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Abstract

The random trip model was recently proposed as a
generic mobility model that contains many particular mo-
bility models, including the widely-known random waypoint
and random walks, and accommodates more realistic sce-
narios. The probability distribution of the movement of a
mobile in all these models typically varies with time and
converges to a ‘“steady state" distribution (viz. station-
ary distribution), whenever the last exists. Protocol per-
formance during this transient phase and in steady-state
may differ significantly. This justifies the interest in per-
fect sampling of the initial node mobility state, so that the
simulation of the node mobility is perfect, i.e. it is in steady
state throughout a simulation. In this work, we describe im-
plementation of the perfect sampling for some random trip
models. Our tool produces a perfect sample of the node
mobility state, which is then used as input to the widely-
used ns-2 network simulator. We further show some simu-
lation results for a particular random trip mobility model,
based on a real-world road map. The performance met-
rics that we consider include various node communication
properties and their evolution with time. The results demon-
strate difference between transient and steady-state phases
and that the transient phase can be long lasting (in the or-
der of a typical simulation duration), if the initial state is
drawn from a non steady-state distribution. The results
give strong arguments in favor to running perfect simula-
tions. Our perfect sampling tool is available to public at:
http://www.cs.rice.edu/~santa/research/mobility.

1 Introduction

The most common way to study mobile ad hoc networks
is through simulations. Even though real world deploy-
ment is essential to understand the effectiveness and perfor-
mance of ad hoc networks, simulations have some advan-
tages. Simulations are fast and repeatable, and it is possi-
ble in simulators to isolate parameters affecting the perfor-
mance of a design. It also allows testing of a wide variety
of scenarios, along with large ones, which is difficult if not
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impossible in a real network.

Therefore a variety of mobility models and communi-
cation patterns have been developed in the simulators for
performance evaluation of a design. It is important to use
realistic mobility models so that the evaluation results will
have a close correlation to the performance when actually
deployed. However, the most commonly used mobility
model is the Random Waypoint Mobility (RWM) [1], which
though being simple and easy to simulate is not very realis-
tic. Recently though, various mobility models have been
proposed which attempt to better capture mobility traces
than RWM. These mobility models range from Obstacle
Mobility Model [2] to City Section Mobility models (see
the survey [3]).

All of the proposed models suffer from non steady-state
distribution at the start of a simulation. The probability dis-
tribution of the movement of nodes typically varies with
time, and ultimately converges to a steady-state distribu-
tion, known in probability literature as stationary distribu-
tion. This convergence time varies widely, depending on the
parameters of the mobility model and is not deterministic.
The performance of the network varies with time, and there
might be a substantial difference between startup time and
after steady state has been reached. This was first noticed
by Yoon, Liu, and Noble [4] for RWM models. The sug-
gested method to deal with this problem (in the rare cases
when it is addressed at all) was to discard the initial set
of observations hoping that steady state would have set in.
Other than throwing away useful computation work, it is ex-
tremely difficult to predetermine the length of this transient
period. Navidi and Camp [5] recently solved the problem
for RWM models by finding the steady state distribution,
and initializing the mobility state to a sample drawn from
the steady state distribution (this is classically called “per-
fect simulation" and the sampling “perfect sampling"). But
as explained earlier, this RWM model is not realistic for the
evaluation of a protocol design.

Le Boudec and Vojnovié [6] recently used Palm calculus
to provide a generic framework for finding the steady state
distribution of the mobility state for a large class of random
mobility movements — they call, random trip models. In this
work, we derive the steady state distributions for some ran-



dom trip mobility models and implement perfect sampling
in a tool, whose output is directly used by de-facto stan-
dard ns-2 network simulator. In particular we implemented
the RWM, random walk with wrapping, random walk with
reflection, restricted random waypoint and its special case
space graph. All these models are instances of the random
trip model. Our simulation evaluation is for a space graph
model. The results show considerable difference of the mo-
bility characteristics in initial and steady state and its result-
ing effect on metrics of interest for routing performance.

Why do we want to run mobility in a steady-state? It is
legitimate to argue that in some situations, one may be in-
terested in performance of some protocols under a transient
mobility. One argument in favor to steady-state mobility
simulations is as follows. We are commonly interested in
average-case performance of a protocol which is captured
by long-run averages. If the node mobility ultimately con-
verges to a steady-state, then asymptotically, the long-run
averages are determined by the mobility steady-state.

Some mobility models are specified by real-world em-
pirical mobility traces. Under hypothesis that the trace is
a realization of a stationary process, no perfect simulation
is needed. The hypothesis is true if we assume a node mo-
bility is a stationary realization, and we trace its movement
from an arbitrary time. There have been studies of protocols
performance by using real-world movement traces, for ex-
ample that using a fleet of city buses in Seattle metropolitan
area [7]. In order to instantiate a realistic sample of a space
graph, we use existing real-world city maps. United States
Census Bereau makes available detailed street maps for
the whole of United States, based on the bureau’s TIGER
(Topologically Integrated Geographic Encoding and Refer-
encing) database [8]. One may even further make our sim-
ulations more realistic, by specifying the trip selection rule
(introduced later) so as to match empirical frequency counts
of trips and their properties (e.g. trip duration, trip origin
and destination, trip mode, etc), which are available from
various transportation systems survey studies. However, we
do not pursue this direction here.

The paper is organized as follows. In Section 2, we give a
brief background on how Palm calculus has been applied to
derive the generic framework of steady-state mobility mod-
els and present perfect sampling algorithm for restricted
random waypoint, which accommodates our example space
graph mobility model. Section 3 discusses our implemen-
tation of the perfect sampling. Section 4 shows simulation
results, obtained for a particular space graph. We conclude
in Section 5.

2 Random Trip Model and its Perfect Simu-
lation

In this section we first recall the definition of random
trip, a class of mobility models defined in [6], and its perfect
simulation.

2.1 Random trip

The random trip is a generic mobility model for indi-
vidual movements. It is defined by a set of paths over a
connected domain A, an initialization rule, and a trip se-
lection rule. A path is defined as a mapping from [0, 1] to
A. For example, we use later in this paper a special case
called space graph where A is a graph representing streets
in a city; the set of paths is made of all shortest paths be-
tween any two intersections in the city (represented by ver-
tices in the graph). Another example is city-section, which
differs from the space graph in that the trip endpoints are
not restricted to vertices of the graph, but take values on the
whole domain A. A trip is the combination of a path and a
duration, or, equivalently, a path and a numerical speed fac-
tor at which the path is run. Initially, a mobile picks a path
from the set according to the model’s initialization rule, and
goes along the path. At the end of the trip, the mobile picks
another path according to the model’s trip selection rule.
The newly chosen path is restricted to start where the pre-
vious ended. For example, the initialization rule we use in
the space graph example consists in picking a location uni-
formly on the set of street intersections; the trip selection
chooses as next trip a pause at the current location if the fin-
ishing trip is not a pause; after a pause, the trip selection rule
chooses a new endpoint uniformly on the graph vertices and
a numerical speed in some specified interval [Vmin, Umax)-

The random trip model is quite general. It contains as
special cases: the classical random waypoint, random walks
with reflection or wrapping, “fish in a bowl", restricted ran-
dom waypoint, and others. In this paper we focus the for-
malism on “restricted random waypoint", which contains as
special case the space graph example. With restricted ran-
dom waypoint, we have a given collection of sub-domains
A, that are all contained in .4. The mobility of a node is
then contained in A, with trip end points in sub-domains
Ay¢. With space graph, we define only one sub-domain, A,
as the set of the vertices of the space graph. In this paper,
we confine our formalism to restricted random waypoint
with only one sub-domain. The general case bears some
notational complexity; see [6] for definition, properties, and
perfect sampling.

Formally, we consider a mobile node that lives in a con-
nected set A (a subset of R” form = 1 orn = 2 or
n = 3). The trip-end times are Tp = 0 < T} < Tp < -~
Let S, := Ty,4+1 — T, be the duration of the n-th trip.
At a trip transition instant 77,, the node selects the path
P, : [0,1] — A of the n-th trip. The mobile position at
time ¢ is given by

X(t) =P, <t_T"> , T <t < Tpyy.
Sn

In particular, the node position at the trip begin-point is
X(T,) = P,(0) and at the trip end-point, X (T} +1)
P,(1) (we assume that (P,), is such that P,(1)



P,+1(0), for all n). We denote with U(t) = (t — T,)/Sn
the fraction of the elapsed time on the n-th trip. Thus,
we can write X (t) = P(t)(U(t)), where P(t) = P,
T, <t <Thyr.

We assume that the trip selection rule is Markov mod-
ulated, i.e. there is a sequence of phases (I,), that take
values on some state space Z. The trip selection rule spec-
ifies that at a transition instant 77,, the path P, and trip
duration S,,, given the phase [,, and the mobile position
M, := X(T,), are drawn independently of n and any other
past. In simple cases, the phase corresponds to being in a
pause or move state; in more elaborate cases, the phase can
be used to model inter-city and intra-city trips.

The original definition of random trip models [6] uses
additional assumptions. The phases (I,,),, are assumed to
be a Markov chain. The node position M, (at the end-
point of the n-th trip, T,+1) is assumed to be conditionally
independent of all past phases, but the phase I,,.

The mobility state at time ¢ is Z(t) :=
(I(t),P(t),S(t),U(t)). Under additional technical
assumptions in [6], Z(t) is sufficient to entirely describe
the future evolution of the mobility state. Further, any
random trip mobility model has a unique time-stationary
distribution if and only if the mean trip duration averaged at
trip transition instants is finite (Theorem 3 [6]). For the city
section example, this means that vy,;, > 0 and the average
pause time is finite [6].

2.2 Perfect Simulation

As explained in the introduction (and illustrated in the
rest of the paper), the random trip model may take a long
time to converge. It is possible to directly sample from the
stationary distribution of Z(t) (when the condition for its
existence is satisfied), thus achieving a “perfect" simulation
of the mobility model, namely one that is free of transients.
This is achieved in [6] by using Palm calculus, a set of for-
mulae that relate the distributions of a system at an arbitrary
point in time and at an arbitrary transition instant (here the
trip-end times) — see for example [9] for more explanations.
Note that those two distributions are different: if we sample
a mobile speed in the city graph at an arbitrary trip-end time
(this is called the “Palm" distribution), we obtain a uniform
distribution over [vmin, Umax; in contrast, the mobile speed
sampled at an arbitrary point in time is more likely to be
small, since a mobile spends more time, in average, on trips
that have a small speed. Similarly, the Palm distribution of
a mobile position is uniform over the graph, but the mobile
position as sampled at an arbitrary point is more likely to be
on an edge of the graph that lie on a trip path with a large
average trip duration.

The perfect sampling algorithm is described in Figures 1
and 2 in the case with one sub-domain .4, (the general case
has some notation complexity that obscures the main ideas).
We implemented the general case in the tool that we de-
scribe in this paper.

Draw phase ¢, previous and next trip endpoints
My and M, by the sampling algorithm in Figure 2
if = mowve
Sample a speed v from density proportional to < f9 (v)
Draw u ~ Unif(0, 1), set the current mobile position
to uMo + (1 — u) M,
Set numeric speed to v and set end of trip to point M,
else
Sample ¢ from density defined f$.(t) = £ [ f3(s)ds
Set the mobile position to M ~ Unif(A;)
Schedule end of pause at time ¢
end

Figure 1. Perfect sampling for restricted ran-
dom waypoint with one sub-domain 4;. No-
tation: f(t) is the density of the next nu-
merical speed chosen by the trip selection
rule (for example uniform in [vmin, Vmax]); f2(2)
is the density of the pause time chosen by
the trip selection rule (for example uniform in
[0, Tmax])- For example, with space graph A, is
the set of vertices; with city-section 4; = A.

Letqo = Tpause/(Tpause + WA)
do forever
Draw Uy ~ Unif(0, 1)
if (U1 < qo) ¢ = pause; leave
else
Draw My ~ Unif(A;), My ~ Unif(A;)
Draw U, ~ Unif(0, A)
if (U < d(My, M,)) ¢ = move; leave
end do

Figure 2. Sampling algorithm for phase ¢, pre-
vious and next trip endpoints A, and M.
Tpause ‘= | $f9(s)ds is the average pause time
andw = [ 1 f0 (v)dv is the mean of the inverse
of the numerical speed, sampled on an arbi-
trary trip. For space graph 4, is the set of ver-
tices, and A is average distance between ver-
tices of the graph. For city-section 4; = A,
and A is an upper bound on diameter of 4.

The perfect sampling algorithm in Figures 1 and 2 il-
lustrates a merit of the generic perfect sampling proposed
in [6]. The benefit is that the algorithm does not require
knowing geometric constants, such as, in the city-section
example, the average distance between two random points
on a graph, which may be difficult to compute. It suffices
to know an upper bound on the distance between any two
points in the domain, which for the city-section is a non
problem to compute.



3 Implementation of Perfect Sampling

In this section, we describe random trip mobility models
for which we implemented perfect sampling. The models
are: random waypoint, random walk with wrapping, ran-
dom walk with reflection, restricted random waypoint and
space graph as a particular instance of restricted random
waypoint. We briefly describe each of the models. For more
complete definitions, we refer to [6].

Our tool generates a mobility trace file in ns-compatible
format, and thus can be directly used as input to ns-2 net-
work simulator. For concreteness, the format consists of:

Sns_ at TIME "Snode_ (NODE) set X_ X1"

Sns_ at TIME "Snode_ (NODE) set Y_ Y1"

Sns_ at TIME "S$node_ (NODE) set Z_ Z1"
( )

Sns_ at TIME "S$node_ (NODE

which set the position of anode NODE to (X1, Y1, Z1)
at time TIME. The trip destination point of the node NODE
is (X2,Y2,0) and numeric speed is SPEED. The above
command primitives are sufficient to define various mobil-
ity patterns. We next define random trip models, for which
our tool produces perfect sample:

Random waypoint: At a trip transition instant, a node
picks a trip destination uniformly at random on a rectangu-
lar area and samples numeric speed from a uniform distri-
bution. The trip path is the straight line that connects node
positions at this and next trip transition instant. Upon reach-
ing the trip destination, the node may pause for a random
time drawn from a uniform distribution. This trip selection
rule repeats. A default initialization rule is to set the node
at time O to either move or pause phase and specify time
0 as a trip transition instant. This model has been exten-
sively studied before in literature, and is the basis for most
of the evaluations of ad hoc routing protocols. A steady
state version of random waypoint has been implemented by
Navid and Camp [5]. Our implementation uses a different
perfect sampling algorithm [6], which alleviates knowing
geometric constants. The perfect sampling algorithm is that
of Figures 1 and 2.

Random walk with wrapping: This model is similar
to the random waypoint, but at a trip transition instant, a
node picks direction, trip duration, and numeric speed. The
node moves in the given direction with the given numeric
speed for the given trip duration. If on a trip, the node hits
the boundary of the domain, it is wrapped around into the
domain. The steady state version of this model is such that
node position is uniformly distributed on the domain, the
node speed has the same distribution as at a trip transition
instant. Conditional on phase is move, the node position,
speed, and residual trip time are independent. Conditional
on phase is pause, the node position and residual pause time
are independent. See [6] for more rigorous statements. The
implemented perfect sampling algorithm is that of Theo-
rem 10 in [6].

Random walk with reflection: The difference be-
tween this model and random walk with wrapping is that,

setdest X2 Y2 SPEED"

whenever a node hits the boundary of the domain, it is not
wrapped around, but reflected into the domain.

Restricted random waypoint: The domain contains a
specified collection of sub-domains. At some trip transition
instants, a node performs Markov walk on the sub-domains,
for other trip transition instants the node undergoes trips
within a sub-domain. The number of trips within a sub-
domain is drawn at random at a trip transition instant for
which the node enters a sub-domain. When the number of
sub-domains is equal to 1, the perfect sampling is given by
Figures 1 and 2; for the general case it is that found in [6].

Space graph: This is a particular instance of restricted
random waypoint. We are given a space graph, which is
a collection of graph vertices, each associated with a point
in space, and a connectivity matrix that specifies edges be-
tween the vertices. The domain is the union of line seg-
ments defined by the graph edges. The sub-domain is the
set of the graph vertices. Path between two vertices is a
shortest path.

City section: This is a particular instance of random
waypoint on a general connected area. The domain is the
union of line segments defined by the edges of a given space
graph. The perfect sampling algorithm is that of Figures 1
and 2.

We implemented perfect sampling for the above random
trip models in the tool randomt rip. The tool takes input
data that specify a particular random trip model instance,
and thus provide a user with flexibility in defining a partic-
ular mobility scenario. The common inputs are the number
of mobiles and simulation duration. Other model-specific
input parameters are described here:

e For random waypoint, random walk with wrapping
and reflection, the input data include side lengths of
a rectangular domain, parameters that specify distribu-
tion of the numeric speed for the random waypoint; for
random walk models the input data are parameters that
specify trip duration.

e For space graph and city-section models, the input is
the space graph defined in an ASCII format that con-
tains: road id, average road speed, coordinates of the
road endpoints.

e For restricted random waypoint, the input data in-
clude the number of sub-domains and specification of
the sub-domain geometries from a set of elementary
shapes in an ASCII format.

The output of each tool is ns-compatible ASCII file that
specifies node movements for a simulation.

4 Simulation Results

In this section, we evaluate by simulations some mobil-
ity properties for a space graph mobility model. In partic-
ular, we consider some performance metrics that character-
ize node communications, such as for example those that
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Figure 4. Distribution of nodes in the graph with random uniform pause between 0 and 100 seconds.
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Figure 3. Realistic street scenario corre-
sponding to a square area of size 1200
mx1200 m. The scenario consists of 383 in-
tersections and 594 road segments.

effect ad hoc routing performance. Given a realization of
node movements, we evaluate node communication prop-
erties such as the size of the node neighborhood set (node
degree), average and maximum path distance between node
pairs, fraction of disconnected node pairs and their variation
with time. These performance metrics would correspond to
performance of a hypothetical routing algorithm that posses
global knowledge of the network state. We assume a fixed
wireless transmission range model; this is a simple standard
wireless communication model specified by a single param-
eter r, the wireless transmission range. With this communi-
cation model, any two nodes can communicate if and only if
the distance between the two nodes is at most 7. We deliber-
ately evaluate the performance metrics for the hypothetical
routing protocol, rather than for an ad-hoc routing protocol,
in order to isolate fundamental mobility-originated perfor-

mance from those due to various artifacts associated with a
particular ad hoc routing protocol.

However, in addition to simulation results for the hypo-
thetical routing algorithm, we do show simulation results
for DSR [10], a widely-known ad-hoc routing protocol. The
aim of this simulation set would be to verify the claim:
In many cases, perfect simulation of mobility induces a
smaller duration of the transient phase for the whole sys-
tem, than if the mobility simulation is non perfect. Indeed,
a perfect simulation of node mobility does not necessarily
imply perfect simulation of the whole system. If the claim
is true, then it is a strong incentive to run perfect mobility
simulations. A complete verification of the above hypothe-
sis would be to run simulations for an extensive set of sce-
narios. We do not provide a complete study, but a limited
set of simulation evaluations that do not contradict the claim
(showed later). A complete hypothesis test is left open for
future work.

We instantiate a sample of a space graph as follows. We
used a real-world road map of a section Houston close to
Rice University.! The area of the section is roughly a square
with a side of length 1200 meters. The area of concern may
be regarded residential with perpendicular street intersec-
tions and a low speed limit shown in Figure 3. We simulated
movements of 50 mobiles. The numeric speeds were chosen
with uniform distribution on the interval from 0.01 to 9.99
meters per second. This was approximately for 5 meters per
second above and below the fixed speed limit of 5 m/sec for
each road. We chose the lower speed to be strictly posi-
tive in order to have a finite average trip duration as seen
at a trip transition instant. We ran all our experiments for
10 runs, each of duration 5000 seconds and each with the
initial mobility state drawn by using a different seed for the

IThe detailed maps are available from the United States Census Bu-
reau’s TIGER (Topologically Integrated Geographic Encoding and Refer-
encing) database. These files are freely available to the public for use, and
are typically used to provide the digital map base for all Geographical In-
formation Systems and route finding software. This tool was popularized
recently in [11], and we leverage this database to provide us with realistic
city maps.
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Figure 5. Graph characteristics for movement with uniform pause from 0 to 100 seconds.

random number generator. We averaged a value of concern
over all the runs. We also ran all the simulations with 100
nodes, but omit those results as they are essentially similar
to the 50 node simulations. Next, we present our simulation
results with pause (results with no pause are omited due to
lack of space), and then present the simulation results ob-
tained with DSR routing protocol.

For each mobile the pause time is random, uniformly dis-
tributed between 0 and 100 seconds. We assume the default
initilization rule that specifies each mobile initially to be in
move state, and then alternates between move and pause.
We first consider mobile positions in Figure 4 at initial state
and after 100 and 5000 seconds since the simulation start.
We note that the graph may be cut into two subgraphs by a
cut at about z = 700 meters. In the region around 2 = 700
all the roads are dead-end, except 4 roads. In Figure 4(c),
we note that the region around x = 700 is sparsely popu-
lated by mobiles in the initial state, while in steady-state it
is more densely populated.

We now consider variation of node neighborhood set
with time. This metric may have effect on ad-hoc routing
protocol overhead. We consider the increments and decre-
ments of the size of the node neighborhood set, defined as
follows. For each 10-second interval, we calculate the num-

ber of the neighbors that were reachable in the previous
10-second interval and are no longer reachable in the cur-
rent 10-second interval. Similarly, we count the number of
new neighbors a node encounters on a 10-second interval,
which were not reachable by the node in the previous 10-
second interval. Denote the former and latter increments, as
€old and £n¢v for the n-th 10-second interval, respectively.
Then, the number of the neighbors IV,,, in an n-th 10-second
interval, evolves as: Ny 11 = N, +£2° —fflld. The empiri-
cal averages in Figure 5(a) show that the two neighborhood
increment elements have virtually the same means, for a
given time instant. The neighborhood increments decrease
with time and eventually settle around a fixed point, which
corresponds to the steady-state average. The duration of
this convergence time is significant. A plausible intuition
is that the node neighborhood set change would be highly
correlated to the value of the node numeric speed at a time
instant. This is confirmed later in Figure 6.

We next consider the fraction of disconnected node pairs.
The results are shown in Figure 5(b). We show the results
for wireless transmission range set to 200 and 250 meters.
We lower the wireless transmission range to 200 purposely
being led by the sparsely populated region around z = 700
(noted earlier) for the initial node positions. The results
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demonstrate that connectivity properties may be dramati-
cally different in transient phase and in steady-state (see the
sharp drop of the fraction of disconnected nodes at the ori-
gin in Figure 5(b), for the wireless transmission range 200
meters).

We further show the average node degree in Figure 5(c).
We suspect that virtually constant value of the average node
degree is due to large wireless transmission range, relatively
with respect to the area of the simulation and density of
nodes. The smaller average node degree for the initial node
positions is due to smaller mass in the distribution of node
degree to small degrees.

We consider steady-state average numeric speed as com-
puted at the instants of a simulation as in Figure 5(d). The
average numeric speed decreases with time, as predicted by
the analysis, and takes more than 2000 seconds to reach a
neighborhood of the steady-state average speed. The av-
erage speed at the start of the simulation is 5 meters per
second, which is the average of a random speed with uni-
form distribution on the interval from 0.01 to 9.99 m/sec.
The steady-state average speed is somewhat smaller than 2
meters per second. We complement the average numeric
speed in Figure 5(d) with empirical histograms of the nu-
meric speed at the origin of a simulation, after 100, 1000,

and 5000 seconds from a simulation start, see Figure 6. Ini-
tially, all the node numeric speeds are uniformly distributed
on the interval from 0.01 to 9.99 meters per second. The
larger the time in a simulation, the closer the distribution
of the numeric speed to the steady-state distribution of the
numeric speed. The results indicate that this convergence
time is larger than 1000 seconds, and it seems to virtually
converged at 5000 seconds from a simulation start (Fig-
ure 6(d)).

We now show the node positions and empirical distribu-
tion of node numeric speeds obtained by our perfect sam-
pling in Figure 7. Both visually conform well with the re-
spective results showed in Figures 4(c) and 6(d), obtained
for large time of 5000 seconds. Thus, indicating perfect
simulation and hence validity of our perfect sampling.

Next, we consider performance of DSR routing protocol
on these scenarios. We configure 20 data connections, each
with the constant bit rate of 1 packet per second and packet
length fixed to 512 bytes. Each connection is initiated at
a time instant, which is drawn independently, uniformly at
random on the interval 0 to 40 seconds of the simulation
time. Each connection lasts until the simulation ends. We
consider a performance metric defined as follows. Over
10-second time intervals, we compute the ratio of the total
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Figure 8. Packet delivery ratio achieved by DSR protocol when the mobility simulation is non perfect

and perfect.

number of packets received by the nodes and the total num-
ber of packets sent. We call this ratio packet delivery ratio.
The results are showed in Figure 8 for both non perfect and
perfect simulation of the node movements. With non per-
fect mobility simulation, there is a notable initial transient
for packet delivery ratio; when the mobility simulation is
perfect, this is not noticable.

5 Conclusion

We described our implementation of perfect sampling
for a set of random trip mobility models. We also present
simulation results for a particular random trip mobility
model that we construct from existing road maps, which
thus captures some aspects of reality. We evaluate several
node communications properties and their dependence on
the underlying mobility. The main observations from our
simulation results are: (i) transient phase may last long,
longer than a typical simulation duration, (ii) the transient
phase effects performance, which is different in steady-
state, (iii) our perfect sampling produces perfect simulations
of node mobility. Our tool for perfect sampling produces in-
put to widely-used ns-2 network simulator, and is available
to public.
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