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Abstract—Multi-Access Edge Computing (MEC) and network
slicing two of of the key enabling technologies of the Fifth
Generation (5G) of cellular network. MEC helps to reduce
latency, offload the cloud, and allow context-awareness. Network
slicing allows to create heterogeneous services on top of shared
infrastructures. Slice brokers are emerging intermediate entities
that take the resources from the infrastructure providers and
make slices for the tenants. In this scenario, a slice broker needs
to manage the resource and create the slices in order to maximize
its revenue to cover the cost and increase the profit. In this work,
we consider that the demand of the slice tenant is depending on
the price of the slices. Therefore, we formulate a slice allocation
problem that consider this demand-price dynamic. Moreover, we
consider the presence of adversary that want to compromise the
decision process. In order to solve the problem, we propose a
multi-agent environment, where some agents cooperate to learn
the revenue model and maximize the revenue. Finally, we evaluate
the effectiveness of the proposed solution by comparing it with
reference solutions. The results highlight that a notable increment
of the revenue can be obtained by using our solution.

Index Terms—Reinforcement learning, Network slicing, Slice
broker, Revenue model

I. INTRODUCTION

The Fifth Generation (5G) of cellular network provides
an improved architecture and fills the demand of increased
capacity, improved data rate, decreased latency, and better
quality of service [1]. Multi-Access Edge Computing (MEC)
is a critical enabling technology supporting 5G with this
increased demand and low latency. Network Slicing is another
enabling technology that allows to create multiple virtual
networks with heterogeneous requirements on top of a shared
infrastructure and enables industry vertical market players
to request and lease resources from Infrastructure Providers
(InPs) dynamically according to needs [2]. In this context, a
new intermediate entity, called slice broker, can create and
manage the network slices. For resource allocation, the slice
broker cares about the economic aspects. Economical aspects
can include cost, revenue, and profit. The cost is something
that an entity needs to pay; in this context, a slice broker buys
resources from one or multiple InPs, the money spent by slice
broker is the cost. The revenue is what one receives when one
sells something; in this context, the slice broker sells network
slices to service tenants, the money received by the slice broker
is the revenue [3]. The profit, instead, is the net benefit that

the broker has received, which is the revenue from the service
tenants minus the cost paid to the InPs.

Our work focuses on maximizing the revenue of the slice
broker in a context where the demand and price of the slice
is dynamic. In order to do this, we consider a multi-agent en-
vironment, where some agents cooperate to learn the revenue
model and maximize the revenue. Learning the revenue model
means learning how the revenue varies with respect to the
slice demand and the slice price (which are interdependent).
Given this knowledge, the slice price can be set in order to
maximize the revenue of the slice broker. Moreover, in the
addressed problem we include security aspects by considering
the presence of adversaries that can compromise the multi-
agent environment. The adversaries can inject non-cooperative
agents or noise in order to mislead the slice broker about the
actual revenue.

In the recent years, several works have addressed the prob-
lem of slice allocation in 5G-MEC systems with economical
targets. In [4], the authors propose a framework for network
slicing in MEC systems, including slice request admission,
and investigate the operator’s profit escalation problem while
considering traffic variations. Their system model is mainly
composed of longer-term profit and short-term profit. They
jointly optimize slice request admission in the long-term and
resource allocation in the short-term to maximize the oper-
ator’s average profit. They apply the Lyapunov optimization
technique to solve the problem. However, their system is not
adaptive, and security issues are not considered. In [5], the
authors address the problem of allocating network slices. Their
target is to minimize the total cost of the slice broker to
acquire the resources from the InPs. They propose a heuristic
solution to the problem, evaluate the proposed heuristic’s be-
havior in various scenarios, and compare it with a benchmark
solution. However, their proposed method is not adaptive,
and there is no consideration of dynamic price-demand, and
also there is no consideration of security perspectives for
resource allocation. In [6], the authors propose an adaptive
approach for allocating resources in a distributed fashion.
Their proposed method dynamically distributes the network
resources among the active information flows according to the
characteristic of the slices to which they belong. However,
their work did not focus on brokers’ profit, and also, they did



not have any consideration of injecting adversaries/noises into
the environment. In [7], the authors develop an optimization
framework for network slice dimensioning, in which the Slice
Customer’s Problem (SCP) maximizes the Slice Consumer’s
(SC) profit, and the Slice Provider’s Problem (SPP) maxi-
mizes net social welfare (resource efficiency). However, they
did not specifically focus on any revenue model for Slice
Provider/Slice Broker, and the system is also not adaptive.
They also did not consider any security issues. None of the
above works consider any revenue model learning for the
slice brokers, dynamic behavior of price-demand, and also do
not consider any adversaries in the environment. In [8], the
authors propose an auction-based mechanism for optimal and
revenue-based allocation of radio resources in a slice-based 5G
network. However, their proposed method is not adaptive, does
not consider the cooperation among multiple agents, and does
not try to learn the revenue model considering the adversaries
in the system.

Another important aspect in network slicing is the security
[9]. In the recent years, a few works, have focused on
slice allocation by considering security aspects. In [10], the
authors focus on secure slicing for resource allocation under
massive network traffic. The authors propose traffic-aware
scheduling for secure slicing and resource allocation in 5G
networks. In their approach, user devices are authenticated
using a password-based key derivation function. Secure net-
work slicing and resource allocation are implemented using
deep Reinforcement Learning (RL) models. They apply RL
for resource allocation and to predict the Distributed Denial-
of-Service (DDoS) attackers. However, their focus was not on
learning the revenue model with adversaries.

In summary, the contributions of our paper are the follow-
ing:

• We address a new problem of network slice allocation
with dynamic slice demand (dependent on the price) and
in the presence of adversaries in order to maximize the
revenue of the slice broker by dynamically setting the
slice price.

• We propose a solution based on cooperative RL with
a consensus mechanism to detect the adversaries. In
[11], the authors propose a trust-based consensus in RL
systems in a multi-agent-based system. However, they
consider binary consensus, which is poor in convergence.
Their definition of trust is also very generic, not specific
application-based.

• We compare our solution with reference solutions that
are non-cooperative, or that ignore the injection of ad-
versaries and noise.

The paper is structured as follows. Section II describes
the problem of maximizing the revenue in the presence of
adversaries. Section III introduces the proposed method to
solve the presented problem. Section IV presents the results
of the comparison of the proposed method with reference
methods. Finally, Section V concludes the paper.

II. PROBLEM DESCRIPTION

In our problem, we consider a 5G-MEC system that includes
the following business entities: InPs, a slice broker, and a slice
tenant.

We assume that each InP has one MEC Host (MEH), but the
problem can be generalized to have multiple MEHs belonging
to the same InP.

A MEH is a computing platform, which has computational
resources (i.e., processing power in vCPU). The slice broker
buys the computational resources from the InPs and it resells
the computational resources to multiple slice tenants. In this
work, for sake of simplicity we assume only one tenant but the
problem and the related solution can be generalized to include
multiple tenants.

We also assume that the slice broker has already bought an
amount of computational resource from each InP. Therefore,
in each MEH the broker has one chunk of computational
resources. The set of chunks is denoted asM. For each chunk
m ∈ M, the amount of bought computational resources is
denoted as µm. The tenant dynamically requests to the broker
an amount of computational resources that we call as slice
demand and denote as dt, where t identifies the time interval.

At each time interval t, the broker decides the amount of
computational resources from each chunk to allocate to the
tenant in order to fulfill the slice demand. The portion of chunk
allocated to the tenant is denoted as subchunk. The amount
of computational resources of the subchunk from the chunk
m ∈ M at the time interval t is denoted as δtm. The broker
is also deciding the subchunk price (in C/vCPU), which is
denoted as ctm.

In our system, we consider that the broker has one software
agent for each chunk m ∈ M helping to decide the amount
of computational resources, δtm, and price, ctm, for the related
subchunk at each time interval t. Figure 1 represents the inves-
tigated 5G-MEC system. The adversary and noise injections
will be explained in the second part of this section.

Fig. 1. 5G-MEC system under investigation



We use a practical demand model to get the slice demand of
the slice tenant, dt. In the real world, a demand changes over
time and depends not only on the current price but can also be
impacted by the magnitude of recent price changes. A price
decrease can create a temporary demand increment, wherever
a price increase can cause a fall in demand. The impact of
price changes can also be asymmetric, so price increases have
a much bigger or smaller impact than decreases. In our case, at
every time interval, the slice demand depends on the weighted
average price, which is computed from the prices of each
subchunk as follows.

pt =
1

dt

∑
m∈M

δtm · ctm (1)

Based on the price-demand function in [12], we compute the
slice demand for next time interval t+ 1 as follows.

dt+1 = d0−k·pt−a·s((pt−pt−1)+)+b·s((pt−pt−1)−), (2)

where

(pt − pt−1)+ =

{
pt − pt−1, if pt > pt−1

0, otherwise
,

(pt − pt−1)− =

{
pt − pt−1, if pt < pt−1

0, otherwise
,

and where pt is the price for the current time interval t and
pt−1 is the price for the previous time interval. The first two
terms of Eq. (2) correspond to a linear demand model with
intercepting d0 and slope k. The second two terms model the
response to a price change between two intervals. Coefficients
a and b define the sensitivity to positive and negative price
changes, respectively, and s is a shock function that can be
used to specify a non-linear dependency between the price
change and demand. We assume s(·) =

√
·.

The problem of maximizing the revenue of the slice brokers
to serve the slice demand at the time interval t can be
formulated by basing on Bertnard model [13]:

P : maxΦt = max
∑

m∈M
ctm · δtm, (3)

subject to

C1 : δtm ≤ ηm ∀m ∈M,

C2 :
∑

m∈M
δtm ≤ dt, (4)

where Φt is the defined revenue function and the objective
function of the problem, C1 is the constraint that limits the
size of the subchunk to the size of the related chunk, and C2 is
the constraint that limits the cumulative size of all subchunks
to the slice demand.

A. Environment

Our proposed method is based on RL. In RL, the agents
learn over time intervals by performing a particular action,
and it shifts from one state to another. After performing an
action, the agents receive a reward for the performed action.
The environment of the RL determines the states, actions and
the reward function [14]. In our case, the states are the slice
demand at time t, dt, the size of the subchunks at time interval
t− 1, δt−1

m and all the previous prices of the subchunk m, cτm
∀τ ∈ [1, t − 1]. The actions are the size and the price of
the subchunks m at t, δtm and ctm, respectively. The reward
function denotes the revenue for the allocation of the subchunk
m at the time interval t.

rtm = ctm · δtm (5)

B. Presence of Adversarial Agents

According to the European Network and Information Se-
curity Agency (ENISA) 5G threat landscape [15], one of the
potential threats related to 5G MEC is the compromised supply
chain (i.e., vendor and service providers). Since the tampering
of network product (creating adversaries and added noises)
can result in service unavailability, information destruction
or misinformation generation. For example, in Figure 1, the
attacker compromises the software agents SA1 and SA2 for
making them selfish or uncooperative. In this case, SA1
and SA2 will try to maximize their own reward without
cooperation, eventually causing less revenue for the broker.

Let M+ and M− denote the set of cooperative agents
and adversaries, respectively, where M =M+ ∪M−. Since
we have assumed that there is one agent per chunk (and
subchunk), we use M to indicate the set of agents or the
set of chunks, interchangeably.

The objective of agents m ∈ M+ is to maximize a team-
average objective function given as follows.

max
ctm,δtm

J+ = max
ctm,δtm

E

[ ∞∑
τ=0

1

|M|
∑

m∈M
γm · rτm

]
(6)

where τ is the time under investigation, γm is a discounted
factor, has a value between 0 and 1, and indicates how much
the RL agents cares about rewards in the distant future with
respect to those in the immediate future.

The cooperative agents are unaware of the presence of an
adversarial agent that seeks to maximize a different objective
function. We define the objective function for m ∈ M− as
follows.

max
ctm,δtm

J− = max
ctm,δtm

E

[ ∞∑
τ=0

γm · rτm

]
(7)

It is important to note that the adversarial agent can com-
promise the rewards rτm,m ∈ M−, to incentivize it’s mali-
cious behavior [16]. Furthermore, once the agents establish
communication, the adversary can spread false information
about the performance of the entire network embedded in



the compromised rewards rτm. This may eventually lead to
incentivizing bad behavior in the cooperative agents.

C. Presence of Noisy Agents

An attacker may try injecting noise into any component,
e.g., software agent, to compromise the system. For example,
in Figure 1, the attacker compromises the software agent SA4.
Noise may hamper the cooperation among agents in a way
that the broker may have an idea that it has enough resources
to allocate or sometimes get the knowledge of not allocating
the resources, which is harmful to the revenue-making of a
broker. We consider few agents with noise. Here, we consider
Additive White Gaussian Noise (AWGN). The noise can be
normally distributed as follows:

Nm ∼ N

(
0,

(
Am

3

)2
)

(8)

where Am is the magnitude of the noise.

III. PROPOSED METHOD

We propose a resource allocation method based on a generic
Deep Q Network (DQN) algorithm [17] to learn the revenue
model. We use the original DQN as it is simple considering
other variants of the learning mechanism. We could not ap-
ply classical RL, e.g., Q-learning, State-Action-Reward-State-
Action (SARSA) learning, as our states are continuous. The
learning mechanism like Actor-Critic learning is not applied
for its complexities.

RL considers the setup where an agent interacts with the
environment in discrete time intervals to learn a reward-
maximizing behavior policy. At each time interval t, with a
given state s, the agent takes an action a according to its policy
π(s)→ a and receives the reward r moving to the next state
s′. We define our environment considering the RL terms as
follows.

The goal of the algorithm is to learn an action policy π
that maximizes the total discounted cumulative reward/return
earned during the episode of T time intervals:

R =

T∑
t=0

1

|M|
∑

m∈M
γm · rtm (9)

Such a policy can be defined if we know a function that
estimates the expected return based on the current state and
next action, under the assumption that all subsequent actions
will also be taken according to the policy:

Qπ(s, a) = Es,a[R] (10)

Assuming that this function (known as the Q-function) is
known, the policy can be straightforwardly defined as follows
to maximize the return:

π(s) = argmax
a

Q(s, a) (11)

We can combine the above definitions based on the Bellman
equation as follows:

Algorithm 1 Proposed Method based on Deep Q Learning
Parameters and Initialization:
ϕ - Parameters of the policy network Qϕ

ϕtarg - Parameters of the target network Qϕtarg

α - Learning rate
B - Batch size
Tu - Period of target updates
Initialization: ϕtarg = ϕ
for t = 1 to T do

Choose the action based on Qϕ(st, at)
Execute the action and save transition (st, at, rt, s

′
t) in

the buffer
Calculate the Q-value
Consensus Step:
Send the Q-value to the neighbors
Update the Q-value of agent m as follows considering
the neighbor’s impact:
Qm(t+ 1) = Qm(t) + Γ

∑
j∈MG

m
(Qj(t)−Qm(t))

End of Consensus Step
Calculate target Q-values for each sample in the batch:
ym = rm + γm ·max

a′
Qϕtarg

(s′, a′)

where Q(s, a) = 0 for last states of the episodes (initial
condition)
Calculate the loss:
L(ϕ) = 1

M ·
∑
m
(ym −Qϕ(sm, am))2

Update the network’s parameters:
ϕ = ϕ− α · γm · L(ϕ)
if t mod Tu = 0 then

Update the target network:
ϕtarg ← ϕ

end if
end for

Qπ(s, a) = r + γmax
a′

Q(s′, a′) (12)

where s′ and a′ are the next state and the action taken in
that state, respectively. If we estimate the Q-function using
approximator, then the quality of the approximation can be
measured using the difference as follows:

L(ϕ) =
1

|M|
∑

m∈M
(ym −Qϕ(sm, am))2 (13)

This value is called the temporal difference error, which is
the loss function.

Algorithm 1 shows the procedure step by step about how
the system works and training has been done.

Consensus Procedure:
An agent i communicates the Q-value to all its neighbors j ∈
MG

m.MG
m denotes the set of neighbors of agent m. All agents

update their Q-values through a linear combination of their
own values and the information of neighbors received in the
previous step. The procedure can be written as:



TABLE I
SIMULATION PARAMETERS AND THEIR VALUES.

Parameter Symbol Value

Available chunks |M| 4
Number of agents |M| 4
Magnitude of the noise Am 5
Learning rate α 0.5
Number of Episodes T 5000
Batch size B 512
Period of target updates Tu 20
Discount factor γm 0.5
Degree of a node dmax 3
Size of the chunks ηm 5000 vCPU
Neighboring factor Γ 0.3
Intercept d0 5000 vCPU
Slope k 20 vCPU/C
Response coefficient for price increase a 300 vCPU/C1/2

Response coefficient for price decrease b 100 vCPU/C1/2

Qm(t+ 1) = Qm(t) + Γ
∑

j∈MG
m

(Qj(t)−Qm(t)) (14)

So, in other words, each agent update its state by using the
disagreement of states with all its neighbors, scaled by a factor
of Γ. Thus the convergence rate of this algorithm depends on
the scaling factor used. Convergence is guaranteed as long as
the following constraint is met [18]:

0 < Γ <
1

dmax
(15)

where dmax denotes the maximum degree among all nodes
in the network. The constraint can be fulfilled by realizing
an upper bound on the maximum possible neighbors for any
node.

IV. RESULTS AND DISCUSSIONS

We consider a network of four software agents which are
connected with each other as a mesh. First, we consider the
four cooperative agents for learning the revenue model. After
that, we consider that two agents out of four are adversary
nodes (caused by the attacker), which try to maximize the
revenue with own objective function. We also have consensus
steps in our proposed work, which identifies the effect of
adversary and tried to normalize the outcome.

Table I shows the considered parameters for the simulation
and their values. The values are set by empirical studies.

As we are applying a method based on deep Q learning,
we consider a total of 150 hidden nodes with three layers
(50 nodes per layrer). We exploit the Adaptive Moment
Estimation (Adam) algorithm to optimize the Neural Network
(NN) weights. Rectified Linear Unit (ReLU) acts as activation
function to activate a particular input.

Figure 2 refers to the revenue (C) over the time intervals.
We can observe that the agent tries to learn the revenue
model over the time intervals. There are some increments and
decrements over time. We can observe that after an initial
rise for revenue and then saturation over time interval. We

Fig. 2. Revenue over Time Intervals with and without Cooperative Learning

can then observe a significant decrease close to the 1000
time intervals. Then there is a saturation/convergence for the
revenue after the 3000 time intervals. These changes are
due to the exploration/exploitation and training process. After
learning, the cooperative agents are converged for learning
the revenue model. The agents explore actions during the
learning process, and the revenue may vary over time. On
the other hand, for independent learning/without cooperation,
the revenue varies significantly over time. Here independent
means that there is no cooperation/exchange of values, every
agent tries to maximize the revenue independently, which
varies over time. There is convergence over the time interval
for independent learning, but the revenue is almost on average
48% less compared to the cooperative one.

Figure 3 shows the average revenue over time intervals with
the presence of adversary agents, which try to maximize their
own revenue without cooperation based on Equation 7 and
become selfish. With the adversaries, we can observe that
only for a few time intervals the revenue rises very rapidly
as adversary agents try to maximize its own revenue and
provide an impact, then when the consensus is achieved for the
revenue, which becomes saturated and converges after 3000
time intervals. We also observe the revenue model without
learning about adversaries/without consensus mechanism in
the system, where we can see the revenue is very low. Our
proposed method outperforms the revenue model learning by
38% compared with without learning about the adversaries.

Figure 4 shows the average revenue learning over time
intervals considering noises in the environment applying our
proposed method. The Additive White Noise (AWN) is added
for two agents. Here, we can see that at first, there is an



Fig. 3. Revenue over Time Intervals with and without Learning Adversaries

Fig. 4. Revenue over Time Intervals with and without Learning Noises

increment in the overall revenue, and then we can see the
downfall, which is for added noises by the agents in the
environment. Finally, we can see that the results are converged.
But here, we can see that the revenue goes low for added
noises compared with the adversary. The noises have been
identified for the consensus part of our proposed method, and
then the system converged with the revenue level. We can
observe that in our proposed method by learning noises, the
average revenue outperforms on average 32% compared with
the one without learning the noises.

So, in both cases (added adversary and added noises), the
agents behave with less revenue, whereas, without having any
adversaries, the agents have achieved more robust revenue over
time. We can also observe that the cooperation among software
agents also has a cooperative impact on the system, which
makes the system more effective in learning the revenue model
for the brokers.

V. CONCLUSIONS

In a scenario where there are dynamic demands from the
slice tenants, the slice broker needs to learn the revenue model

to decide the slice price that maximize its revenue. Moreover,
the slice broker needs to take into account the presence of
adversaries that aim to compromise the decision process. In
this context, our multi-agent environment implements cooper-
ative RL with a consensus mechanism in order to maximize
the revenue while considering the presence of selfish agents
and noise. Our evaluation highlights the economical benefit of
using our solution.
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