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Abstract

In this paper, we consider a heterogeneous traffic network with multiple users classes which differ

considerably in their path selection objective. In particular, we consider two classes of users: ones who

seek to minimize social cost (socialists) and the ones with typical greedy objective (anarchists) which

leads to a heterogeneous game termed as HetGame. The paper proposes an analytical framework to

derive optimal/equilibrium flow in such a heterogeneous game along with a method for the same. The

paper considers multiple examples of different networks to derive the optimal traffic assignment. We

introduce two metrics: price of α anarchy and price of good behavior to evaluate the impact of anarchists

and implications of central directives. Finally, the proposed algorithm is implemented for a real traffic

network to derive insights.

I. INTRODUCTION

Traffic congestion is an important problem for planning of any urban city, owing to increasing

traffic every day. Congestion games are an important framework for studying real-life traffic

patterns, both from the road-network perspective and communication network perspective. Owing

to a large number of possible routes to reach their destination, it may be difficult for the users to

choose the optimal path. Moreover, current traffic systems are complex and heterogeneous. One

interesting source of heterogeneity is real-time traffic information. For example, consider a simple

network in which some users follow route recommendations from an in-vehicle navigation system

while others follow their own understanding. Such a scenario results in a so-called HetGame,

a congestion game among heterogeneous users with different path selection objective. The

dynamics and equilibria of HetGames can provide insights in network planning and centralized

user routing.
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Related Work: Optimality of a path itself depends on the user’s perspective. Most literature

on optimal traffic assignment is divided into two main directions owing to the following two

objectives: (1) The individual perspective to decide a route by choosing the least costly available

path or (2) the socialist behavior to chose paths which minimizes the average cost of everyone.

The first strategy may lead to an equilibrium which is the Nash equilibrium (NE) of corresponding

congestion game and can be formed as an optimization problem using Wardrop’s equilibrium

conditions [1]. However, this strategy is not optimal from the perspective of the city government

or the city planner (e.g. department of transportation, or city government) [2]. The city planner

would want the second strategy so that the total travel cost in the city to be minimized, which is

popularly also known as the social optimal situation. Along with analytical studies, past literature

has proposed many algorithms and numerical methods to solve the problem in an iterative manner.

The problem of traffic assignment can be written as a general convex optimization which can be

solved with standard optimization techniques. One promising technique is to use the Frank-Wolfe

Algorithm to determine the optimal flows [2]. Along with networks with homogeneous users,

there has been some work in studying network with some heterogeneity of users. For example,

in [3], a traffic network with users with varying trade-off preference between minimizing the

latency it experiences and minimizing the money it is required to pay was studied. Scenarios

where a user fraction can cooperate (known as Stackelberg equilibrium) was studied in [4]. In [5],

a traffic network where random users are coexistent along with the regular traffic was analyzed

to derive the optimal flow. In [6], it was shown that tolls can be used to derive incentives to

make nash equilibrium and social optimum the same. Prior literature studies congestion games

in which users have different utility function parameters [7], [8]. These parameters can model

varying sensitivity to money, risk, fuel consumption. [9] proposed deterministic strategies for

central planner in order to provide desired flows, including by randomly routing players after

giving them specific guarantees about their costs. Along with networks with social and selfish

objectives, there can be networks where both such users co-exist. Some of the users are ready

to obey central directives and some of them are purely selfish. All the mentioned work have

not studied networks having users of such heterogeneous nature which is the main focus of the

work.

Contributions: In this paper, we consider a heterogeneous traffic network with multiple users

classes which differ considerably in their path selection objective. In particular, we consider two

classes of users: ones who seek to minimize social cost (socialists) and the ones with typical
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greedy objective (anarchists). This work examines non-atomic congestion games with these two

user classes. We develop a framework to derive optimal/equilibrium flow in such a heterogeneous

game and propose an algorithm for the same. We also propose two metrics: price of α anarchy

and price of good behavior to evaluate the impact of anarchists and implications of central

directives. We consider multiple networks to derive the optimal traffic assignment. With the help

of analysis, we derive insights about these systems to help formulate central directives which can

make the social optimal solution to be equal to the equilibrium. We also evaluate the proposed

algorithm for a real traffic network.

II. SYSTEM MODEL

In this paper, we consider a traffic network with heterogeneous users (commuters/packets)

termed as heterogeneous traffic network (HetTN). The traffic network N is modelled as a graph

G with nodes V and edges E. There are K source destination pairs {pk : (ak, bk), k = 1 : K}

with the required flow dk between the source and destination of kth pair. A path Pk between a

source destination pair k consists of a set of connected edges i.e.

Pk = {e1, e2, · · · en} : such that e1 = (ak, s1), e2 = (s2, s3),

· · · en = (sn, bk), si ∈ V ∀i ∈ [1, n].

Let Pk = {Pk} denote the set of all path between the kth pair. Let P = ∪k=1:KPk. Let the flow

in each path P ∈ P be denoted by fP . For any edge (link) e ∈ E, the total traffc flow in the link

is equal to the total flow in that link as contributed from all paths of all the pairs fe =
∑
P3e

fP .

Each link e ∈ E has a general latency function le(·) such that the cost incurred in that link is

equal to

ce = le(fe).

This latency function depends on the ink characteristics, for example, type of the link, its capacity,

construction materials. We assume the traffic network is heterogeneous so that the required flow

dk can consists of different proportion of different types of users, as defined in the following

subsection.

A. User Classes and General HetGame

We assume that there are M types of users where different types differ in their proportion

of the total population and traffic path selection strategy. Let M denote all types of users. We
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assume that a type m ∈ M has proportion αm of the total demand flow for each kth pair pk.

The complete traffic assignment problem can be seen as a M player game termed as HetGames

where the set of m type users can be seen as a single player m. Let the combined strategy of

this player m is Xm = (XmP )P∈P . Given the strategy, the flow of type m users in a path P is

given as αmXmP . The utility function of the mth player is denoted as um(Xm, X!mα), where

X = {Xm : m ∈ M} is the combined strategy and X!m = {Xj : j ∈ M, j 6= m}. Thus, the

total flow in any link e for the heterogeneous traffic network is

fe =
∑
P3e

∑
m∈M

αmXm,P .

To clarify the type of users, we describe some of the interesting users types in the following

list:

1) Socialist: Socialist users aim to minimize the total cost of the network which is given as

C(Xs) = −
∑
e∈E

fele(fe).

In a traffic assignment problem with socialists users only, the optimal flow is given as the

argmax of C [10]. Therefore, we can say that the utility function of the socialist player is

average cost of the network which is given as us = −
∑

e fele(fe) [10].

2) Anarchist: Anarchist users aim to minimize their own cost, and therefore chose the path

with the least link cost. For anarchist flow, the optimal flow is given as the nash equilibrium

of the traffic assignment problem. In the absence of any other class of users, the optimal

flow for anarchist is given as the solution of the following problem [1]

Xopt
a = argmin

∑
e∈P :XaP>0

∫ fe

0

le(v)dv (1)

Therefore anarchist player utility can be given as

ua = −
∑

e∈P :XaP>0

le(fe).

3) Proportionally-Fair Socialist: The proportionally-fair strategy tries to minimize the total

cost function while maintaining fairness—conceptually, fairness requires that not even a

small fraction of users experience a particularly high cost. These users minimize the cost

uf = −
∑

e fe exp (le(fe)).
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B. α-Anarchy HetGame

In the current paper, we will consider a particular HetGame with two classes of users: socialists

with αs = (1 − α) proportion and anarchists with αa = α proportion. We term this game as

α-anarchy HetGame. For each source and destination pair pk, the required anarchist flow is αdk

and socialist flow is (1− α)dk.

Let Xs = x be the socialist strategy and Xa = y be the anarchist strategy. For any pair pk,

the sum of the socialist flows in all the paths is
∑

Pk∈Pk

(1− α)xPk
, which is required to be equal

to the total demand (1− α)dk. This results in the following flow constraint:

Ss :
∑
Pk∈Pk

(1− α)xPk
= (1− α)dk, ∀k

for socialists. This constraint is equivalent to

Ss :
∑
Pk∈Pk

xPk
= dk, ∀k

Similarly, for the anarchist, the flow constraint is given as

Sa :
∑
Pk∈Pk

yPk
= dk.

Now, in any edge e, the total flow is equal to

fe =
∑

P3e,P∈P

(1− α)xP + αyP . (2)

In the game where both classes co-exist, each class will try to optimize their own flow in

presence of the flow of other class according to their own path selection strategy as described

above. In the next section, we will develop a framework to derive the joint optimal flow for the

users of the two classes.

III. JOINT OPTIMAL FLOW

The α-anarchy HetGame consists of simultaneous play between two types of users trying to

minimize a different cost function. From a high level, the anarchists will try to achieve nash

equilibrium (NE) given the socialist flow and the socialists must find a socialist flow so that the

responding NE strategy from the anarchists achieves the minimum social cost. In this section,

we focus on developing a framework to derive the optimal flow. The following Theorem is

particularly helpful in solving this two stage problem.
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Theorem 1. Given socialist strategy x in any general α-anarchy HetGame, the NE of anarchist

users is given as the solution of:

y∗ = argmin
y

∑
e

∫ ye

0

le(
∑
P3e

(1− α)xP + αz)dz

such that ye =
∑
P3e

yP ,
∑
Pk∈Pk

yPk
= dk.

Proof. See Appendix A.

Now, the socialist users (or the player) must choose a strategy x∗ such that the total cost of the

network C =
∑

e fele(fe) is minimized. Therefore the optimal strategy is given as the solution

(x∗, y∗) of the optimization problem S which is simultaneous solution of the two following

sub-problems S1,S2:

S1 : x∗ =argmin
x

∑
e

fele(fe)

such that fe =
∑
P3e

(1− α)xP + αy∗P (x),
∑
Pk

xPk
= dk

S2 : y∗(x) = argmin
y

∑
e

l′e (ye, x)

such that ye =
∑
P3e

yP ,
∑
Pk

yPk
= dk.

where l′e(ye, x) is the modified link cost function for anarchist and given as

l′e(ye, x) =

∫ ye

0

le

(∑
P3e

(1− α)xP + αz

)
dz. (3)

The link cost function le(·) is generally taken as convex (e.g., of the form le(xe) = be +

ae(xe/ce)
d, d ≥ 1). The above optimization is a convex problem for convex link cost functions

and can be solved using the following alternative minimization 1 S1 given y∗ and S2 given x∗:

IV. ANALYSIS FOR NETWORKS WITH LINEAR LATENCIES

In this section, we will analyze some special cases and derive optimal flow for these special

cases. To compare the equilibrium/optimum performances, we define the following two terms

which help in characterizing impact of a strategy.

Price of α-anarchy: Price of α anarchy is defined as relative increase in the average cost due

to presence of α proportion of anarchists i.e.

PA =
Total cost with α anarchists and (1− α) socialists

Total cost of system with no anarchist
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Algorithm 1 Alternating Minimization:
Initialize to x∗0, y

∗
0 , i = 0.

Solve optimization S1 to compute x∗1, y
∗
0 .

Solve optimization S2 to compute x∗1, y
∗
1 .

while Change in solution is greater than tolerance do

At step i,

x∗i+1, y
∗
i = S1(x∗i , y∗i )

x∗i+1, y
∗
i+1 = S2(x∗i+1, y

∗
i )

i→ i+ 1.

end while

Price of good behavior PG: Second important metric to understand the social implications of

social strategy is price of good behavior which indicates the penalty a person may pay being a

follower of the central directive. It is defined as the relative cost of following central directive

compared to that when being selfish i.e.

PG =
Average cost of a socialist user

Average cost of an anarchist user
.

A. Network with Linear Latencies

Let us consider a traffic network with linear link cost functions i.e. le(xe) = aexe + be. Here

be is the free flow time and ae is congestion dependency parameter and both depend on link

type. For example, freeways have high be and low ae while city streets have higher ae and small

be. For this case, the modified link cost function are given as

l′e(ye, x) =

∫ ye

0

(
ae

(∑
P3e

(1− α)xP + αz

)
+ be

)
dz

=
aeα

2
y2e +

(
be − ae(1− α)

∑
P3e

xP

)
ye.
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A B

𝑙1 𝑓1 = 𝑎1𝑓1 + 𝑏1

𝑙2 𝑓2 = 𝑎2𝑓2 + 𝑏2

Fig. 1: A illustration showing the two node two link network. The required demand flow is 1 between node

A and B

So, the optimization problem S1 can be written as the following convex optimization problem:

x∗ =argmin
x

∑
e

aef
2
e + befe

such that fe =
∑
P3e

(1− α)xP + αy∗P (x),
∑
Pk

xPk
= dk, ∀k

where y∗(x) is given by

y∗(x) = argmin
y

∑
e

aeα

2
y2e +

(
be − ae(1− α)

∑
P3e

xP

)
ye

such that ye =
∑
P3e

yP ,
∑
Pk

yPk
= dk.

B. General Two-link Linear Network

As a special case of previous subsection, we will consider a general two node two link network

(See Fig 1) with linear latency. There are two possible paths in the network and unit demand

flow between the two nodes. The link i(i = 1, 2) has latency aifi+bi where fi is the flow in that

link. Without loss of generality, let us assume that b1 > b2. It can be observed easily that, in the

absence of socialists (i.e. α = 1), the equilibrium flow is given by NE [1] as f1 = 1−A, f2 = A

where A =
b1 − b2 + a1
(a1 + a2)

. We will assume that 0 ≤ A ≤ 1. Also, in the absence of the anarchist

traffic (i.e. α = 0), the social optimal solution is given as f1 = 1 − f2opt, f2 = f2opt where

f2opt =
a1 + (b1 − b2)/2

a1 + a2
.
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Now for general α−anarchy HetGame, let the anarchist strategy be (y1, y2) and the socialist

strategy be (x1, x2). Using Theorem 1, we can compute the NE of the anarchist users as solution

of S2 given x2 as

y2(x2) =


1 if R1 : x2 ≤ A

1−α −
α

1−α

A
α
− 1−α

α
x2 if R2 :

A
1−α ≥ x2 ≥ A

1−α −
α

1−α

0 if R3 : x2 ≥ A
1−α

(4)

where A =
b1 − b2 + a1
(a1 + a2)

. The above solution indicates that socialist can in fact indirectly force

anarchist to chose an arbitrary strategy via a well designed socialist flow.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
2

y 2

NE strategy y
2
 versus socialist strategy x

2

 

 
α=0
α=0.2
α=0.45
α=0.75
α=1

Fig. 2: The NE strategy flow y2 in the second path versus socialist strategy flow x2 of the second path for

different values of α in the considered two-node-two-link linear network with a1 = 0.3, b1 = 1, a2 = 0.7, b2 =

0.8. Socialists can in fact indirectly force anarchist to chose an arbitrary strategy via a well designed socialist

flow. However, control can be limited for particular values of α, such as α < A and α > 1−A.

For better understanding, we will take a particular instance of the above mentioned network

with the following parameters: a1 = 0.3, b1 = 1, a2 = 0.7, b2 = 0.8. In this case, the anarchist

equilibrium is (1− A = 0.5, A = 0.5) and optimal social flow is (0.6, f2opt = .4). Fig 2 shows

the optimal NE for three regions. For α = 0.2, y2 shifts from the value 1 in R1 = (0, 0.375) to

the value 0 in R3 = (0.625, 1). This indicates that by diverting 20% socialist traffic to the second
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path, all anarchists can be forced to take the second path, while by diverting 70% socialists to

the second path, all anarchists can be forced to take the first path. It is possible that not all of the

above regions exist for particular values of α which can restrict the fraction of anarchists which

can be forced or affected by the central planner. For example, for α = 0.75, only A/α = 66.67%

anarchists at max can be forced to take the second path. It can be shown that R1 doesn’t exist

for α < A and R2 doesn’t exist for α > 1−A. Also note that as α increases, the impact of x2

on y2 decreases as evident from the slope in region R2.

Now, given the NE strategy y = (y1, y2), the socialists (or a central planner such as city

government) will design the flow for socialist such that total cost C is minimized over all the

three regions.

1. Region R1: the optimal solution in this region is x2opt = (f2opt−α)/(1−α). Since f2opt < A,

x2opt < (A− α)/(1− α) i.e. contained in R1.

2. Region R2: the total flow in second path f2 is always equal to A and total cost is the same

for all values of x2. Hence no minima exists in this region.

3. Region R3: the optimal solution in this region is x2opt = (f2opt)/(1− α). Since f2opt < A,

x2opt < (A)/(1− α) i.e. it falls outside the region R3. Hence no minima exists in this region.

Now, based on the above discussion, we can now state the following result.

Theorem 2. For the above-mentioned two link network with α anarchy, the following statements

hold

1) When α ≤ f2opt, the optimal strategy for socialist and anarchist is

(x1, x2) =

(
1− f2opt
1− α

,
f2opt − α
1− α

)
(y1, y2) = (0, 1).

In this case, the total flow in two paths is the social optimum flow as the socialist are able

to compensate for the anarchist flow and bring the system to the social optimum.

2) When f2opt < α ≤ A, the optimal strategy for socialist and anarchist is

(x1, x2) = (1, 0)

(y1, y2) = (0, 1).

In this case, the socialist cannot compensate for the anarchist traffic. All anarchists take the

second link and all socialists take the first link. The total flow in the network is (f1, f2) =

(1− α, α).
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3) When α > A, all strategies are optimum. The total flow is constant at A and the two links

offer the same cost of travel.

Fig. 3 shows the cost versus x2 for different values of α. It can be observed that as α increase,

the optimum value of x2 decreases from f2opt until it reaches 0 at α = f2opt.

0 0.2 0.4 0.6 0.8 1

1.14

1.16

1.18

1.2

1.22

x
2

N
et

w
o

rk
 C

o
st

 (
C

)
Total cost with anarchist NE strategy  versus socialist strategy x

2

 

 

α=0
α=0.2
α=0.45
α=0.75
α=1

Fig. 3: Total cost of the network with NE strategy y∗(x2) versus socialist strategy x2 for different value of

anarchy α in a general two link HetGame with a1 = 0.3, a2 = 0.7, b1 = 1, b2 = 0.8. The cost is minimized in

region R1.

Fig. 4 shows the equilibrium flow in the network for different values of α. Fig. 5 shows the

variation of price of anarchy and good behavior with α. It shows that increasing anarchy will

hurt anarchists also as evident from the increase in the price of anarchy. It can be seen that with

increasing fraction of anarchist, price of being a good citizen increases, but after a threshold, it

starts decreasing and eventually becomes equal to 1 where all users start seeing the NE cost in

both paths.

Corollary 1. Consider a simple two link network with a1 = 0, b1 = 1, a2 = 1 and b2 = 0. In

this case, link cost functions are l1(x) = 1 and l2(x) = x. For this case, price of anarchy and
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Socialist strategy x
2
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2
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2
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NE Equilibrium
 flow A

Social−optimum flow f
2opt

 in 

absense of any anarchy

Fig. 4: Equilibrium flow in a linear two link HetGame with a1 = 0.3, a2 = 0.7, b1 = 1, b2 = 0.8. Up to

anarchy limited to f2opt, the central planner is able to keep social equilibrium. After this, flow in second path

increases until system reaches the pure anarchy (Nash equilibrium) state.
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Fig. 5: Price of α anarchy and price of good behavior with varying α for a linear two link HetGame with

a1 = 0.3, b1 = 1, a2 = 0.7, b2 = 0.8.

good behavior are given as

PA =

1 if α ≤ 1/2

4
3
(1− α + α2) if α > 1/2

PG =


3−2α
2(1−α) if α ≤ 1/2

1
α

if α > 1/2
.
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V. NUMERICAL RESULTS

To explore behavior of the HetGames laid out in previous sections, we studied a model of

a real-world transportation network. One publicly-available dataset is a 24-node model of the

road network in Sioux Falls, SD. The model characterizes the latency on 76 links connecting

24 nodes and provides trip data in the form of 528 origin-destination pairs. Each latency is a

polynomial of form le(xe) = d
(
1 + b(xe

c
)a
)
. As a network grows, it is infeasible to enumerate

the set of all paths Pk connecting a given source-destination pair. Therefore, we have selected

Pk to be the four shortest zero-user paths using Dijkstra’s algorithm.

0 0.2 0.4 0.6 0.8 1
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Anarchy fraction (α)

P
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ce
s

 

 

P
A
 for α=1

P
A

P
G

Fig. 6: HetGame equilibrium for Sioux Falls network showing the price of α-anarchy and Price of good

behavior. Increase in the price of anarchy and decrease in the price of good behavior with increasing fraction

of anarchists may motivate more people to be socialists and follower of central directives.

The proposed Algorithm-1 is used to compute the HetGame equilibrium flows. In each itera-

tion, the anarchist flow is computed holding the socialist flow constant; similarly, the socialist flow

is computed holding the anarchist flow constant. If the updated flows do not differ significantly

from those in the previous iteration, the algorithm may terminate. Fig. 6 shows the price of

α-anarchy and price of good behavior of the HetGame equilibrium for various α values.

Traditional definition of price of anarchy (with α = 1) is also shown in the figure. It can be

seen that price of good behavior decreases with increasing fraction of anarchist. It also shows
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that increasing anarchy will hurt anarchists also. Both of the above observation can lead to

motivating more people to be follower of central directives.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we derived a framework for general traffic network with heterogeneous users,

including an α-anarchy HetGame and studied it both analytically and via numerical simulation on

road network models. We discussed how social flow can be used to affect the flow of anarchists

in desired direction. The work has many possible extensions. For example, HetGame with more

number of user classes (e.g., proportionally fair, random, and fixed path-followers) can be studied.

It is also interesting to analyze these systems in the presence of random noise. We can also

consider the case where the socialists in the HetGame could modify their objective to be minimize

of average socialist cost, neglecting the anarchist portion of the full social cost. Such strategy

has potential to reduce the price of good behavior providing incentive to people who wish to

adhere to central directives.

APPENDIX A

PROOF FOR THEOREM 1

Proof. Given the socialist strategy x, the anarchist will decide their flow by computing the NE

for their flow αy. Given x, the latency they face in any edge e is given by Le(
∑

P3e αyP ) where

L(w) = le(
∑

P3e (1− α)xP + αw) for any strategy y. Let us assume y′e =
∑

P3e αyP . With

these new latency function, the NE of the flow following anarchist strategy will be equal to

Wardrop equilibrium [1] which is given as the solution of the following problem

min
y

∑
e

∫ y′e

0

Le(w)dw

such that y′e =
∑
P3e

αyP ,
∑
Pk

yPk
= dk

which is equivalent to

min
∑
e

∫ y′e

0

le(
∑
P3e

(1− α)xP + w)dw

such that y′e =
∑
P3e

αyP ,
∑
Pk

yPk
= dk

which will give the desired result with substitution y′e = αye and z = αw.
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