK in the table that did not yet contain as
many optimizations; ixy outperforms the old DPDK version
at low CPU speeds, but the old DPDK version is ≈10% faster
than ixy at higher CPU speeds indicating better utilization
of the CPU pipeline.
Overhead for memory management is significant (but

still low compared to the 100 cycles/packet we measured in
the Linux kernel). 59% of the time is spent in non-batched
memory operations and none of the calls are inlined. Inlin-
ing these functions increases throughput by 6.5% but takes
away our ability to account time spent in them. Overall, the
overhead of memory management is larger than we initially
expected, but we still think explicit memory management for
the sake of a usable API is a good trade-off. This is especially
true for ixy aiming at simplicity, but also for other frame-
works targeting complex applications. Simple forwarding
can easily be done on an exposed ring interface, but anything
more complex that does not sent out packets immediately
(e.g., because they are processed further on a different core)
requires memory management in the user’s application with
a similar performance impact.

8

User Space Network Drivers ANCS’19, 2019

64 128 256 512 1,024 2,048
15

20

25

Line Rate

RX Descriptor Ring Size

P
a
ck
et

R
a
te

[M
p
p
s]

TX Ring Size = 64 TX Ring Size = 1024

TX Ring Size = 128 TX Ring Size = 2048

TX Ring Size = 256 TX Ring Size = 4096

TX Ring Size = 512

Figure 7: Throughput with varying descriptor ring
sizes at 2.4GHz.

5.5 Queue Sizes
Our driver supports descriptor ring sizes in power-of-two
increments between 64 and 4096, the hardware supports
more sizes but the restriction to powers of two simplifies
wrap-around handling. Linux defaults to a ring size of 256 for
this NIC, DPDK’s example applications configure different
sizes; the l2fwd forwarder sets 128/512 RX/TX descriptors.
Larger ring sizes such as 8192 are sometimes recommended
to increase performance [1] (source refers to the size as kB
when it is actually number of packets). Figure 7 shows the
throughput of ixy with various ring size combinations. There
is no measurable impact on the maximum throughput for
ring sizes larger than 64. Scenarios where a larger ring size
can still be beneficial might exist: for example, an application
producing a large burst of packets significantly faster than
the NIC can handle for a very short time.
The second performance factor that is impacted by ring

sizes is the overall latency caused by unnecessary buffering.
Table 3 shows the latency (measured with MoonGen hard-
ware timestamping [9]) of the ixy forwarder with different
ring sizes. The results show a linear dependency between
ring size and latency when the system is overloaded, but
the effect under lower loads are negligible. Full or near full
buffers are no exception on systems forwarding Internet
traffic due to protocols like TCP that try to fill up buffers
completely [13]. We conclude that tuning tips like setting
ring sizes to 8192 [1] are detrimental for latency and likely
do not help with throughput. ixy uses a default ring size of

Ring Sizes Load Median 99th perc. 99.9th perc.
64 15Mpps 5.2 µs 6.4 µs 7.2 µs
512 15Mpps 5.2 µs 6.5 µs 7.5 µs
4096 15Mpps 5.4 µs 6.8 µs 8.7 µs
64 ∗29Mpps 8.3 µs 9.1 µs 10.6 µs
512 ∗29Mpps 50.9 µs 52.3 µs 54.3 µs
4096 ∗29Mpps 424.7 µs 433.0 µs 442.1 µs

∗Device under test overloaded, packets were lost
Table 3: Forwarding latency by ring size and load.

64 128 256 512 1,024 2,048 4,096

10.5

11

11.5

RX/TX Ring Size

P
a
ck
et

R
a
te

[M
p
p
s]

0

1

2

3

4

d
T
L
B

M
is
s
R
a
ti
o
[
%

]

Ixy 1.2 GHz, 4 kiB Pages Ixy 1.2 GHz, 2MiB Pages

dTLB Misses, 4 kiB Pages dTLB Misses, 2MiB Pages

Figure 8: Single-core forwarding performance with
and without huge pages and their effect on the TLB.

512 at the moment as a trade-off between providing some
buffer and avoiding high worst-case latencies.

5.6 Page Sizes without IOMMU
It is not possible to allocate DMA memory on small pages
from user space in Linux in a reliable manner without using
the IOMMU as described in Section 3.3.2. Despite this, we
have implemented an allocator that performs a brute-force
search for physically contiguous normal-sized pages from
user space. We run this code on a system without NUMA
and with transparent huge pages and page-merging disabled
to avoid unexpected page migrations. The code for these
benchmarks is hidden on a branch [30] due to its unsafe
nature on some systems (we did lose a file system to rogue
DMAwrites on amisconfigured server). Benchmarks varying
the page size are interesting despite these problems: kernel
drivers and user space packet IO frameworks using kernel
drivers only support normal-sized pages. Existing perfor-
mance claims about huge pages in drivers are vague and
unsubstantiated [21, 42].
Figure 8 shows that the impact on performance of huge

pages in the driver is small. The performance difference is
5.5% with the maximum ring size, more realistic ring sizes
only differ by 1-3%. This is not entirely unexpected: the
largest queue size of 4096 entries is only 16 kiB large, storing
pointers to up to 16MiB packet buffers. Huge pages are
designed for, and usually used with, large data structures,
e.g., big lookup tables for forwarding. The effect measured
here is likely larger when a real forwarding application puts
additional pressure on the TLB (4096 entries on the CPU used
here) due to its other internal data structures. One should
still use huge pages for other data structures in a packet
processing application, but a driver not supporting them is
not as bad as one might expect when reading claims about
their importance from authors of drivers supporting them.

9

ANCS’19, 2019 Paul Emmerich et al.

1 2 4 8 16 32 64 128 256
0

5

10

15

20

Batch size

T
h
ro
u
gh

p
u
t
[M

p
p
s]

No IOMMU, 4KiB pages

With IOMMU, 2MiB pages

With IOMMU, 4KiB pages

Figure 9: IOMMU impact on single-core forwarding at
2.4GHz.

5.7 Page Sizes and IOMMU Overhead
Memory access overhead changes if the device has to go
through the IOMMU for every access. Documentation for
Intel’s IOMMU is sparse: The TLB size is not documented and
there are no dedicated performance counters. Neugebauer
et al. experimentally determined a TLB size of 64 entries
with their pcie-bench framework [33] (vs. 4096 entries in
the normal TLB). They note a performance impact for small
DMA transactions with large window sizes: 64 byte read
throughput drops by up to 70%, write throughput by up to
55%. 256 byte reads are 30% slower, only 512 byte and larger
transactions are unaffected [33]. Their results are consistent
across four different Intel microarchitectures including the
CPU we are using here. They explicitly disable huge pages
for their IOMMU benchmark.

Our benchmark triggers a similar scenario when not used
with huge pages: We ask the NIC to transfer a large num-
ber of small packets via DMA. Note that packets in a batch
are not necessarily contiguous in memory: Buffers are not
necessarily allocated sequentially and each DMA buffer is
2 kiB large by default, of which only the first n bytes will be
transferred. This means only two packets share a 4 kiB page,
even if the packets are small. 2 kiB is a common default in
other drivers as it allows handling normal sized frames with-
out chaining several buffers (the NIC only supports DMA
buffers that are a multiple of 1 kiB). The NIC therefore has
to perform several small DMA transactions, i.e., the scenario
is equivalent to a large transfer window in pcie-bench.
Figure 9 shows that the IOMMU does not affect the per-

formance if used with 2MiB pages. However, the default
4 KiB pages (that are safe and easy to use with vfio and
the IOMMU) are affected by the small TLB in the IOMMU.
The impact of the IOMMU on our real application is slightly
smaller than in the synthetic pcie-bench tests: The IOMMU
costs 62% performance for the commonly used batch size of
32 with small packets when not using huge pages. Running

Ingress∗ Egress∗ CPU† Memory‡ Throughput
Node 0 Node 0 Node 0 Node 0 10.8Mpps
Node 0 Node 0 Node 0 Node 1 10.8Mpps
Node 0 Node 0 Node 1 Node 0 7.6Mpps
Node 0 Node 0 Node 1 Node 1 6.6Mpps
Node 0 Node 1 Node 0 Node 0 7.9Mpps
Node 0 Node 1 Node 0 Node 1 10.0Mpps
Node 0 Node 1 Node 1 Node 0 8.6Mpps
Node 0 Node 1 Node 1 Node 1 8.1Mpps

∗NUMA node connected to the NIC
†Thread pinned to this NUMA node
‡Memory pinned to this NUMA node
Table 4: Unidirectional forwarding on a NUMA sys-
tem, both CPUs at 1.2 GHz.

the test with 128 byte packets causes 33% performance loss,
256 byte packets yield identical performance.
However, enabling huge pages completely mitigates the

impact of the small TLB in the IOMMU. Note that huge pages
for the IOMMU are only supported since the Intel Ivy Bridge
CPU generation.

5.8 NUMA Considerations
Non-uniform memory access (NUMA) architectures found
on multi-CPU servers present additional challenges. Modern
systems integrate cache, memory controller, and PCIe root
complex in the CPU itself instead of using a separate IO hub.
This means that a PCIe device is attached to only one CPU
in a multi-CPU system, access from or to other CPUs needs
to pass over the CPU interconnect (QPI on our system). At
the same time, the tight integration of these components
allows the PCIe controller to transparently write DMA data
into the cache instead of main memory. This works even
when DCA (direct cache access) is not used (DCA is only
supported by the kernel driver, none of the full user space
drivers implement it). Intel DDIO (Data Direct I/O) is another
optimization to preventmemory accesses byDMA [18]. How-
ever, we found by reading performance counters that even
CPUs not supporting DDIO do not performmemory accesses
in a typical packet forwarding scenario. DDIO is poorly doc-
umented and exposes no performance counters, its exact
effect on modern systems is unclear. All recent (since 2012)
CPUs supportingmulti-CPU systems also support DDIO. Our
NUMA benchmarks where obtained on a different system
than the previous results because we want to avoid potential
problems with NUMA for the other setups.

Our test system has one dual-port NIC attached to NUMA
node 0 and a second to NUMA node 1. Both the forwarding
process and the memory used for the DMA descriptors and
packet buffers can be explicitly pinned to a NUMA node.
This gives us 8 possible scenarios for unidirectional packet
forwarding by varying the packet path and pinning. Table 4
shows the throughput at 1.2 GHz. Forwarding from and to a

10

User Space Network Drivers ANCS’19, 2019

NIC at the same node shows one unexpected result: pinning
memory, but not the process itself, to the wrong NUMA
node does not reduce performance. The explanation for this
is that the DMA transfer is still handled by the correct NUMA
node to which the NIC is attached, the CPU then caches this
data while informing the other node. However, the CPU at
the other node never accesses this data and there is hence
no performance penalty. Forwarding between two different
nodes is fastest when the the memory is pinned to the egress
nodes and CPU to the ingress node and slowest when both
are pinned to the ingress node. Real forwarding applications
often cannot know the destination of packets at the time they
are received, the best guess is therefore to pin the thread
to the node local to the ingress NIC and distribute packet
buffer across the nodes. Latency was also impacted by poor
NUMA mapping, we measured an additional 1.7 µs when
unnecessarily crossing the NUMA boundary.

6 VIRTIO IMPLEMENTATION
All section numbers for the specification refer to version
1.0 of the VirtIO specification [20]. Function names and line
numbers referring to our implementation are hyperlinked
to the source code on GitHub.
VirtIO defines different types of operational modes for

emulated network cards: legacy, modern, and transitional
devices. qemu implements all three modes, the default being
transitional devices supporting both the legacy and mod-
ern interface after feature negotiation. Supporting devices
operating only in modern mode would be the simplest im-
plementation in ixy because they work with MMIO. Both
legacy and transitional devices require support for PCI IO
port resources making the device access different from the
ixgbe driver. Modern-only devices are rare because they are
relatively new (2016).
We chose to implement the legacy variant as VirtualBox

only supports the legacy operationmode. VirtualBox is an im-
portant target as it is the only hypervisor supporting VirtIO
that is available on all common operating systems. Moreover,
it is very well integrated with Vagrant [17] allowing us to
offer a self-contained setup to run ixy on any platform [37].

6.1 Device Initialization and Virtqueues
virtio_legacy_init() resets and configures a VirtIO de-
vice. It negotiates the VirtIO version and features to use. See
specification Section 5.1.3 and 5.1.5 for the available feature
flags and initialization steps.
VirtIO supports three different types of queues called

Virtqueues: receive, transmit, and command queues. The
queue sizes are controlled by the device and are fixed to 256
entries for legacy devices. Setup works the same as in the
ixgbe driver: DMAmemory for shared structures is allocated

0
1
2
3
4
5
6
7

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Buffer Table Used RingAvailable Ring Index Index

2 0

5

73

Figure 10: Overview of a Virtqueue. Descriptor table
contains physical addresses, the queues indices into
the descriptor table.

and passed to the device via a control register. Contrary to
queues in ixgbe, a Virtqueue internally consists of a descrip-
tor table and two rings: the available and used rings. While
the table holds the complete descriptors with pointers to
the physical addresses and length information of buffers,
the rings only contain indices for this table as shown in Fig-
ure 10. To supply a device with new buffers, the driver first
adds new descriptors into free slots in the descriptor table
and then enqueues the slot indices into the available ring
by advancing its head. Conversely, a device picks up new
descriptor indices from this ring, takes ownership of them
and then signals completion by enqueuing the indices into
the used ring, where the driver finalizes the operation by
clearing the descriptor from the table. The queue indices are
maintained in DMA memory instead of in registers like in
the ixgbe implementation. Therefore, the device needs to be
informed about all modifications to queues, this is done by
writing the queue ID into a control register in the IO port
memory region. Our driver also implements batching here
to avoid unnecessary updates. This process is the same for
sending and receiving packets. Our implementations are in
virtio_legacy_setup_tx/rx_queue().

The command queue is a transmit queue that is used to
control most features of the device instead of via registers.
For example, enabling or disabling promiscuous mode in
virtio_legacy_set_promiscuous() is done by sending a
command packet with the appropriate flags through this
queue. See specification Section 5.1.6.5 for details on the com-
mand queue. This way of controlling devices is not unique to
virtual devices. For example, the Intel XL710 40Gbit/s con-
figures most features by sending messages to the firmware
running on the device [19].

6.2 Packet Handling
Packet transmission in virtio_tx_batch() and reception
in virtio_rx_batch() works similar to the ixgbe driver.
The big difference to ixgbe is passing of metadata and of-
floading information. Virtqueues are not only used for VirtIO
network devices, but for other VirtIO devices as well. DMA

11

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L275
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L49
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L223
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L192
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L433
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/virtio.c#L369

ANCS’19, 2019 Paul Emmerich et al.

descriptors do not contain information specific for network
devices. Packets going through Virtqueues have this infor-
mation prepended in an extra header in the DMA buffer.
This means that the transmit function needs to prepend

an additional header to each packet, and our goal to support
device-agnostic applications means that the application can-
not know about this requirement when allocating memory.
ixy handles this by placing this extra header in front of the
packet as VirtIO DMA requires no alignment on cache lines.
Our packet buffers already contain metadata before the ac-
tual packet to track the physical address and the owning
memory pool. Packet data starts at an offset of one cache
line (64 byte) in the packet buffer, due to alignment require-
ments of other NICs. This metadata cache line has enough
space to accommodate the additional VirtIO header, we have
explicitly marked this available area as head room for drivers
requiring this. Our receive function offsets the address in the
DMA descriptor by the appropriate amount to receive the
extra header in the head room. The user’s ixy application
treats the metadata header as opaque data.

6.3 VirtIO Performance
Performance with VirtIO is dominated by the implementa-
tion of the virtual device, i.e., the hypervisor, and not the dri-
ver in the virtual machine. It is also possible to implement the
hypervisor part of VirtIO, i.e., the device, in a separate user
space application via the Vhost-user interface of qemu [45].
Implementations of this exist in both Snabb und DPDK. We
only present baseline performance measurements running
on kvm with Open vSwitch and in VirtualBox, because we
are not interested in getting the fastest possible result, but re-
producible results in a realistic environment. Optimizations
on the hypervisor are out of scope for this paper.

Running ixy in qemu-kvm 2.7.1 on a Xeon E3-1230 V2 CPU
clocked at 3.30 GHz yields a performance of only 0.94Mpps
for the ixy-pktgen application and 0.36Mpps for ixy-fwd.
DPDK is onlymarginally faster on the same setup: it manages
to forward 0.4Mpps, these slow speeds are not unexpected
on unoptimized hypervisors [10]. Performance is limited
by packet rate, not data rate. Profiling with 1514 byte pack-
ets yield near identical results with a forwarding rate of
4.8 Gbit/s. VMs often send even larger packets with an of-
floading feature known as generic segmentation offloading
offered by VirtIO to achieve higher rates. Profiling on the
hypervisor shows that the interconnect is the bottleneck. It
fully utilizes one core to forward packets with Open vSwitch
2.6 through the kernel to the second VM. Performance is
even worse on VirtualBox 5.2 in our Vagrant setup [37]. It
merely achieves 0.05Mpps on Linux with a 3.3 GHz Xeon
E3 CPU and 0.06Mpps on macOS with a 2.3GHz Core i7
CPU (606Mbit/s with 1514 byte packets). DPDK achieves

0.08Mpps on the macOS setup. Profiling within the VM
shows that over 99% of the CPU time is spent on an x86
OUT IO instruction to communicate with the virtual device.

7 CONCLUSIONS
We discussed how to build a user space driver for NICs of the
ixgbe family which are commonly found in servers and for
virtual VirtIO NICs. Our performance evaluation offers some
unprecedented looks into performance of user space drivers.
ixy allows us to assess effects of individual optimizations, like
DMA buffers allocated on huge pages, in isolation. Our dri-
ver allowed for a simple port to normal-sized pages without
IOMMU, this would be significant change in other frame-
works5. Not everyone has access to servers with 10Gbit/s
NICs to play around with driver development. However, ev-
eryone can build a VM setup to test ixy with our VirtIO
driver. Our Vagrant setup is the simplest way to run ixy in a
VM, instructions are in our repository [37].

Drivers in High-Level Languages
The implementation presented here is written in C with
the hope to be readable by everyone. But there is nothing
tying user space drivers to traditional systems programming
languages. We also implemented the same driver in Rust, Go,
C#, Java, OCaml, Haskell, Swift, JavaScript, and Python to
compare these languages for user space drivers [8].

Reproducible Research
Scripts used for the evaluation and our DPDK forwarding
application used for comparison are available in [39]. We
used commit df1cddbb of ixy for the evaluation of ixgbe and
virtio, commit a0f618d on a branch [30] for the normal sized
pages. Most results were obtained on an Intel Xeon E5-2620
v3 2.4 GHz CPU running Debian 9 (kernel 4.9) with a dual
port Intel 82599ES NIC. The NUMA results where obtained
on a system with two Intel Xeon E5-2630 v4 2.2 GHz CPUs
with Intel X550 NICs. Turboboost, Hyper-Threading, and
power-saving features were disabled. VirtIO results were
obtained on various systems and hypervisors as described
in the evaluation section. All loads where generated with
MoonGen [9] and its l2-load-latency.lua script.

Acknowledgments
This work was supported by the German-French Academy
for the Industry of the Future. We would like to thank Simon
Ellmann, Masanori Misono, and Boris-Chengbiao Zhou for
valuable contributions to ixy and/or this paper.

5DPDK offers --no-huge, but this setting is incompatible with most DMA
drivers due to the aforementioned safety issues.

12

User Space Network Drivers ANCS’19, 2019

REFERENCES
[1] Jamie Bainbridge and Jon Maxwell. 2015. Red Hat

Enterprise Linux Network Performance Tuning Guide.
Red Hat Documentation (March 2015). https://access.
redhat.com/sites/default/files/attachments/20150325_
network_performance_tuning.pdf.

[2] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015.
Fast userspace packet processing. In ACM/IEEE ANCS.

[3] Gilberto Bertin. 2015. Single RX queue kernel
bypass in Netmap for high packet rate network-
ing. (Oct. 2015). https://blog.cloudflare.com/
single-rx-queue-kernel-bypass-with-netmap/.

[4] N. Bonelli, S. Giordano, and G. Procissi. 2016. Network
Traffic Processing With PFQ. IEEE Journal on Selected
Areas in Communications 34, 6 (June 2016), 1819–1833.
https://doi.org/10.1109/JSAC.2016.2558998

[5] DPDK Project. 2019. DPDK: Supported NICs. (2019).
http://dpdk.org/doc/nics.

[6] DPDK Project. 2019. DPDK User Guide: Overview of
Networking Drivers. (2019). http://dpdk.org/doc/
guides/nics/overview.html.

[7] DPDK Project. 2019. DPDK Website. (2019). http://
dpdk.org/.

[8] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Eg-
ger, Esaú García Sánchez-Torija, Thomas Günzel, Sebas-
tian Di Luzio, Alexandru Obada, Maximilian Stadlmeier,
Sebastian Voit, and Georg Carle. 2019. The Case for
Writing Network Drivers in High-Level Programming
Languages. InACM/IEEE Symposium onArchitectures for
Networking and Communications Systems (ANCS 2019).

[9] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. 2015. MoonGen: A
Scriptable High-Speed Packet Generator. In Internet
Measurement Conference 2015 (IMC’15). Tokyo, Japan.

[10] Paul Emmerich, Daniel Raumer, Sebastian Gallenmüller,
Florian Wohlfart, and Georg Carle. 2017. Throughput
and Latency of Virtual Switching with Open vSwitch:
A Quantitative Analysis. Journal of Network and Sys-
tems Management (July 2017). https://doi.org/10.1007/
s10922-017-9417-0

[11] FreeBSD Project. 2017. NETMAP(4). In FreeBSD Kernel
Interfaces Manual. FreeBSD 11.1-RELEASE.

[12] Sebastian Gallenmüller, Paul Emmerich, Florian Wohl-
fart, Daniel Raumer, and Georg Carle. 2015. Comparison
of Frameworks for High-Performance Packet IO. In Ar-
chitectures for Networking and Communications Systems
(ANCS). ACM, Oakland, CA, 29–38.

[13] Jim Gettys and Kathleen Nichols. 2011. Bufferbloat:
Dark buffers in the internet. Queue 9, 11 (2011), 40.

[14] Gilberto Bertin. 2017. XDP in practice: integrating XDP
into our DDoS mitigation pipeline. In Netdev 2.1, The

Technical Conference on Linux Networking.
[15] Gorrie, L et al. 2019. Snabb: Simple and fast packet

networking. (2019). https://github.com/snabbco/snabb.
[16] Michael Haardt. 1993. ioperm(2). In Linux Programmer’s

Manual.
[17] HashiCorp. 2019. Vagrant website. (2019). https://www.

vagrantup.com/.
[18] Intel. 2012. Intel Data Direct I/O Tech-

nology (Intel DDIO): A Primer. (2012).
https://www.intel.com/content/www/us/en/io/
data-direct-i-o-technology-brief.html.

[19] Intel. 2014. Intel Ethernet Controller XL710 Datasheet
Rev. 2.1.

[20] Intel. 2016. Intel 82599 10 GbE Controller Datasheet
Rev. 3.3.

[21] Intel. 2019. DPDK Getting Started Guide for Linux.
(2019). http://dpdk.org/doc/guides/linux_gsg/sys_reqs.
html.

[22] IO Visor Project. 2019. BPF and XDP Features by Kernel
Version. (2019). https://github.com/iovisor/bcc/blob/
master/docs/kernel-versions.md#xdp.

[23] IO Visor Project. 2019. Introduction to XDP. (2019).
https://www.iovisor.org/technology/xdp.

[24] Jim Thompson. 2017. DPDK, VPP & pfSense 3.0. In
DPDK Summit Userspace.

[25] Jonathan Corbet. 2017. User-space networking with
Snabb. In LWN.net.

[26] Michael Kerrisk. 2004. mlock(2). In Linux Programmer’s
Manual.

[27] Linux Foundation. 2017. Networking Industry Leaders
Join Forces to Expand New Open Source Community to
Drive Development of the DPDK Project. (April 2017).
Press release.

[28] Linux Kernel Documentation. 2019. Page migration.
(2019). https://www.kernel.org/doc/Documentation/
vm/page_migration.

[29] Linux Kernel Documentation. 2019. VFIO - Virtual
Function I/O. (2019). https://www.kernel.org/doc/
Documentation/vfio.txt.

[30] Maximilian Pudelko. 2019. ixy - DMA allocator on
normal-sized pages. (2019). https://github.com/
pudelkoM/ixy/tree/contiguous-pages.

[31] Maximilian Pudelko. 2019. ixy - head pointer writeback
implementation. (2019). https://github.com/pudelkoM/
ixy/tree/head-pointer-writeback.

[32] Robert Morris, Eddie Kohler, John Jannotti, and M
Frans Kaashoek. 1999. The Click modular router. In
Operating Systems Review - SIGOPS, Vol. 33. 217–231.

[33] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. 2018. Understanding PCIe performance for end
host networking. In SIGCOMM 2018. ACM, 327–341.

13

https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/
https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/
https://doi.org/10.1109/JSAC.2016.2558998
http://dpdk.org/doc/nics
http://dpdk.org/doc/guides/nics/overview.html
http://dpdk.org/doc/guides/nics/overview.html
http://dpdk.org/
http://dpdk.org/
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/s10922-017-9417-0
https://github.com/snabbco/snabb
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://www.iovisor.org/technology/xdp
https://www.kernel.org/doc/Documentation/vm/page_migration
https://www.kernel.org/doc/Documentation/vm/page_migration
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://github.com/pudelkoM/ixy/tree/contiguous-pages
https://github.com/pudelkoM/ixy/tree/contiguous-pages
https://github.com/pudelkoM/ixy/tree/head-pointer-writeback
https://github.com/pudelkoM/ixy/tree/head-pointer-writeback

ANCS’19, 2019 Paul Emmerich et al.

[34] ntop. 2014. PF_RING ZC (Zero Copy). (2014).
http://www.ntop.org/products/packet-capture/pf_
ring/pf_ring-zc-zero-copy/.

[35] OASIS VIRTIO TC. 2016. Virtual I/O Device (VIRTIO)
Version 1.0. (March 2016). http://docs.oasis-open.org/
virtio/virtio/v1.0/virtio-v1.0.pdf.

[36] Open vSwitch Project. 2019. Open vSwitch with DPDK.
(2019). http://docs.openvswitch.org/en/latest/intro/
install/dpdk/.

[37] Paul Emmerich. 2019. ixy Vagrant setup. (2019). https://
github.com/emmericp/ixy/tree/master/vagrant.

[38] Paul Emmerich et al. 2019. ixy code. (2019). https://
github.com/emmericp/ixy.

[39] Paul Emmerich, Simon Bauer. 2019. Scripts used for the
performance evaluation. (2019). https://github.com/
emmericp/ixy-perf-measurements.

[40] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. 2015. The Design and Implementation
of Open vSwitch. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15).

USENIX Association, Oakland, CA, 117–130.
[41] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast

Packet I/O.. In USENIX Annual Technical Conference.
101–112.

[42] Snabb Project. 2018. Tuning the performance of the
lwaftr. (2018). https://github.com/snabbco/snabb/blob/
master/src/program/lwaftr/doc/performance.md.

[43] Snort Project. 2015. Snort 3 User Manual. (2015).
https://www.snort.org/downloads/snortplus/snort_
manual.pdf.

[44] Solarflare. 2019. OpenOnload Website. (2019). http://
www.openonload.org/.

[45] Virtual Open Systems Sarl. 2014. Vhost-user Protocol.
(2014). https://github.com/qemu/qemu/blob/stable-2.
10/docs/interop/vhost-user.txt.

[46] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. 2016. StackMap: Low-Latency Networking
with the OS Stack and Dedicated NICs. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 43–56.

14

http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://github.com/emmericp/ixy/tree/master/vagrant
https://github.com/emmericp/ixy/tree/master/vagrant
https://github.com/emmericp/ixy
https://github.com/emmericp/ixy
https://github.com/emmericp/ixy-perf-measurements
https://github.com/emmericp/ixy-perf-measurements
https://github.com/snabbco/snabb/blob/master/src/program/lwaftr/doc/performance.md
https://github.com/snabbco/snabb/blob/master/src/program/lwaftr/doc/performance.md
https://www.snort.org/downloads/snortplus/snort_manual.pdf
https://www.snort.org/downloads/snortplus/snort_manual.pdf
http://www.openonload.org/
http://www.openonload.org/
https://github.com/qemu/qemu/blob/stable-2.10/docs/interop/vhost-user.txt
https://github.com/qemu/qemu/blob/stable-2.10/docs/interop/vhost-user.txt

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Architecture
	3.2 NIC Selection
	3.3 User Space Drivers in Linux
	3.4 Memory Management
	3.5 Security Considerations

	4 ixgbe Implementation
	4.1 NIC Ring API

	5 Performance Evaluation
	5.1 Throughput
	5.2 Batching
	5.3 Interrupts
	5.4 Profiling
	5.5 Queue Sizes
	5.6 Page Sizes without IOMMU
	5.7 Page Sizes and IOMMU Overhead
	5.8 NUMA Considerations

	6 VirtIO Implementation
	6.1 Device Initialization and Virtqueues
	6.2 Packet Handling
	6.3 VirtIO Performance

	7 Conclusions
	References

