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Abstract

Mobility of users significantly impacts performance 

of a mobile ad-hoc network. Most existing simulation 

tools offer only a few random mobility models, which 

poorly reflect user movements in outdoor scenarios. 

For example, they do not consider restrictions of a 

spatial environment. In this paper, we describe a 

comprehensive and extensible approach to model 

mobility of users in outdoor scenarios. It reflects the 

main factors that influence user movement: spatial 

environments, user travel decisions, and user 

movement dynamics. We identify model parameters 

and show how to set them for concrete scenarios. We 

provide a simulation environment implementing our 

approach. For concrete scenarios, the environment 

supports automatic derivation of some parameters 

from user position traces. 

1. Introduction and motivation 

A mobile ad-hoc network (MANET) is composed 

of mobile devices capable of wireless communication, 

such as user-carried PDAs and notebooks. These 

devices cooperate spontaneously without relying on 

any communication infrastructure. 

Many communication protocols and applications for 

MANETs are under research. Since performing large-

scale studies in real networks is impractical, simulation 

tools are often used (see [8], [19], and [35] for details). 

These tools offer simulation models that represent 

MANETs and reflect the application behavior, a 

wireless network protocol stack, the properties of the 

communication channel (e.g., signal attenuation), and 

mobility of network clients. 

MANETs are frequently intended to be used in 

outdoor scenarios, e.g., Usenet-on-the-fly [4], 

CarTALK 2000 [13], and Ad Hoc City [23]. The 

studies of these scenarios need appropriate simulation 

support. Regarding the mobility modeling of outdoor 

scenarios, the existing approaches are neither suitable 

nor complete. For example, stochastic approaches [9], 

[12], [14] randomly produce user movements within a 

rectangular area similar to the Brownian motion of 

molecular particles. By assuming the simulation area to 

be free of obstacles, these models do not reflect the 

spatial environment, which constrains the movements 

of users. Other approaches focus only on particular 

characteristics of movement, like places to visit in the 

graph-based mobility model [40] or movement 

dynamics in the smooth mobility model [6]. 

In this paper, we describe a comprehensive 

approach to model user mobility in outdoor scenarios. 

It integrates a number of models from different 

research domains. We also show how to set model 

parameters for the concrete scenarios and describe how 

we support automatic derivation of some model 

parameters from real-world observations, e.g., GPS 

traces [22]. Our implementation is publicly available 

and can be downloaded from [11]. 

The remainder of the paper is structured as follows. 

Section 2 describes related work in the area of mobility 

modeling. In Section 3, we present the design of our 

approach. Sections 4 to 7 describe the components of 

our model in more detail. In Section 8, we discuss how 

to set model parameters for concrete scenarios. Section 

9 describes our approach for automatic derivation of 

some model parameters from user position traces. We 

sum up with a conclusion and an overview of future 

work in Section 10. 

2. Related work 

Existing approaches for modeling movements of 

mobile network users can be classified into: random 

mobility models, area-constrained random models, 

profile-based models, approaches based on real-world 

position traces, and integrated models. 
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Random mobility models represent user mobility as 

random movements within a rectangular area, such as 

the Brownian walk [14], the smooth mobility model 

[6], and the random waypoint mobility model [9]. 

These models do not consider constraints of the 

movement area, and thus poorly reflect real outdoor 

scenarios.

Area-constrained random models restrict random 

movements with constraints of a spatial area. Examples 

are: the random waypoint mobility model with obstacle 

avoidance [24], the restricted random waypoint 

mobility model [7], and the graph-based mobility 

model [40]. Although these models consider spatial 

environments, they poorly reflect other factors that 

influence mobility. For example, they do not consider 

user travel decisions or oversimplify user movement 

dynamics. 

Profile-based models reflect regular travel behavior 

of a user, e.g., the circle-defined mobility model [28] 

or the global-local mobility model [29]. These models 

do not consider spatial environments and use 

straightforward approaches to reflect user movement 

dynamics, such as constant-speed movement. 

Approaches based on real-world position traces 

produce user movements according to the traces 

obtained with a GPS or reconstructed from a trip 

survey [37]. The traces reflect movements of a limited 

number of users only, and therefore are not suitable for 

larger scenarios. Moreover, the traces hardly allow for 

the variation of parameters like movement speed or the 

sequence of visited places. 

Integrated mobility models reproduce user mobility 

with a consideration of multiple factors. For example, 

[30] takes into account constraints of a spatial area, 

user trips, and user movement profiles. However, the 

authors are not interested in obtaining complete 

movement paths. They rather get statistical values for 

performance analysis of cellular networks. MANET 

simulation requires a detailed mobility trace. In [31], 

the authors consider spatial constraints and movement 

profiles, but use a statistical distribution to reflect user 

trips. In order to obtain more accurate results, we 

explicitly model user trips and movement path 

selection. 

It is worth noting that none of the mentioned works 

correlate its model parameters with real-world 

observations. 

3. Mobility model design 

In this paper, we aim at constructing a 

comprehensive, flexible, and scalable mobility model 

for outdoor scenarios. We base our model on the user-

oriented mobility meta-model, which, as shown in 

[39], is a generic approach to model mobility of users 

in various simulation scenarios. For outdoor scenarios, 

we extended the basic model with the modeling of 

movement path selection and new approaches to reflect 

user movement dynamics. This allows us to model user 

mobility more precisely, in particular in city areas. 

The user-oriented mobility model considers three 

key factors that impact user movement in a given area: 

- Outdoor environments (movement constraints 

and points of interest) 

- User travel decisions 

- User movement dynamics 

An outdoor environment constrains movements of 

users. Network clients move along the certain 

movement paths like streets and roads, and do not go 

through obstructions of the movement area. In 

addition, the outdoor environment contains the so-

called “points of interest” (e.g., supermarkets or 

museums) which normally serve as destination points 

of movement. 

The modeling of user travel decisions includes the 

modeling of user trip sequences and the modeling of 

movement path selection. Obviously, people do not 

move completely random in the target area. According 

to the activity-based travel demand approach [25], 

[34], people move to perform an action in certain 

places, for example, shopping in the particular shops or 

visiting the predefined sights. A sequence of such 

actions (trip sequence) predefines user movements in 

the area. Besides, in order to get to a place where the 

activity can be executed, a user has the choice among a 

number of movement paths. Hence, our mobility 

model also considers the selection of a movement path. 

Mobile clients exhibit different movement 

dynamics. For example, pedestrians tend to move at 

low speeds with frequent interruptions, while vehicles 

move at higher speeds and influence dynamics of 

neighboring vehicles. Since the dynamics of client 

movement impacts the stability of the network 

topology, it needs to be reflected in a simulation. To be 

applied in common MANET scenarios, our 

implementation supports two major groups of mobile 

clients: pedestrians and vehicles. 

Consequently, the resulting mobility model 

integrates three sub-models (Fig. 1): spatial model, 

user trip model, and movement dynamics model.  

The spatial model contains a description of the 

movement area (outdoor environment). It provides the 

necessary information about the area constraints and 

the points of interest. The spatial model is initialized 

from a digital map taken from a geographic 

information system. 
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id="#4925"
theme="Road and Ferries"
class="Road Element"

geometry

Line={(512099.05, 5402049.54, 0),
(512106.39, 5402052.99, 0),
...}

general info

attributes

Direction of Traffic Flow=“Both
Directions“
Number of Lanes=2
Average Vehicle Speed=120
Traffic Jam Sensitivity=20%
Length=5431m

id="#4925"
theme="Road and Ferries"
class="Road Element"

geometry

Line={(512099.05, 5402049.54, 0),
(512106.39, 5402052.99, 0),
...}

general info

attributes

Direction of Traffic Flow=“Both
Directions“
Number of Lanes=2
Average Vehicle Speed=120
Traffic Jam Sensitivity=20%
Length=5431m

Fig. 2. Example of a road element in GDF 

Spatial Model User Trip Model

Movement Dynamics Model

elements of
movement area

points of interest &
spatial constraints

movement
path

Generated
User Mobility

Trace

Spatial Model User Trip Model

Movement Dynamics Model

elements of
movement area

points of interest &
spatial constraints

movement
path

Generated
User Mobility

Trace

Fig. 1. Structure of the user-oriented 
mobility model 

The user trip model reflects user travel decisions. It

performs the mobility modeling at the level of user

trips: “Move from point A to point B on the path PAB1,

and then to C on PBC5.” The paths chosen for

movement reflect the spatial model, i.e. contain points

of interest as the movement destination points and

consider movement area constraints. To model user

trips, we use models from urban transportation

planning [32]. The models allow correlation of their

parameters with real-world observations.

The movement dynamics model reflects dynamics of 

user movement (position changes) along their

movement paths. Here we use models from physics

and vehicular dynamics [36], [43]. The changes of user 

positions constitute mobility traces, which serve as an 

input for MANET simulation tools.

The following sections describe the design of these

three basic components and their integration.

4. Spatial model 

The spatial model provides a digital map of the

simulation area containing its objects. To standardize

the model interface and to be able to use existing map

data sources, we have built it according to the

Geographic Data Files (GDF) [17] standard.

Thus, as in GDF, the area is represented as the 

collection of real-world objects, such as streets, 

museums, hotels, restaurants, cinemas, etc. An object

description includes its geometry, attributes, and 

relations with other objects (Fig. 2). The geometry is

specified with primitives, such as points, lines, and

polygons. Object attributes contain additional 

properties, e.g., speed limits or museum opening times.

Relations specify meaningful links between the objects

holding descriptive (e.g., the building belongs to the

road) or restrictive (e.g., prohibited maneuver from one 

road to another) semantics.

GDF specifies some objects as services. Thus, it

provides information about the typical activities which 

people usually perform at the certain points of interest,

e.g., shopping at a shopping center, or having lunch in

a restaurant. We use this information in the user trip

model for trip construction.

To support mobility modeling, we build a 

topological graph of the movement area (Fig. 3). The 

vertices represent the locations in the simulation area

serving as origins, destinations, or intermediate points

of movement. They relate to street crossings and points

of interest passed by users, such as monuments,

museums, restaurants, and shops. The edges represent

the street elements connecting locations. The vertices

and the edges are annotated with the properties of the

spatial model objects.

In this paper, we focus on mobility modeling for

Fig. 3. Representing the spatial model 
with a topological graph 
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MANET outdoor scenarios. We initialize the spatial 

model from a city map in GDF format. Besides GDF,

our implementation also supports maps in other

formats, such as the Geometry Markup Language

(GML) [18].

5. User trip model 

The user trip model reflects travel decisions of

users. It models the trips users perform during a

simulation, and a selection of movement paths. We

base this model on the approaches from the domain of 

urban transportation planning [32].

5.1. User trips 

In order to define user trips, we use the activity-

based travel demand modeling approach [25], [34]. In 

real life, people do not think about how many trips

they are going to perform during a day. Instead, they

think about what they want to do, and where these

activities can or need to be performed.

As a consequence, we describe user trips with a trip

chain. The chain arranges single actions (activities)

performed by a user (Fig. 4), such as shopping or 

sightseeing. It can be defined individually for a user or 

aggregated over a group of users. For the individually

defined trip chain, the sequence of activities is

predetermined. The user performs an activity at a 

corresponding location for some duration of time. The

aggregated trip chain accumulates individual trip 

chains of many users. Hence, users perform activities

at multiple locations; different transitions between the

activities are possible. Each of the locations and

transitions gets a certain “level of popularity”

(probability of being selected) reflecting how many

users choose the particular transition or location in real 

life.

The locations for executing activities correspond to 

points of interest in the spatial model. In a trip chain,

they are referenced using either geographic coordinates

(e.g., [1100762.20N; 4934457.40E]) or symbolic

coordinates (e.g., “384 Pitt Street”). 

During a simulation, mobile users perform activities

successively as in their trip chains. In the aggregated 

chain, the next activity and location for its execution

are chosen according to probabilities. The users move

from their current position to the location where the

next activity is executed. After arriving at the

destination, the user stays there for the time needed to

execute the activity; then he or she chooses the next

activity and starts a new movement.

5.2. Movement path selection 

To find a movement path between the trip origin

and possible destination points, many authors apply

simple approaches, like a shortest path algorithm [39],

[40]. This poorly reflects real life, since according to 

investigations in transportation planning, mobile users 

do not always choose the shortest path for their

movement. Diversity in user path selections impacts

their mobility in the area and needs to be appropriately

reflected in a MANET simulation.

Hence, to model path selection, we use the

probabilistic multipath traffic assignment model from

transportation planning [15], [32]. The corresponding

so-called STOCH algorithm avoids explicit path

enumeration. Its computational complexity is

comparable to the complexity of the shortest path

algorithms. Moreover, the algorithm is based on the

multinomial logit model from discrete choice theory

[5], [42]. Therefore, the model parameters can be 

calibrated to fit real-world observations [1], [27].

In the next section, we describe two variations of 

the algorithm for modeling the path choice of 

pedestrians and car drivers, and their integration into

our mobility model.

6. Modeling the user path choice 
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20-30 min
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45-50 min
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50-60 min
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40%
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restaurant

shopping

initial location

shopping

restaurant
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20-30 min
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20-30 min
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45-50 min

preference=20%
45-50 min

preference=60%
20-40 min

preference=60%
20-40 min

preference=40%
50-60 min

preference=40%
50-60 min

20%

40%

60%

45%

80%

55%

initial location

museum

restaurant

shopping

initial location

shopping

restaurant

30-45 min30-45 min

Fig. 4. Example of individual (on the left) and 
aggregated (on the right) trip chains and their 
integration with the spatial model 

In the probabilistic multipath traffic assignment

model, every path between the trip origin and

destination is assigned a selection probability

according to the estimated path travel time. Since car 

drivers and pedestrians estimate travel times

differently, we consider two cases. 

6.1. Notation 

We assume a mobile user is currently located at 

vertex s (trip source vertex) of our spatial model graph
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(Fig. 3). After selecting the next activity, he or she

decides to move to vertex d (trip destination vertex).

By e=(i, j) we denote a single graph edge directed from

vertex i to vertex j. The edge represents a 

transportation link, which is basically a street element

from our spatial model. Every edge has the associated

cost t(i, j). This cost is the estimated travel time from i

to j along the corresponding transportation link. t*(s, i)

denotes the shortest cost (the shortest time) to get from

s to i. Transportation link length is a link’s end-to-end

travel distance. Link traffic volume v(e) is the number

of vehicles currently traveling on the graph edge in the

direction from i to j.

6.2. Modeling the path choice of pedestrians 

For pedestrians, we model the path choice as 

follows. In the first step, we estimate path travel times

based on the typical movement speed of the user. In 

the second step, based on the estimated times, we use

the STOCH algorithm [15] to calculate path selection

probabilities. In the next paragraphs, we provide a

brief description of the algorithm to describe its

integration into our mobility model.

For efficiency reasons, the algorithm obviates path

enumeration and determines selection probabilities for

the individual graph edges. We use these probabilities

to select edges for movement successively, thus

obtaining the resultant movement path.

The algorithm works with a directed graph. For 

pedestrians, our spatial model graph is bidirectional

and the edge attributes are symmetric.

Similar to user behavior in real life, the algorithm

considers only “reasonable” paths with “efficient” 

links. For the efficient links, the shortest path cost

from the trip origin s to the link start vertex i is less 

than the shortest path cost from s to the link end vertex

j (thus, users would come farther from the origin with

every move):

),(),(:),( ** jstistjie  (1) 

This reduces the number of links under 

consideration. The algorithm assumes that the selection 

probability a for link e=(i, j) is exponentially

dependant on the difference between the cost of the

shortest path from s to j and the cost of the shortest

path from s to j that contains the link e:

)],(),(),([ **

)( jitistjsteea  (2) 

The parameter  (  0) is set by the modeler. It 

reflects the importance of the path length for the user 

choice and user knowledge about the movement area.

As  increases (i.e., the path length becomes more

important and the user knows that the particular paths

are shorter), the selection probabilities for shorter paths

also increase. When  is zero (i.e., the path length is 

not important or the user cannot estimate it), all

efficient paths are considered equally. The exponential

expression is analogous to the expression of choice

probability from the multinomial logit discrete choice

model. Thus, the parameter  can be correlated with

real-world observations by maximizing the so-called

log-likelihood function using methods of numerical

maximization, as described in [42].

The algorithm performs three steps (Fig. 5). During 

the first step (“Initialization”), it calculates the shortest

path costs from s to all other vertices. They are used to 

estimate the link selection likelihoods a(e). In this step,

the non-efficient links are assigned a likelihood of

zero, and thus are excluded from further consideration.

Initialization
1. Calculate shortest path costs t* from the trip

origin s to all other graph vertices using a 

shortest path algorithm (e.g., Dijkstra [16]).

2. For each edge e=(i, j), determine its likelihood

a(e):

otherwise,0

if,
)(

)],(),(),([ **

(s,j)t(s,i)te
ea

**jitistjst

Forward Step 
Starting with the origin s, for each edge e=(i,j)

determine its weight (likelihood with respect to

likelihoods of the edges having i as end vertex

(denoted as Fi)):

otherwise,)()(

if),(

)(

in iFe

i

ewea

Fea

ew

Stop when the destination d is reached. 

Backward Step 
Starting from the destination d, for each edge 

e=(i, j) determine its conditional selection

probability p(e|j) with respect to the edges having j

as end vertex (denoted as Fj):

jFe

ew

ew
jep

in

)(

)(
)(

Stop when the origin s is reached. 

Fig. 5. Algorithm to estimate conditional
edge selection probabilities (STOCH 
algorithm)
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During the next step (“Forward Step”), the algorithm

computes link weights w(e) depending on the weights

of the topologically preceding links. In the third step

(“Backward Step”), the algorithm estimates

conditional link selection probabilities p(e|j).

Obviously, the sum of the conditional selection

probabilities of edges having the same end vertex

equals 1. 

It is important to note that the third step of the

presented algorithm differs slightly from the third step

of the original STOCH algorithm. Since the goal of the

original algorithm is to distribute a number of moving

users among the transportation links, it assigns link

traffic volumes. In this paper, we calculate the link

selection probabilities.

It is clear that the algorithm terminates during the

“forward” and “backward” steps. Since it excludes the 

non-efficient links from consideration, it traverses the

graph edges successively in the topological order, until 

it reaches the trip destination vertex d.

An example of using the STOCH algorithm to

calculate link selection probabilities is depicted in Fig.
6. The example shows a subset of the spatial model

graph that contains efficient links for the trip from the

vertex s to the vertex d. Based on the estimated travel 

times (posted above the edges), conditional link

selection probabilities are obtained (posted below the

edges). They provide the possibility that the link and

its end vertex are visited. In the example, we use 

=0.9. Having the probabilities calculated, it is a

straightforward task to traverse the graph in the reverse

direction from the destination to the source, and to

choose edges stochastically at each intermediate

vertex, thus constructing the selected movement path.

Following this method, a path choice for 

pedestrians is performed as follows: 

1. Estimate conditional selection probabilities for

the efficient graph edges using the STOCH

algorithm.

2. Decide on a movement path by traversing the

graph in the reverse direction from the

destination vertex to the source vertex. The

resultant path is successively constructed by

adding edges. The edges are chosen 

stochastically at each intermediate vertex from

the set of efficient incoming edges in 

accordance with the computed selection 

probabilities (i.e. the edge with higher selection

probability has a better chance of being

selected).

Since, according to our model, link travel times for 

a pedestrian depend only on link end-to-end distances,

the corresponding edge costs do not change for the

user over time. Hence, the STOCH algorithm needs to

be applied only once for this user and for the given

source and destination vertices. Once computed, the

probabilities are reused by successive calculations. 

6.3. Modeling the path choice of car drivers 

For car drivers, travel time on a transportation link

depends not only on the link length, but also on the

current traffic volume. Travel time is longer on 

congested roads, so drivers try to avoid them.

In transportation science, the so-called “volume-

delay” functions model the impact of the link traffic

volume on the link travel time (its cost), e.g., the

Bureau of Public Roads (BPR) function [10], the

Overgaard function [33], and the Spiess function [38].

Although we could use any of these functions, we

choose the BPR function, because it is well

investigated and its parameters for different road types

are well documented (see [21] for details).

The BPR function defines the following

dependency between the link travel time t and the link

traffic volume Q:

max
0 1)(

Q

Q
tQt  (3) 

where t0 is the link travel time at free traffic flow. It 

is estimated from the typical vehicle travel speed and

the link length.

 and are empirical coefficients. Their values for 

the concrete road classes are available. Our 

implementation relies on the standard values ( =0.15

h the spatial

model providing the necessary road class identifiers.

and =4) and on the values from [21] wit

Q is the current link traffic volume. It is calculated 

from the current density of vehicles (veh./m) traveling

on a graph edge in the direction from the start vertex to

the end vertex, and the average traffic speed. 

s d
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Fig. 6. Example of calculating link selection 
probabilities using the STOCH algorithm 
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Qmax is the maximum link capacity. We rely on the

typical link capacity values from [3] and [26].

We use the BPR function to calculate estimated link 

travel times for vehicles. Then we apply the STOCH 

algorithm to calculate link selection probabilities.

Upon calculating the probabilities, we also consider

whether a movement is prohibited for vehicles along a

particular road element or in a particular direction. In 

this case, the element is assigned the probability

p(e|j)=0.

To sum-up, the path choice for car drivers is made

as follows:

1. Calculate the link costs based on the current

link traffic flows using the BPR function (3). 

2. Estimate conditional selection probabilities for

efficient edges using the STOCH algorithm.

3. Decide on a movement path by traversing the

graph in the reverse direction from the

destination vertex to the source vertex. The

resulting path is successively constructed by

adding edges. The edges are stochastically

chosen at each intermediate vertex from the set 

of efficient incoming edges in accordance with 

the computed selection probabilities.

As opposed to the pedestrian case, link travel times

change dynamically due to changing traffic volumes.

Therefore, we need to compute selection probabilities

each time upon simulating a selection of a movement

path for a user. 

6.4. Possible extensions for the path selection
modeling

An interesting option would be to apply the STOCH

algorithm in the opposite direction from the trip

destination to the trip source point. As the result, we 

obtain the conditional link selection probability

providing the possibility that the link and its start

vertex are visited. This allows deciding on a movement

path by traversing the graph starting from the source

vertex. According to [41], it reflects user behavior

better in some cases. 

It is also possible to model user path choices

considering factors other than the estimated travel 

time, e.g., the number of sights passed or the number

of stop signs. In this case, a modeler defines a so-

called “behavioral process” function [42]. The function

is a linear combination of attributes impacting the user

choice. It is estimated by a modeler for a specific 

situation and for a specific group of users. In future

work, we plan to support the behavioral process, which

is defined using attributes of spatial model objects.

7. Movement dynamics model 

The movement dynamics model defines patterns in

speed and direction changes of mobile clients during

their movement between two locations. It is based on

models from physics and vehicular dynamics.

Different dynamics models are proposed for 

different types of mobile clients. For example, the low-

speed motion along road edges with frequent stop-and-

go behavior reflects the dynamics of pedestrians. There 

are models for vehicles based on correlations of speed

and direction changes (e.g., smooth random mobility

model [6]), approaches from traffic modeling (e.g.,

fluid traffic model [36]), and dependencies between

movements of neighboring vehicles (e.g., intelligent 

driver model [43]). In addition, we can integrate

special models for the certain aspects of movement

dynamics, such as lane change behavior [2]. To 

improve the accuracy of modeling, the movement

dynamics model can also consider the attributes of

road elements, such as the speed limit or the number of 

traffic lanes.

Our present implementation includes a number of

movement dynamics models for pedestrians and 

vehicles. We find the following models the most

interesting for the outdoor scenarios.

7.1. Modeling the dynamics of pedestrians 

We model the dynamics of pedestrians as a constant

speed motion. The speed is randomly chosen at the

beginning of the movement from a certain interval. For 

example, for pedestrians walking freely in a city, 

typical values are between 4 and 5 km/h [26].

7.2. Modeling the dynamics of vehicles 

For modeling the dynamics of vehicles, we use the

intelligent driver model described in [43]. According

to the model, vehicles try to keep certain distance 

between each other for their safety. The acceleration of 

vehicle i at time t depends on its current velocity vi(t),

the distance si,i-1(t) to the vehicle i-1 in front, and the

safety distance s*
i,i-1(t) between the vehicles: 

2

1,

*
1,

0
1

ii

ii

i

i
ii

s

s

v

v
av

In the formula, ai is the maximum acceleration of

the vehicle i.

vi
0 is the desired speed of vehicle i which depends 

on the behavior of the driver. In our simulations, we 

choose randomly the desired speed for a vehicle from a
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certain interval, e.g., between 40 km/h and 50 km/h in

city scenarios. 

 is the exponent controlling the acceleration

behavior of vehicles until they reach their desired 

speed.

The safety distance s*
i,i-1(t) between vehicles i and 

i+1 is expressed as:

0,
2

max
1,

0
*

1,

ii

iii
iiii

ba

vv
Tvss

where s0 is the minimum distance between vehicles, 

like in a traffic jam.

Ti is the safe time headway in congested traffic. It

represents the maximum reaction time of a driver, e.g.,

to apply breaks. 

vi,i-1 is the difference in velocities between the

vehicles i and i-1: vi,i-1=vi-vi-1.

bi is the driver’s typical deceleration in regular (e.g., 

non-critical) situations. 

According to the model, on distances si,i-1 >> s*
i,i-1

the vehicle i accelerates until it reaches its desired 

speed. As the gap si,i-1 approaches the safety distance, 

the vehicle decreases its acceleration. When si,i-1 s*
i,i-1,

the vehicle breaks harder to avoid a collision.

The model can handle traffic jam situations, e.g., as

the leading vehicles slow down, the succeeding 

vehicles will also decrease their speeds.

Typical values of coefficients as described in [43]

are: ai=0.6 m/s2, =4, Ti=1.5 s, s0=2 m, li=5 m, and 

bi=0.9 m/s2. Our implementation uses these values by

default.

The described model does not explicitly reflect

movement on multiple traffic lanes. The reason is that

in our road data each lane is represented as a separate 

road element, hence the multilane traffic is still

reflected.

By integrating the described model into our 

simulation environment we make it useful for

performance evaluations of vehicular ad-hoc networks

(VANETs). To the best of our knowledge, no other

freeware tool currently exists to generate VANET

mobility traces for MANET simulation tools. 

8. Defining model parameters 

In order to use the described approach in

simulations, it is necessary to define the spatial model,

user trip model, and movement dynamics model. They

can be defined according to the simulation scenario for

every user individually or for a group of users. 

The spatial model contains a digital map of the

simulation area. Since we implemented parsers for

GDF and GML, its initialization from the given

geographic information system is straightforward.

The parameters of movement dynamics are specific

to a particular model. For the models described in this

paper, either the model authors specify typical values 

(e.g., for the intelligent driver model) or they can be

easily estimated based upon the daily experiences.

Parameters of the user trip model include trip chains

with activities, places for executing activities, times

needed to execute activities, transitions between

activities, and the parameter for path selection.

Defining the user trip model requires more effort. To

make things simpler, our implementation provides

random generation of user trips. The path selection

modeling can also be simplified, for example, by

setting to 0 which makes mobile users consider all

efficient paths equally. Setting to some large value

makes the users select only the shortest paths. In these

two cases, our path selection model performs as a

multiple-path searching algorithm.

To simulate mobility in concrete scenarios more

accurately, our implementation also provides automatic

derivation of trip model parameters from position

traces, e.g., GPS traces, as described in the next

section. One might argue that if we already have 

position traces, it is sufficient to simulate mobility

according to them. However, the trace represents only 

a limited number of clients. Having the model

parameters defined, it is possible to simulate any

number of mobile clients. In addition, the model

parameters can be varied to check their effect on 

simulation results.

9. Deriving user trip model parameters 
from position traces 

Our approach is quite simple and is based on

associating the locations in the area with the typical 

activities. A more sophisticated approach is based on 

heuristic and is described in [44].

We consider a client position trace as a sequence of

entries having the following form:

- Client ID 

- Time

- Client position (coordinate)

The entries are stored at constant intervals. The

authors in [44] state that in order to reconstruct

movement paths for vehicles, the granularity should be

less than 10 s. For pedestrians, the granularity can be 

estimated proportionally.

For constructing an aggregated trip chain from the 

traces, we perform the following steps. 
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9.1. Associate activities with locations 

Using information from the spatial model (“theme” 

and “class code” of spatial model objects), we 

associate activities with corresponding locations in the 

target area. This allows the “reverse” mapping from a 

visited point to the performed activity. Thus, if we 

detect a user stays at a particular location, we can also 

determine which activity he or she performed there. 

The association is unambiguous, i.e. although 

multiple activities can be performed at a point, we 

consider only the primary activity (e.g., a shopping 

center is used only for shopping). 

Our current implementation automatically 

distinguishes the following activities provided by GDF 

data sources: “business”, “cultural”, “educational”, 

“meal”, “parking”, “recreation”, “shopping”, and 

“sightseeing”. Besides, we introduce two special 

activities: “initial” and “unclassified”. The initial 

positions of mobile users in the trace sample are 

associated with the “initial” activity. All the points of 

interest that do not belong to one of the standard 

activities are associated with the “unclassified” 

activity. Moreover, if upon a trace analysis we detect a 

user stays at a location, which is not associated with an 

activity, it is also added to the “unclassified” activity. 

Obviously, the described splitting into activities is 

neither obligatory nor complete. It just reflects our 

current simulation scenarios. In our implementation, it 

is possible to change the standard associations and / or 

introduce new ones. 

9.2. Determine the trip chain parameters 

The parameters to be determined are: probabilities 

of transitions between activities, visiting probabilities 

of locations, and durations of activity executions at the 

locations. These parameters are obtained by comparing 

client positions with coordinates of points of interest. 

Thus, we process trace entries of every user in 

chronological order and check the following: 

- If a client stays within a point of interest longer 

than a threshold value (minimal activity 

execution time), we then detect an activity by: 

Finding the corresponding activity; 

Incrementing the counter for this activity; 

Incrementing the counter for this activity at 

this location; 

Incrementing the number of transitions 

between the previous activity and the 

current activity. 

- If a client departs from a point of interest (i.e. 

his or her position is no longer within the 

previous point of interest): 

Update durations of executing the activity at 

this location (in our implementation, we 

obtain the minimal and maximal values (Fig.
4); as an option, we could also use the 

average or the weighted average). 

After the trace data is processed completely, we 

calculate the selection probabilities for locations within 

every activity (location’s preference) by dividing the 

counter for the activity at the location by the counter 

for the activity. We calculate the probabilities of 

transitions between two activities by dividing the count 

of transitions between the activities by the total count 

of transitions from the source activity. 

It is important to note that by applying the described 

method for vehicles, we primarily detect the “parking” 

activity. To further differentiate between activities, we 

must additionally process movements of car drivers 

after parking. 

9.3. Determine the parameter  of path 
selection model 

To determine this parameter, we need to count how 

many times a particular transportation link is used for a 

trip between two given locations. Then  needs to be 

calibrated for each pair of vertices between which the 

trips are performed. For calibration, a method of 

numerical maximization (e.g., the method of steepest 

ascent) can be used, as described in [42]. Then the 

single value for the system can be calculated as the 

weighted average of the calibrated i.

For vehicles, we also need to consider traffic 

volumes on transportation links, since they impact link 

costs in our model. So far, we do not provide the 

calibration of  in our prototype, but its 

implementation is planned exactly as described. 

10. Conclusion 

Many authors have shown that user mobility has a 

significant impact on the performance of MANETs [9], 

[12], [24], [40]. Hence, it needs to be appropriately 

reflected in simulations. In this paper, we have focused 

on mobility modeling in outdoor scenarios and 

proposed a comprehensive approach. Our approach 

considers a geographic model of the simulation area, 

user trip sequences with path selection decisions, and 

user movement dynamics. We have implemented it in 

our publicly available framework for mobility 

modeling [11]. It is a stand-alone application which 

produces mobility traces for various MANET 
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simulation or emulation tools, such as NS-2 [8], 

GloMoSim [19], or Network Emulation Testbed [20]. 

We made our implementation easy-to-use. Hence, it 

supports processing of digital maps in common 

formats, random generation of user trips in the area, 

and a number of movement dynamics models for 

pedestrians and vehicles with typical parameters. 

Obviously, the random generation of user trips is only 

introduced to minimize the model creation overhead. 

To produce user trips more accurately, the framework 

can also derive trip model parameters from actual 

position traces. 

In future work, we plan on using our approach in 

simulations and emulations of MANET outdoor 

scenarios in order to obtain more accurate evaluation 

results. 
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