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Abstract—Network connectivity has been the traditional metric
for network survivability against failures. In case of a disaster,
network connectivity may not always be guaranteed due to
multiple link failures. With the shifting service paradigm towards
cloud computing/storage, some network services can still be pro-
vided if a content replica is available in all disconnected network
segments. As a result, content connectivity has been introduced
as an additional metric for network survivability under disasters.
Content connectivity is defined as the reachability of content from
every node in a logical topology under a given failure scenario.
In this work, we investigate the content-connectivity problem in
optical metro networks in the case of multiple (n) link failures.
We consider the problem of mapping a logical topology over
an optical metro network such that every node in the logical
topology can reach at least one data center hosting the content
after n−link failures. We formulate the problem as an integer
linear program to minimize total network resource usage. We
provide a cost comparison between content connectivity and
network connectivity under typical failure scenarios.

Index Terms—Content connectivity, optical metro networks,
data centers, survivable mapping, n−link failures

I. INTRODUCTION

With increasing demand for high-bandwidth and low-

latency services, the metro network segment is gaining more

importance and functionalities. Several, especially cloud, ser-

vices are now hosted directly in data centers located in the

metro areas so that, in today’s telecom networks, 75% of total

traffic is terminated within the metro area [1]. Reliability in

metro access networks is emerging as a stringent requirement

and its importance is expected to increase with adoption of

ultra-reliable low latency services in 5G communications.

Since the Internet was originally designed to provide end-to-

end communication, Network Connectivity (NC) (i.e., reach-

ability of every network node from all other nodes) has been

traditionally used as the main metric for survivability against

failures. Unfortunately, in case of disasters, multiple links

may be simultaneously interrupted; and providing NC in such

conditions can be very costly, or even infeasible. Also, net-

works are becoming more content centric. Globally, 72% of all

Internet traffic will cross Content Delivery Networks (CDNs)

by 2022, scaling up from 56% in 2017 [1]. Thus, several

content-based services can be provided if a content replica

is available in all disconnected network portions. To model

this evolving reliability requirement, Content Connectivity

(CC) has been introduced as an additional metric to measure

network survivability [2]. CC is defined as the reachability of

content from every node in a logical topology under failure

scenarios. This metric is considered useful under large-scale

failures as disasters, while NC will probably remain the default

choice for smaller failure scenarios (such as single failures).

Some research on CC has already been conducted. In [2],

the authors solved the CC problem against single-link failures.

In [3], the authors extended the CC problem to double-

link failure scenarios. In both works, the CC problem was

examined for backbone optical networks with mesh topologies.

In this work, we address the more general problem of CC

against n−link failures focusing on optical metro networks

where the physical topology consists of interconnected rings.

We aim to provide protection to a logical topology mapped

over a physical optical network. Our contributions can be

summarized as follows. First, we propose a problem formu-

lation that is more scalable than the ones in [2] and [3]. By

improving scalability, our work can not only cope with larger

networks with a higher number of nodes and links but can

also concurrently preserve problem optimality. Second, our

formulation generalizes the CC problem to an arbitrary number

of link failures. The motivation of this method is to better

prepare networks for large-scale failure scenarios as disasters.

The study is structured as follows. In Section II, we elabo-

rate on the CC problem in optical metro networks. In Section

III, we formulate the CC problem as an Integer Linear Program

(ILP). Numerical results are shown in Section IV. Finally, we

conclude in Section V.

II. CONTENT CONNECTIVITY AGAINST n−LINK

FAILURES (CC-n) IN OPTICAL METRO NETWORKS

We consider the graph GP (VP , EP ) to represent a physical

topology, where VP and EP are the set of physical nodes and

the set of bidirectional physical links. The physical nodes are

equipped with wavelength converters, leaving the extension

to the case of wavelength continuity as future work. The

graph GL(VL, EL) denotes a logical topology with VL and

EL being the set of logical nodes and the set of bidirectional

logical links. D is the set of Data Centers (DCs) in the logical

topology, D ⊂ VL. We assume the required content is available

at all DCs. Our objective is to map the logical topology over

the physical topology such that every logical node not hosting

a DC can reach at least one DC for content after failures on n



distinct physical links. Logical nodes hosting DCs are content-

connected independently of physical link failures. We can now

define necessary conditions for CC-n existence.

Theorem 1. Given GP (VP , EP ), GL(VL, EL), and D ⊂ VL,

to find the mapping of GL over GP that guarantees CC-n,

the following conditions must be satisfied:

• each logical node s ∈ VL−D has a nodal degree δ(s) ≥
n+ 1, and

• each physical node i ∈ VP : i = s has a nodal degree

δ(i) ≥ n+ 1.

A cut is the partition of a graph G(V,E) into two discon-

nected parts and divides V into two disjoint sets of nodes S

and V −S. Each cut defines a cutset, C(S, V −S), which is

the set of links with one endpoint in S and the other in V −S.

By definition of cutset, it can be derived that, after removal

of all links in a cutset, the graph becomes disconnected. This

latter property is also known as Menger’s theorem [4], which

can be applied to the CC problem against an arbitrary number

of physical link failures as follows.

Let fst
ij be a binary variable and fst

ij = 1 if logical link

st is mapped over physical link ij, and zero otherwise. We

also assume traffic from s to t is unsplittable. The following

theorem gives a necessary and sufficient condition for the

mapping of a logical topology over a physical topology to

be CC-n.

Theorem 2. Given GP (VP , EP ), GL(VL, EL), D ⊂ VL, let

Pn = {{P k
n} : |{P k

n}| = n, {P k
n} ⊂ EP } be the set of

all possible combinations of n distinct physical links, and

CCC = {Cl
CC(Sl, VL−Sl) : Sl∩D = ∅} be the set of logical

topology content-connected cutsets where the removal of all

logical links in each cutset Cl
CC disconnects GL(VL, EL) and

divides VL into two disjoint sets with one set without DCs, the

mapping of GL over GP is CC-n if and only if
∑

ij∈Pk

n

st∈Cl

CC

fst
ij ≤ |Cl

CC | − 1, ∀P k
n ∈ Pn, ∀C

l
CC ∈ CCC .

Here, |.| is the set cardinality operation. The above condition

requires that there does not exist a set of n physical links

whose removal leaves the logical topology disconnected with

at least one segment without DC connection. In the following

section, we formulate the CC-n problem as an ILP.

III. MATHEMATICAL FORMULATION

The CC-n problem can be formulated in the following ILP.

Inputs and variables

• GP (VP , EP ), GL(VL, EL), n, D, Pn, CCC , and fst
ij have

been introduced in Section II.

• W is number of wavelengths per physical link.

• Fij is number of fibers on physical link ij.

Objective function

min
∑

ij∈EP , st∈EL

fst
ij (1)

Subject to:
∑

st∈EL

fst
ij ≤ Fij ×W, ∀ij ∈ EP (2)

∑

j:ji∈EP

fst
ji −

∑

j:ij∈EP

fst
ij =











−1 if i = s

1 if i = t ,

0 otherwise

∀i ∈ VP , ∀st ∈ EL

(3)

∑

ij∈Pk

n

st∈Cl

CC

fst
ij ≤ |Cl

CC | − 1, ∀P k
n ∈ Pn, ∀C

l
CC ∈ CCC

(4)

Eqn. (1) is the objective function that minimizes network re-

source usage in terms of total number of wavelength channels.

Eqn. (2) ensures that the mapping of the logical topology

over the physical topology does not exceed each physical link

capacity. Eqn. (3) enforces flow conservation for every logical

link. Eqn. (4) imposes CC-n on the mapping of GL(VL, EL)
over GP (VP , EP ). One can notice that fst

ij = 1 implies that

a failure on the physical link ij disrupts the logical link st.

Thus, Eqn. (4) ensures that failures on any combination of

n physical links do not disconnect all logical links in every

content-connected cutset CSl. Namely, at least one logical link

in each content cutset CSl is survivable against every n−link

failures on the physical topology. Hence, CC-n is guaranteed.

The NC problem against n−link failures (NC-n) can be

directly obtained from the CC-n formulation with the set of

NC cutsets being used as the input. The set of NC cutsets

is the complete cutsets of the logical topology without DC

consideration. In case of NC-1, this work is similar to [5].

Compared to [2], [3], and [5], our approach better prepares

networks for an arbitrary number of physical link failures

under disaster conditions.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we compare complexity of our problem

formulation to complexity in [2] and [3]. We also evaluate
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Fig. 1: Physical topology.
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Fig. 2: Logical topologies.

the cost in terms of number of wavelength channels of CC in

various scenarios.

To perform our evaluation, we consider an optical metro

topology as shown in Fig. 1. The physical topology consists

of 52 nodes connected by rings and subrings using 98 bidirec-

tional physical links. We consider two logical topologies as in

Fig. 2a and Fig. 2b. The logical topology in Fig. 2a comprises

7 logical nodes connected by 10 bidirectional logical links. In

Fig. 2b, the adding of a bidirectional logical link between node

40 and 45 increases the total number of bidirectional logical

links to 11. DCs are deployed at node 40, 45, and 49. While

our formulation is generic and can be applied for an arbitrary

n, we consider n = 1 and n = 2 for a reasonable analysis, as

the number of simultaneous link failures larger than or equal

to three is rare and is left for future work.

Fig. 3: Different protection schemes.

We first compare the complexity of our approach to the

works in [2] and [3]. For a fair comparison, same input data are

used. Numerical values of numbers of variable and constraint

are shown in Table I. Compared to [2] and [3], our approach

has lower complexity in terms of the total number of variables

and constraints. The number of variables for CC-1 is reduced

by a factor of 23 by adopting our approach. Most importantly,

the complexity of CC-2 problem is reduced by a factor of 103

in terms of number of variables and by a factor of 60 in terms

of number of constraints.

We next compare the CC-n cost in terms of the total num-

ber of wavelength channels for various protection schemes.

Numerical results are shown as in Fig. 3. We summarize our

observations as follows.

For logical topology 1, NC cost is higher than CC cost. As in

TABLE I: Complexity Comparison, Logical topology 1.

Scenarios
Previous works This work

# Var. # Constr. # Var. # Constr.

NC-1 3,920 [5] 31,932 [5] 3,920 31,932

CC-1 90,220 [2] 90,423 [2] 3,920 13,116

CC-2 8,116,420 [3] 64,297,083 [3] 3,920 1,153,836

NC-1+CC-2 8,116,420 [3] 64,297,083 [3] 3,920 1,178,532

NC-2 NA NA 3,920 4,822,956

Fig. 3, NC-1 utilizes 8 wavelength channels more than CC-1.

This is because NC imposes stricter conditions. Indeed, failure

scenarios where NC is not guaranteed but CC is still guaran-

teed can be found. Furthermore, CC-2 is more expensive than

CC-1. CC-2 uses 72 wavelength channels while CC-1 uses

only 50 wavelength channels. Noticeably, NC-1+CC-2 cost

is equal to CC-2 cost. With a careful problem formulation,

we can guarantee NC-1 and CC-2 with no additional cost

compared to CC-2 only. These results are consistent with those

in [3].

However, for logical topology 2, as in Fig. 3, CC-1 and CC-

2 costs are equal to NC-1 and NC-2 costs, respectively. We

demonstrate that there are scenarios where CC cost is equal

to NC cost. In other words, CC cost is not always lower than

NC cost. This observation provides a direction for future work

on generalizing the scenarios in which: a) CC cost is lower

than NC cost, b) CC cost is equal to NC cost, and c) NC is

not possible but CC can be guaranteed.

V. CONCLUSION

In this work, we investigated the problem of ensuring CC

against an arbitrary number of physical link failures. We first

examined necessary conditions to provide CC-n and then

proposed a solution to the CC-n problem. We formulated the

CC-n problem as an ILP with lower complexity compared to

previous works. The numerical results show that, depending

on a certain scenario, CC-n cost may be lower than or equal to

NC-n cost. A possible future extension of this work would be

to generalize the CC problem with regard to solution feasibility

and the relative cost between CC and NC.
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