Timestamp Integrity in Wearable Healthcare Devices

Muhammad Siddiqif, Vijay Sivaraman', Sanjay Jha*
¥School of Electrical Engineering and Telecommunications
*School of Computer Science and Engineering
t*University of New South Wales, Sydney, Australia
{m.siddigi @student.,vijay @ sanjay @cse. }unsw.edu.au

Abstract—Wearable sensors for heart-rate, ECG, blood pres-
sure, and blood glucose are gaining increasing prominence in
home-based healthcare. Though the medical sensory data is now
routinely encrypted and signed, the timestamp associated with the
data, which is needed for accurate correlation and reconstruction
of medical events, remains poorly secured. In this paper' we
first motivate the problem by demonstrating with two medically
approved devices on the market today that timestamps can be
easily tampered to backfill medical data. We then propose a novel
solution that works within the resource constraints of wearable
devices to secure timestamps against malicious or ill-configured
gateways. Lastly, we evaluate our solution via simulation and
experimentation across multiple network access technologies.

I. INTRODUCTION

Healthcare costs are ballooning in much of the western
world. Increased life expectancy, sedentary lifestyles, and poor
diet are contributing to a larger proportion of our population
living for longer periods with chronic conditions like obesity,
heart disease, and diabetes. This is increasing the burden on
primary care delivery, and exacerbating acute events requiring
hospital care. A significant opportunity exists to curtail these
growing demands on our healthcare system by engaging
patients in at-home medical management by using emerging
wireless sensor technology.

Wearable sensors range from being fitness-based ones for
cardio and calorie monitoring (e.g. Fitbit Flex, Jawbone UP,
etc.) to medically-approved monitors for ECG (AliveCor Heart
Monitor), respiration rate (Toumaz Sensium Plaster), and
blood pressure (Fora Diamond Cuff BP). Major technology
companies are teaming up with pharmaceutical and health-
care companies to develop medical monitoring platforms and
provide remote healthcare to patients — examples include
Google’s partnership with Novartis and prototype of the “smart
contact lens” for wireless glucose monitoring [1], Apple’s
partnership with Mayo Clinic [2] and development of its
HealthKit platform for the Apple Watch [3], and Samsung’s
healthcare platform called SAMI for its Galaxy series of
smartphones [4].

While wearable devices can collect vast amounts of data
on the evolution of chronic conditions and the effectiveness
of treatments, significant research is needed to increase confi-
dence and trust in the data thus collected. Our previous work
has developed mechanisms for low-complexity encryption and

IThis work is funded by Australian Research Council’s Discovery Grant
DP150100564.

digital signatures of the medical data [5], [6] by the wearable
device — while these mechanisms help secure the data itself,
they do not secure the associated meta-data or context, such
as the time at which the data was collected, which is the focus
of this work.

Correct timestamping of medical data is vital for medical
practitioners and insurance providers. For a patient who has
had a heart attack, the doctor reading the ECG needs to
know the heart rate and blood pressure immediately before
and after the event, at sub-second time-scales [7], in order
to identify potential causes and consequences. Similarly, a
medical insurance company evaluating a medical claim needs
to know the timing of events, including whether the patient
is in compliance with terms (e.g. routines regarding exercise,
smoking, and diet) that can affect insurance pricing [8]. Times-
tamps of medical data from wearable devices are not reliable
today — they often operate on low-accuracy or misconfigured
clocks, synchronize over variable-latency Internet paths, and
are susceptible to being tampered by users who have incentive
to do so.

At first thought timestamping may seem trivial to achieve
— either the wearable device could timestamp each data item
as it generates it, or the medical server could timestamp it as
it receives it. The problem with the first approach is that the
wearable device, being extremely resource constrained, neither
has an accurate and reliable on-board clock, nor can it run
a sophisticated protocol (such as NTP) to bootstrap and syn-
chronize its on-board clock. The second approach, whereby the
receiving server timestamps the data, is not only susceptible to
unpredictable Internet latencies, but also fails to work when the
wearable device or the gateway (smartphone) uploads data not
in real-time but in bursts (indeed many wearable devices like
Fitbit work in this way). There is a third alternative, whereby
the timestamping is done by the smartphone, but this approach
makes the timestamps susceptible to tampering by the user, as
we will demonstrate shortly.

Given the above challenges, our objective in this paper is
to develop and evaluate a mechanism that assures reliable
timestamping of medical data. Our first contribution is to
show, using medically approved devices on the market today,
that timestamps are insecure and can be tampered easily.
Our second contribution is to develop a scheme that ensures
reliability of timestamps of the medical data; our scheme
operates within the tight resource constraints of wearable
devices, and accommodates variable latencies over Internet

paths. Our third contribution is to evaluate our scheme via
simulation and implementation to quantify the reliability of
timestamps, in the face of various threats from the insecure
components in the system.

The rest of the paper is organised as follows: §II reviews
related prior work in this area, while in §III we demonstrate
that today’s medical devices are insecure against tampering
of timestamps. In §IV we develop our protocol for assuring
correctness of timestamps of the sensor data, while in §V
we evaluate the performance of our protocol via analysis and
simulation, and the paper is concluded in §VI.

II. RELATED WORK

Broadly, existing schemes for timestamping either send the
data to a trusted third-party to timestamp, or try to synchronize
clocks across all relevant entities that record the timestamps.
Seminal works in the former category include [9], [10]. These
schemes require a centralized trusted timestamp authority that
provides the absolute timestamp on request. Adams et al. [11]
introduced the idea of additional entities called Temporal Data
Authorities (TDAs) that add unpredictable timing information
(such as stock exchange or match score) to the absolute
time to distribute the trust rather than relying on a single
entity. A decentralised timestamping scheme with distributed
storage, called “broadcast and save”, was proposed by [12]
in which user sends the hash of the data to all other users
that save it with current time appended. In these schemes,
trusted third party time servers are required to timestamp the
data. It requires Internet connectivity, which sensors do not
usually have and gateways (smartphones) might not have at
all times. Moreover, frequent timestamping is not possible as
it involves power consuming public key decryption operations.
Unpredictable network delays also make these schemes inac-
curate and imprecise. For these reasons, conventional digital
timestamping protocols cannot be adopted for sensor networks.

Synchronising wireless sensor clocks has been studied
deeply in the past two decades. Elson ef al. proposed Reference
Broadcast Scheme (RBS) [13], which synchronizes receiver
with receiver instead of sender to receiver thus improving
precision by removing uncertainty related to sender. Gradient
Time synchronization Protocol (GTSP) [14] is a distributed
time synchronization protocol where nodes periodically send
synchronization beacons to peers and try to agree on a com-
mon logical time. These two protocols, RBS and GTSP, are
not suitable for the problem in hand where we need to secure
absolute timestamps rather than relative timestamps of the sen-
sor data. Timing-Sync Protocol for Sensor Networks (TPSN)
[15] is based on sender-receiver synchronization and uses tree-
based architecture in which the synchronization process is
triggered by the root node and the first hop nodes synchronize
with the root node by two-way messaging between them.
Subsequent nodes get synchronized to first hop nodes in the
same fashion and so on until all the nodes get synchronized.
Flooded Time Sync Protocol (FTSP) [16] is similar to TPSN in
that all the nodes are synchronized to the root node. Root node
is elected periodically and broadcasts the timing information

in a single message to the nodes within broadcast domain.
TPSN or FTSP, which allow absolute time to be taken from
root node, can be used to get the wearable device synchronized
to the smartphone time if smartphone time is to be used.

III. ATTACKING TIMESTAMPS: A DEMONSTRATION

Users of wearable medical devices may have incentives to
tamper with their records. Indeed, studies show that about half
of the patients lie to their doctors about their medical history,
habits, and symptoms [17]. By tampering their records, users
can obtain physical benefits like sick leave, as also monetary
benefits like lower insurance premium. For example, a patient
who is enjoying lower insurance premium in exchange for
daily exercise may have an incentive to backfill data from his
activity tracker for a period of missed exercise. We demon-
strate next that these threats are real, not just hypothetical.

A. Tampering with the Clock

We procured a smart blood pressure monitor, called “Fora
Diamond Cuff BP”, manufactured by ForaCare. It is worn on
the arm, and transmits the blood-pressure measurements wire-
lessly via Bluetooth to the smartphone. The App timestamps
the reading and uploads to their server, where the user and
medical practitioner can view it online.

Date/Time | AVG ’ Blood Pressure IRB l Pulse I Note
15 Feb 2015
oipepizt 109/ 75 mmhg
16 Feb 2015
2:04 pm

16 Feb 2015
11:59 pm

110/ 78 mmHg
114/ 76 mmHg

16 Feb 2015
1:55 pm 111/ 78 mmhg
16 Feb 2015
7:51 pm

115/ 79 mmHg

114/ 74 mmHg

16 Feb 2015
12:49 pm

CX (X X

Fig. 1. Blood pressure readings on iFora BP App taken between 12:49pm to
2:04pm on 16 Feb

We were able to tamper the timestamps of the measurements
simply by changing the time on the smartphone clock before
measuring the blood pressure. To illustrate this, we took
several blood-pressure measurements within a time window
(12:49pm to 2:04pm) on a specific day (16 Feb), but changed
the smartphone clock settings between readings. As shown in
Fig. 1, the App and the online server report the readings with
the doctored time: rows 1, 3, and 5 show the readings as if they
were taken outside of the measurement window. This lack of
protection of timestamp, even in a medically approved device,
shows the ease with which a user can backfill their missing
readings.

The above behavior is not unique to the device considered
above (which does not have an internal clock and relies on the
smartphone to timestamp its data), but also to devices which
have their own clock. For example, we experimented with the
Withings Pulse O, activity tracker, which has an internal clock,
but still needs to sync its clock with the smartphone to get the
absolute time (much like Fitbit). We verified that changing the
smartphone clock between the synchronizations allowed us at
will to change the timestamp of the medical data.

B. Tampering with the App
One could argue that the problem above can be overcome
by having the App maintain its own time rather than relying
on the phone’s clock setting. We show that a dedicated
user can still circumvent this by tampering with the App
itself. There are a host of tools (Apktool, Androguard, Cydia,
Clutch, Hopper, iRET) that can decompile legitimate Apps,
both for Android and iOS platforms (indeed, Santoku linux
provides many of such tools built in for mobile forensics),
and these tampered Apps can then be recompiled and run on
the smartphone.
=

(Original Text: Turn)
on the bluetooth
\switch first.

Clone App for researchers
|Original Tab Name:
« i € @ P

Home

Fig. 2. Home screen (cropped) of clone Android App of iFora BP

To illustrate the feasibility of this approach, we used Apk-
tool to decompile the Apps supporting the Fora and Withings
devices above (inspired from [18]); we were then able to
make modifications to the Apps, and recompile them for
the Android smartphone with appropriate digital signatures
(uploaded online [19][20]). In Fig. 2 we show how the front-
end of our clone App differs from the original, as proof that
our App installs and runs on the smartphone. Further, our
doctored App is transparent to both the medical device and
to the server. In other words, the device still uploads data to
the App and the server still accepts data from the App as
before. This demonstrates that a motivated user can doctor the
App on their smartphone to change the clock value used by the
App, which in turn falsifies the timestamp associated with the
medical data flowing from the wearable device to the server.

IV. OUR PROTOCOL TO SECURE TIMESTAMPS
A. Challenges

It is important that timestamping is performed in such a way
that it is nearly impossible for any potential malicious party
to fudge the time when data is produced. Such guarantee is
vital for the success of remote healthcare technology, however,
there are challenges to achieve this goal. There are three places
in the network where data can be timestamped: 1) Server 2)
Sensor and 3) Smartphone; however, none of these by itself
is ideal as explained below.

1) Timestamping data at server: Servers are far removed
from medical devices. When data reaches healthcare servers
over the Internet, it is subject to unpredictable Internet delays
and loses the accuracy of time. Many wearable devices and/or
their smartphone Apps upload data not in real-time but in
bursts (Fitbit, Withings Pulse O,). Moreover, data can be held
back by the smartphone with malicious intent and released
after a certain period of time, which makes timestamping at
the server erroneous.

2) Timestamping data at sensor: Sensors are usually
equipped with hardware oscillators to provide logical time
but do not have any reference to the absolute time. They
usually do not have direct access to the Internet and rather
communicate with smartphone through low power consuming
wireless technologies like Bluetooth. The resource constrained
nature of sensors prohibits the implementation of traditional
cryptographic absolute timestamping techniques. Sensors can
get their clocks synchronized to the smartphone, however,
time provided by the smartphone could be wrong making
it untrusted. Moreover, the hardware clocks drift away from
the actual value over time due to inherent and environmental
factors. As a result, sensor devices must keep getting synchro-
nized to an external reliable source of time after certain period
of time to prevent excessive drift.

3) Timestamping data at smartphone: According to a re-
search report by Arxan Technologies, 97% of top 100 paid
Android Apps and 87% of top paid iOS Apps have been
hacked [21]. Therefore, even if the smartphone App manages
a software clock and uses an Internet protocol like NTP to
synchronize it to the absolute time, the App is vulnerable to
hacking [22], as we have shown in §III as well. The hacker
can tamper the clocking mechanism of the smartphone that
makes smartphone unreliable for timestamping.

B. Design decisions

Having established that none of the single entity above
can solely be responsible for timestamping medical data, we
mandate the following roles of the three entities.

The sensor node performs the actual timestamping, for
two reasons: (a) we want high accuracy, in that timestamping
should be performed at or very close to where the data origi-
nates; indeed prior studies have required sub-second accuracy
in diagnosis of medical conditions such as cardiac events
and neurological conditions [23]; (b) we want the timestamp
to be digitally signed by the sensor so it is non-repudiable
and cannot be fudged by any other entity, including the
smartphone.

The smartphone bootstraps the absolute timestamp on
the sensor, since it can run Internet protocols like NTP to
synchronize time accurately, and also because it is proximitous
to the sensor. However, this time given by the smartphone to
the sensor may be untrusted and will be verified by the server,
as described next.

The server, henceforth referred to as the Time Inspector,
verifies the validity of the timestamp by challenging the sensor
periodically; it does not assign timestamps, rather just checks
the timestamp. This allows the verification role to be optional;
the system design is modular so that the timestamp validation
can be excluded if the application does not require it.

The detailed operation of the protocol is described next.

C. Protocol to validate time of the sensor

Our proposed protocol is shown in Fig. 3 and operates as
follows. When a patient registers his wearable sensor device
with the authentication server from the healthcare provider,

Auth, Server

Forwards IP address

‘Wearable
healthcare sensor

B -

Time Sync

Time Inspector

Gets phones
IP address

Trace route
Gets P uf:luses:(_____________._.—-——m?
router to phone

to smartphone

Smartphane

Login

Authenticatinn

Gets
Tphone
Ping
"————_i“’_"cf_________)
ds -
{Nonce + Tphone +Tsenso il {Nonce + Tphone +Tsensor}ds

Data Server

Gets roundtrip
time [rtt)

TE ch D{

Calculates €

MNonce

Value of trust
parameters assigned
todata

Data +Tphone +Tsensor

pata +Tphene Tsensol
Data +Tphone +Tsensor

Sensorreboots |
Tsenzor =0
New epoch notfy .

Fig. 3. Flow diagram of the protocol to validate time of the sensor

the smartphone’s IP address is notified to the Time Inspector,
so that the timestamp verification process may commence.
When the patient pairs his medical device with the phone, the
wearable device gets the absolute time from the smartphone.
This time T}p0ne acts as the baseline reference for an absolute
time from which the wearable device can count time using its
internal relative clock T, 50 Periodically, the Time Inspector
validates the clock value {Tpnone + Tsensor} at the sensor
node. In order to do so, it determines the network latency
by conducting multiple pings to the penultimate hop router
to the smartphone, determined by using a traceroute {note
that the Time Inspector does not trust the smartphone and
hence does not ping it directly}. Denote by 4+ the mean
round-trip-time to the penultimate hop router. The latency
between the smartphone and the penultimate hop router can
be neglected for being too small. The Time Inspector now
verifies the time of the sensor by sending a nonce to the
sensor, which the sensor responds to by concatenating the
nonce with its local absolute time {nonce+T,none +Tsensor f-
digitally signed. The nonce ensures the smartphone does not
replay any previously signed messages from the sensor. Upon
receiving the nonce reply, the server calculates the time error

€ as:
(Tph,one + Teensor + Nrtt/Z) (1)

where fi,4;/2 is an approximation of the network delay be-
tween the server and the smartphone.

€ captures the residual offset between the server and sensor’s
clocks after accounting for network latency, and will be used
to calculate timestamp trust parameters as described next.

€ = Tserver —

D. Trust parameters of the timestamps

The Time Inspector periodically sends nonce challenges,
and computes the mean p. and standard deviation o, over
successive time errors €. These parameters (u.,0.) are called
trust parameters and help us determine the extent to which
timestamps are skewed. Defining an “epoch” as the period

between two time synchronizations, the Time Inspector cal-
culates the trust parameters for each epoch. Medical data
generated during an epoch is associated with the timestamp
trust parameters for that epoch. Each time the sensor syncs its
time with the smartphone, that time needs to be verified as the
malicious smartphone might give a wrong time to the sensor.
A e (offset) that is close to zero in an epoch indicates that
the sensor has a right global time for that epoch. A large value
of u. indicates one of two things: 1) The smartphone has a
constant offset from the server time; or 2) The smartphone
has given a wrong time to the sensor with either malicious
intent or out of negligence. A constant offset can be verified
by geographical location of the smartphone or by looking at
the offsets in multiple epochs to see if they are consistent or
not. A large value of o, (distrust) reduces the trust on validity
of timestamps.

E. Effect of sensor reboot

Each time the sensor synchronizes its time to the smart-
phone, it updates the base value of its global time T one.
When the sensor reboots, 1., s0r resets to zero and a new
value of Tppone is fetched from the smartphone. The datalog
server, which receives timestamped data, can detect a reboot
whenever T, s0r resets without expected addition in the base
value Tpp0ne. In which case, the data server sends a message
to the Time Inspector to check the time of the sensor as it is
the start of a new epoch.

FE. Periodicity of challenges

In this section, we discuss how the periodicity of the nonce
probing should be adjusted depending on the frequency with
which the sensor synchronizes its clock with the smartphone.
Hardware clocks within sensors drift with time and are known
and specified by the manufacturers. A device manufacturer
may choose any frequency mode to sync sensor’s time with the
smartphone depending upon the drift rate and the requirement
of the application. The nonce messages must be distributed
evenly in time within an epoch, rather than all at the start, in
order to detect any drift in a sensor’s clock.

If a sensor synchronizes its time periodically, it forms
epochs of equal lengths. Each epoch can be distinguished by
a unique base value of time T,4one. In this case, on-going
periodic challenges are sent with a time period N times the
period of clock synchronization, where N is the number of
challenges per epoch. The values of trust parameters (ic,o.)
are calculated and sent to the data server at the end of the
epoch to be associated with the data.

If a sensor gets its time synchronized only once when it
boots up, and never syncs again unless it reboots, only one
epoch is formed. In this case, the sensor’s clock will keep
drifting away from the actual value of absolute time, which
results in the change of mean time error y. with half the rate of
drift (challenges evenly distributed). A few challenges evenly
distributed over a significant interval of time are sufficient to
validate time and determine the drift rate. o, is not affected
by the drift due to the absence of randomness.

Std. dewiation error (%)
3

3003

300.2

300.1

2999

Wean time error (sec)
w
]
8

2998

(a) Mean time error fie

Fig. 4. Error in trust parameters vs number of nonce messages per epoch

If a sensor gets its time synchronized non-periodically e.g.
whenever the user syncs its device with the smartphone (as
in Withings Pulse O,), it forms epochs of unequal lengths.
Here we assume that when the device is synchronized with
the smartphone, the smartphone uploads the data to the data
server right away, which is true in case of Withings Pulse O,.
In this mode, as soon as the data server gets the data from
a sensor, it sends a message to the Time Inspector to notify
the start of a new epoch. On-going periodic challenges with an
appropriate time period (depending upon the power constraints
and requirement of the application) are recommended in this
mode.

V. EVALUATION OF THE PROTOCOL

As argued in §III, the attacker could be the patient himself
who wears the sensor device and owns the smartphone.
Moreover, smartphone is the one that provides global time
to the sensor device in our protocol as well as in most of the
medical devices in the market today, which is evident from
our attacks on Fora and Withings devices. The attacker cannot
change the contents of the challenge response messages from
the sensor as they are digitally signed by the sensor, however,
he can perform the following attacks through the smartphone:

1) Smartphone may give the wrong time to the sensor.
(Attack-1)

2) Smartphone may choose not to forward the challenge
messages from server to the sensor or vice versa thus
defying the inspection protocol. (Attack-2)

3) Smartphone may give a future time to the sensor and
hold the challenge or challenge response message until
that future time to pretend he is further away from the
server. (Attack-3)

In this section we demonstrate how the server detects the
above mentioned attacks and discuss how the number of nonce
messages in an epoch affects the performance of our protocol.
Intuitively, increasing the number of nonce messages in an
epoch should increase accuracy of the trust parameters (i,0¢).
On the other hand, more nonce messages in an epoch will
consume more sensor power as it involves digital signatures.
For example, a telosB mote consumes 10mJ energy to per-
form ECDSA algorithm [24]. Energy consumption increases
linearly with the increase of number of nonce messages, e.g.
100mJ for ten nonce messages.

To evaluate our protocol, we implemented the Time Inspec-

tor (server) and the client modules (smartphone) simulating
attacks in Python (uploaded online [25]). Evaluation of our

s 10 15 20 25 a0)
Number of nonce messages per epoch o 5 10 15 20 25 30 2007
Number of nonce messages per epoch

(b) o error (%)

[} 5 10 15 20 25 30
Number of nonce messages per epoch

Fig. 5. Catching the time offset of sensor at server

protocol under no attack (reference) and the attacks mentioned
above is presented next.

A. No Attack

To establish the baseline for our protocol, we developed
a smartphone module named TrustedClient, which obtained
its time {Tphone + Tsensort using NTP. Similarly the server
obtained its time Tgepper using NTP. We noticed that the
discrepancy between the two times was up to 100ms. The
server Time Inspector and smartphone modules were running
in different cities. We measured the network latency between
server and client modules to be .1 = 350ms, max(rtt) =
810ms, and a standard deviation of 0,4+ = 250ms, which was
calculated by running a ping command 1000 times from the
client to the server.

We executed the protocol in which server calculated time
error € (Eq. 1) and the running average pu. each time it
received a nonce reply from the client. We plotted the running
average (. as a function of number of nonce messages in
an epoch (Fig. 4(a)). We also plotted the standard deviation
o error (%) from the pre-calculated value (125ms = o,.4¢/2,
standard deviation for one way trip) (Fig. 4(b)). From the
plots in Fig. 4, it can be noted that increasing the number
of nonce messages brings the mean time error pu. closer to
the actual time difference between server’s time and sensor’s
time (approx. zero in this case). Also, it brings the standard
deviation of the time error o, closer to the actual value (125ms
in this case) as well. This is an expected behaviour due to
unpredictable network latency and we conclude that more
number of challenges in an epoch result in more accurate
values of trust parameters (u.,0.), however, energy constraints
would not allow us to increase that number beyond limits
(depending on the device). Plots in Fig. 4 show that, in this
particular instance, mean time error p. remained quite stable
(within 120ms accuracy) even with a few number of nonce
messages per epoch while o, error stabilized (under 20%) after
20 nonce messages.

B. Attack-1: Giving Wrong Time

This is the most significant and likely attack. To evaluate
the performance of the protocol under this attack, we set
smartphone module’s time 300 seconds (5 minutes) behind the
global time and named this module OffsetClient. We executed
the protocol and the server calculated the mean time error
Le against the number of nonce messages. From the plot in
Fig. 5, it is evident that u. is converging to 300 seconds. The

behaviour of ;. remained same as in Fig. 4(b), as expected.
This shows that the server can catch the offset of the client
whether due to negligence or malicious intent.

C. Attack-2: Defying Inspection

To study this attack, we developed a smartphone module
named DropClient that dropped the challenge messages from
the server. As in our protocol, we have set the challenge
response to be timed out in 7,.p, seconds (calculated based on
the value of max(rtt)), the server found all the challenges in
an epoch timed out. Failure of nonce response to come back
in time 7,.;, could be either due to network or malicious user.
The Time Inspector can query the data server to check whether
the medical data is being received or not. In the later case, the
Time Inspector flags the client as malicious with drop tag.
Although, the value of p. (offset) in this case is found zero,
the server sets the value of . (distrust) very high (infinity).

D. Attack-3: Disguising Locality

To study this attack, we developed a smartphone module
named DelayClient that simulated attack-3 in which it gave a
future value to the sensor and held back the response from
sensor to that future time to pretend it was further away
from the server. We executed the protocol and the server
found the challenge response messages being received after
the timeout value Te.pn,. Although the time error values e
(Eq. 1) calculated by server represented no significant offset,
the measurements could not be trusted due to late arrival of
the challenge response messages. The server flags such client
as malicious with delay tag. The value of u. (offset) in this
case is close to zero, however, the server sets the value of p.
(distrust) relatively high.

E. Sensor’s clock drift

To study the role of sensor’s clock drift, we set clock drift in
the client module DriftClient to be “-1 sec/hour” (a decrease
of 1 second per hour). A number of nonce messages were
sent in an epoch at different times. We plotted the time error €
against the epoch time expressed in hours (Fig. 6). The drift o

* s 4 15 s

Time Error (sec)
Lk

Time since start of epoch (hours)

Fig. 6.
can be approximated by averaging out the drifts between two
nonce messages using the following formula.

1 N € €
i~ €i—1
N12T T

Catching the clock drift of sensor at server

6= 2)
where N is total number of successful nonce messages and
T, is the time of ith nonce since the epoch. We found
d ~ —lsec/hour as expected. In the case of one-off syn-
chronization, the sensor’s clock drift is the dominating factor

in causing the mean time error (. to increase. The server binds
the drift rate with the timestamps of data.
VI. CONCLUSION

In this paper we have discussed the importance of accurate
timestamping of data from wearable healthcare devices. We
have shown that the mechanisms these devices employ to
timestamp their data are susceptible to malicious attacks. An
overlay solution has been developed, which verifies that the
time used to timestamp data from these devices is precise and
has not been altered maliciously. This can be used to increase
confidence in timestamps associated with medical data. Our
evaluation has quantified the trade-off between the reliability
and energy cost of the protocol and has shown how well
timestamps can be validated. We believe this is a step towards
securing the time-context of data from wearable healthcare
devices.

[1]
[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
(22]
[23]
[24]

[25]

REFERENCES

“Novartis to license Google “smart lens” technology,” http://goo.gl/
ygXAmX, Jul. 2014, [Online; accessed 12-Feb-2015].

“Apple partner Mayo Clinic to reportedly demo HealthKit integration
at media event,” http://goo.gl/e2JKm6, Dec. 2014, [Online; 12-02-15].
“Apple Watch,” https://www.apple.com/watch/, 2015.

R. Lawler, “Samsung Opens Simband Applications And SAMI Data
Exchange Platform To Developers,” http://goo.gl/ZAE2M9, Nov. 2014,
[Online; accessed 13-Feb-2015].

S. T. Ali et al., “Eliminating reconciliation cost in secret key generation
for body-worn health monitoring devices,” IEEE Trans. Mob. Comput.,
2014.

, “Authentication of lossy data in body-sensor networks for cloud-
based healthcare monitoring,” FGCS, vol. 35, pp. 80-90, 2014.
“Overview of online symptom checkers: the basic things you need to
know,” http://goo.gl/HDOdYv, [Online; accessed 21-08-2015].

Steve Lohr, “Carrots, Sticks and Lower Premiums,” http://goo.gl/
704280, [accessed: 02-03-15].

S. Haber and W. S. Stornetta, “How to time-stamp a digital document,”
Journal of Cryptology, vol. 3, 1991.

F. Pinto and V. Freitas, “Digital time-stamping to support non repudia-
tion in electronic communications,” in the SECURICOM, Paris, 1996.
Adams et al., “Internet x.509 public key infrastructure time stamp
protocols,” IETF, 1999.

J. Benaloh and M. de Mare, “Efficient broadcast time-stamping,” Tech.
Rep., 1991.

J. Elson et al., “Fine-grained network time synchronization using refer-
ence broadcasts,” in Proceedings of the 5th Symposium on OSDI, 2002.
P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in International Conference on IPSN, 2009.
S. Ganeriwal et al., “Timing-sync protocol for sensor networks,” in
ENSS, 2003.

M. Mardéti et al., “The flooding time synchronization protocol,” in ENSS,
2004.

Kevin McCarthy, “Study: 50 percent of patients withhold information
from their doctor,” http://goo.gl/6EOW2U, [Online; accessed 21-10-15].
Pau Oliva Fora, “Beginners guide to reverse engineering android Apps,”
http://goo.gl/xeWbrM, Feb. 2014, [Online; accessed 17-May-2015].

“A modified clone app of iFora BP for research purposes,” https://github.
com/sidz81/iFora-BP.

“A clone app of Withings for research purposes,” https://github.com/
sidz81/Withings, Jun. 2015.

Arxan Technologies, “State of Mobile App Security. Apps Under At-
tack,” http://goo.gl/eBSEsS, Nov. 2014, [Online; accessed 27-Feb-2015].
“Gmail smartphone app hacked by researchers,” http://www.bbc.com/
news/technology-28895304, 2014, [Online; accessed 17-Feb-2015].

A. Zani and A. M. Proverbio, in The Cognitive Electrophysiology of
Mind and Brain. San Diego: Academic Press, 2003.

Arpit and A. Kumar, “Analysis of optimized elliptic cryptographic
protocol on resource poor tiny node,” in /ICSCA, Singapore, 2011.
“Time Inspector and Client modules in Python,” https://github.com/
sidz81/Timelnspector-Server_Clients.

