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Abstract— Many natural and engineered systems exhibit
a singularly perturbed structure where different time scales
inherently lead to difficulties in the design of observers for
the system. In our related work [1], we have shown that,
under appropriate assumptions, an observer designed for the
slow part of the system can be applied and results in semi-
global practical asymptotical (SPA) stability of the estimation
error. In this paper, we show that assumptions from [1] hold
for two classes of plants and nonlinear observers. In fact, we
show that the provided framework in [1] covers current results
in the literature and also other cases that are not covered
by existing results. Hence, we demonstrate that we generalise
existing results in the literature.

I. INTRODUCTION

In our companion paper [1], we study the performance of
nonlinear observers used to estimate the slow states of sin-
gularly perturbed systems. We analyse the robustness, with
respect to singular perturbations, of an observer designed
using the reduced (slow) system without considering the fast
states and implemented on the original plant. We provide
an estimation framework for observer design for singularly
perturbed systems in a sense that if the plant and the observer
satisfy an appropriate set of assumptions, the design ap-
proach results in a SPA stability of the error dynamics where
the estimation error is defined as the difference between the
estimates and the slow states of the full system. The results in
Part I are stated for a general class of plants in the following
standard form

ẋ = fs(t, x, z, u, ε), (1a)
εż = ff (t, x, z, u, ε), (1b)
y = h(t, x, z, u, ε), (1c)

where x ∈ Rn and z ∈ Rm are the slow and fast state vari-
ables respectively, y ∈ Rp is the measured output, u ∈ Rr
is the control input and ε > 0 is the perturbation parameter
of the system representing the time-scale separation.

Here, we demonstrate the results in [1] naturally cover
two classes of plants and two nonlinear full-order observers.
We validate that our framework applies for the class of
systems and the nonlinear observer covered by current results
in [2]. We show that our approach leads to SPA stability
which is a stronger result than results in [2]. Whilst [2] only
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presents local results for a specific class of plants and one
observer; we consider a range of different stability properties:
local, regional and SPA stability. Even when we restrict our
attention to the same class of systems considered in [2], our
results are more general; furthermore, our results cover a
much larger class of plants and observers than [2]. In this
manuscript, we verify that [1] covers another class of systems
and an observer that cannot be covered by [2]. We have also
checked that our results apply for plants in which the reduced
(slow) system is such that nonlinear observers in [4] - [10]
can be used to estimate the slow variables. As far as we are
aware, there are no existing results dealing with SPA stability.
Hence, two papers (Part I and II) demonstrate and support
the generality and usefulness of our design approach.

In section II, we analyse the class of plants that were
considered in [2] to show that our results cover that case.
We also consider the Luenberger-type nonlinear observer
analysed in [2], see [3]. We show that our assumptions and
results in [1] hold for that class of plants and that nonlinear
observer. In section III, we consider a class of plants with
fast linear dynamics and with reduced (slow) models that fit
the framework of the circle criterion observer [4]. This class
of plants covers a wide range of engineering problems; for
instance, systems with sensors that can be modeled as fast
linear dynamics [2].

Notation: The (Euclidean) norm of a vector x ∈ Rn
is denoted as |x|. We say that s ∈ L∞ if ||s||∞ < ∞,
where ||s||∞ := ess supt |s(t)|. The minimum eigenvalue of
a square matrix A is denoted by λmin{A}.

II. LUENBERGER-TYPE NONLINEAR OBSERVER

In this section, we demonstrate that our results in [1]
cover the results reported in [2]. We show a stronger result
under stronger assumptions than results in [2]. We state SPA
stability and regional results. Even more if we relax some of
our assumptions the results can be stated as local.

A. Class of plants

We consider here plants that constitute a subclass of the
general class of systems (1). We study the class of plants
considered in [2], such that the reduced model takes the
form for which results in [3] apply. Consider the nonlinear
singularly perturbed system in standard form considered
in [2]

ẋ = f(x, z) (2a)
εż = M1x+M2z, (2b)
y = C1x+ C2z, (2c)



where x ∈ Rn is the slow state, z ∈ Rm is the fast state,
y ∈ Rp is the output, ε is the perturbation parameter, and
C1, C2, M1 and M2 are matrices of appropriate dimensions.
Assumption I. The map f(x, z) is a real analytic vector
function defined on Rn ×Rm. Moreover, f(x, z) is globally
Lipschitz on Rn × Rm and f(0, 0) = 0.

Remark I. For simplicity, we assume a global Lipschitz
property for f(x, z) on Rn × Rm. This assumption is
justified as we intend to demonstrate that [Theorem 1, 1]
leads to SPA stability rather than local stability as done
in [2]. Although our conclusion is stronger under stronger
assumptions than [2], our approach is such that we can easily
state local results like [2] or even regional results that cannot
be obtained from [2].
Assumption II. The matrix M2 in (2b) is a Hurwitz matrix.

The matrix M2 must satisfy Assumption II to guarantee
the model reduction in the singular perturbation framework.
Note that the linear fast dynamics (2b) covers a wide range
of engineering applications [2].

B. Verification of [Assumptions 1 - 5, 1]

We now check that [Assumptions 1 - 5, 1] are satisfied
for the class of plants (2). Note that [Assumption 1, 1]
states that the input and its derivative belong to L∞. It is
observed that there are no inputs to the system (2). Therefore,
it follows that [Assumption 1, 1] trivially holds relying on
[Remark 2, 1].

We follow the standard singular perturbation technique to
obtain the reduced and boundary layer systems. We set ε = 0
such that the system is restricted to the slow manifold

M1x+M2z = 0. (3)

Then, it follows that, H(x) = −M−12 M1x, is an isolated
solution of (3). As a consequence, the system satisfies [As-
sumption 2, 1] which states that there exists an analytical
isolated solution for the slow system. By using the isolated
solution H(x), we have that the reduced system is given by

ẋ = f(x,−M−12 M1x), (4a)
ys = Cx. (4b)

where C = C1 −M−12 M1. We now define the change of
variables z = ξ −M−12 M1x. Note that the original system
(2) in the new variables (x, ξ) is given by

ẋ = f(x, ξ −M−12 M1x), (5a)

εξ̇ = M2ξ + ε(M−12 M1)f(x, ξ −M−12 M1x), (5b)
y = Cx+ C2ξ. (5c)

By using the fast time-scale τ = t/ε and setting ε = 0,
we have that the boundary layer system has the following
dynamics

dξ

dτ
= M2ξ, (6)

Assumption III. The reduced system (4) is globally expo-
nentially stable.

Results in [2] hold under the assumption of local expo-
nential stability of the reduced system (4). This assumption
is used to ensure closeness of solutions on the infinite time
interval of the solutions of (2) with respect to the solutions
of the reduced system (4) and the boundary layer system (6).
Although a local version of Assumption IV is assumed in [2],
we assume a global version to prove a stronger result (SPA
stability) for the same class of plants and observer.

The analyticity of f(x,−M−12 M1x) implies continuous
differentiability. Moreover, it follows from [Lemma 3.3, 11]
that the global Lipschitz property of f(x,−M−12 M1x) im-
plies that the Jacobian matrix [∂f/∂x] is bounded on Rn.
Then, by virtue of Assumption IV, we have from [Theo-
rem 4.14, 11] that there is a function V1(x) that satisfies the
inequalities

c1|x|2 ≤ V1(x) ≤ c2|x|2 (7)
∂V1
∂x

f(x,−M−12 M1x) ≤ −c3|x|2 (8)∣∣∣∣∂V∂x
∣∣∣∣ ≤ c4|x| (9)

for some positive constants c1, c2, c3 and c4. Therefore, it
follows that [Assumption 3, 1] holds.

In our framework, [Assumption 4, 1] states that there is a
Lyapunov function for the boundary layer system satisfying
certain conditions that imply uniform asymptotical stability.
Since M2 is Hurwitz, we have from [Theorem 4.6, 11] that
for any given positive definite symmetric matrix Qξ there
exists a positive definite symmetric matrix Pξ that satisfies
the following Lyapunov equation

PξM2 +MT
2 Pξ = −Qξ. (10)

To check [Assumption 4, 1], consider W (ξ) = ξTPξξ as a
candidate Lyapunov function for (6). It follows that

∂W

∂ξ
M2ξ ≤ −λmin{Qξ}|ξ|2, (11)

Therefore, [Assumption 4, 1] is satisfied with
αW (|ξ|) = λmin{Pξ}|ξ|2 and αW (|ξ|) = λmax{Pξ}|ξ|2
as the lower and upper bounds for W (ξ) respectively, and
with ζ3 = λmin{Q2} and αW (|ξ|) = |ξ| as the terms
satisfying (11).

The [Assumption 5, 1] gives a set of interconnection
conditions to bound the terms that represent the inter-
connection between the reduced and the boundary layer
systems. Since f(0, 0) = 0, it follows from the global
Lipschitz property of f(x, z) that |f(x, ξ −M−12 M1x)| ≤
L1|x| + L2|ξ − M−12 M1x| and |f(x, ξ − M−12 M1x) −
f(x,−M−12 M1x)| ≤ L3|ξ| hold for all (x, ξ) ∈ Rn × Rm
for some non-negative constants L1, L2, and L3. Moreover,
from Converse Theorem [Theorem 4.14, 11], we know the
Lyapunov function V1(x) satisfies (9).

It follows that [eq. (11), 1] is satisfied with a1 = 0,
γ1(·) = 0 and b2 = cL3, and that [eq. (13), 1]
holds with a3 = 2L2|Pξ||M−12 M1|, b3 = 2(L1 +
L2|M−12 M1|)|Pξ||M−12 M1|, γ3(·) = 0 and γ4(·) = 0. Note
that for [eq. (12), 1] we have that a2 = 0, b2 = 0, and



γ2(·) = 0 since there is no input to the system and the slow
and fast parts do not depend on the perturbation parameter.
Hence, [Assumption 5, 1] holds.

C. Observer design and verification of [Assumptions 6
and 7, 1]

We now consider the Luenberger-type nonlinear observer
introduced in [3] with the following dynamics

˙̂x = f(x̂) + L(x̂)(y − ŷ), (12)

where x̂ ∈ Rn is the observer state and an estimate of x ∈
Rn, and ŷ is the estimated output. The state-dependent gain
L(x̂) is defined as

L(x̂) =

[
∂T

∂x̂

]−1
B, (13)

where T (x̂) is a solution to a system of partial differential
equations given by

∂T

∂x̂
f(x̂) = AT (x̂) +BCx̂, (14)

with A and B being matrices of appropriate dimensions, and
A being Hurwitz.

It is shown in [2], that a coordinate transformation given
by w = T (x) leads to a linear error dynamics when we
define the estimation error as e = w − ŵ. It can be shown
that the observation error for the reduced system (4) has the
following linear dynamics

ė = Ae. (15)

The [Assumption 6, 1] states that there is a Lyapunov func-
tion for the error dynamics that satisfies a set of conditions
implying an asymptotical stability for the estimation error.
Since A is Hurwitz, it follows from [Theorem 4.6, 11] that
for any given positive definite symmetric matrix Qe there
exists a positive definite symmetric matrix Pe that satisfies
the following Lyapunov equation

PeA+ATPe = −Qe, (16)

Consider a quadratic Lyapunov function candidate
V2(e) = eTPee. Then, the derivative of V2(e) along
the trajectories of the linear system (15) is bounded as
follows

∂V2
∂e

(Ae) ≤ −λmin{Qe}|e|2. (17)

Hence, [Assumption 6, 1] holds with
αV2

(|e|) = λmin{Pe}|e|2 and αV2(|e|) = λmax{Pe}|e|2
being the lower and upper bounds for V2(e) respectively,
with ζ2 = λmin{Qe} and αV2

(|e|) = |e| being the elements
satisfying (17), and with ζ̂2 = 2|Pe| being the constant
that multiplies αV2

(·) to bound the norm of the gradient of
V2(e) with respect to e.

When the observer (12) is implemented on the full system,
the error dynamics is not linear anymore and is given by

ė = Ae−BC2ξ +
∂T

∂x

[
f(x, ξ −M−12 M1x)

− f(x,−M−12 M1x)
]
. (18)

Without loss of generality assume that |∂T/∂x| ≤ L4 holds
for all x ∈ Rn with L4 > 0. As pointed out above, we have
that |f(x, ξ−M−12 M1x)−f(x,−M−12 M1x)| ≤ L3|ξ| holds
for all (x, ξ) ∈ Rn × Rm with L3 > 0. Then, we have that
the norm of the difference between (15) and (18) is bounded
as follows∣∣∣∣Ae−BC2ξ +

∂T

∂x

[
f(x, ξ −M−12 M1x)

− f(x,−M−12 M1x)
]
−Ae

∣∣∣ ≤ |BC2||ξ|+ L3L4|ξ|.

Then, it follows that [Assumption 7, 1] holds with a4 = 0,
a5 = 0, b4 = 2|Pe|(|BC2| + L3L4), and γ5(·) = 0.
Since all the assumptions are satisfied, we conclude that,
by [Theorem 1, 1], the estimation error dynamics (18) is
SPA stable.
Remark II. The global Lipschitz assumption on Assump-
tion I can be relaxed to local Lipschitz condition and then
we can still conclude SPA stability. Moreover, the bound on
|∂T/∂x| can be relaxed to a semiglobal type bound like local
Lipschitz. Note that with some extra conditions the local
version of Assumption I can be obtained from the analyticity
of f(x, z).
Remark III. Our results can be stated as local or regional
if we relax our assumptions in [1].

1) Exponential stability of the error dynamics on the
transformed coordinates implies asymptotical stability on the
original ones: Define the estimation error in the original
coordinates as e = x − x̂. Note that the estimation error
e = w − ŵ is defined in the transformed coordinates
w = T (x). Hence, we have that e = T (e) where
T (e) = T (x) − T (x̂). Since T (x) is continuously dif-
ferentiable, it follows T (e) is continuously differentiable
too. Moreover, T (0) = 0 implies that T (0) = 0. Since
[Assumption 6, 1] holds, it follows that the error dynamics
in terms of the transformed variables satisfy1

|e(t)| ≤ βe(|e0|, t), (19)

where βe ∈ KL. Since the T (0) = 0 and T (e) is
continuous, then there exist αT (·), αT (·) ∈ K∞ such that
αT (|e|) ≤ |T (e)| ≤ αT (|e|). Then, it follows from (19)
that

|T (e(t))| ≤ βe(αT (|e0|), t). (20)

Since αT (|e|) ≤ |T (e)|, it follows from (20) that there is a
class-KL function βe(|e0|, t) := α−1

T
(βe(αT (|e0|), t)) such

that

|e(t)| ≤ βT (|e0|, t). (21)

Then, from the Converse Theorem [Theorem 4.16, 11], it
follows that the there is a continuously differentiable function
Ve(e), different from V2(e), that satisfies the inequalities
αe(|e|) ≤ Ve(e) ≤ αe(|e|), ∂Ve

∂e fe(x, e) ≤ −αe(|e|),∣∣∂V
∂e

∣∣ ≤ α̃e(|e|) where αe(·), αe(·), αe(·), α̃e(|e|) ∈ K∞,
and fe(x, e) is the error dynamics in the e variable.

1In the sequel, e0 := e(0). The same apply for the other states.



Then, it follows that the analysis can be done either by
using the error dynamics with the transformed coordinates
or by using the one in the original variables.

III. CIRCLE CRITERION OBSERVER

In this section, we consider a class of singularly perturbed
plants where the reduced (slow) model takes the form in
which results from [4] can be applied to design a full-
order observer. This class of plants is covered by the general
model (1). Note that this class of plants and the observer are
not covered by [2].

A. Class of plants

Consider the class of plants with the following nonlinear
singularly perturbed form

ẋ = Ax+Gγ(Fx) + σ(y, u) +Bz, (22a)
εż = M1x+M2z, (22b)
y = C1x+ C2z, (22c)

where the state vector x ∈ Rn corresponds to the slow
state, z ∈ Rm is the fast state, y ∈ Rp is the measured
output variable, u ∈ Rr is the control input, ε is the
perturbation parameter of the process, γ(·) a nondecreasing
locally Lipschitz function and A, B, G, F , C1, C2, M1

and M2 are matrices of appropriate dimensions.
We require a linear dynamics in (22b) for two reasons:

1) it is easier to compute the slow manifold, and 2) with a
linear fast dynamics we end up with a reduced model that
exhibits a structure for which we can design a circle criterion
observer [4].
Assumption IV. The matrix M2 in (22b) is a Hurwitz matrix.
Assumption V. The functions γ(·) and σ(·, ·) are globally
Lipschitz.

Assumption V over σ(·, ·) is useful to prevent the solutions
of x from escaping to infinity in a finite time [4]. Later is
stated through a remark that Assumption V can be relaxed.

B. Verification of [Assumptions 1 - 5, 1]

We now check the given assumptions in [1] for the class
of systems represented by (22). Note that [Assumption 1, 1]
requires u, u̇ ∈ L∞. It is observed that no condition is needed
for u̇ because the fast dynamics does not depend on u.
Assumption VI. The input belongs to u ∈ L∞ .

It follows from the above assumption that [Assump-
tion 1, 1] holds. To obtain the lower dimensional systems,
we set ε = 0 such that the system is restricted to the
slow manifold (3). Then, [Assumption 1, 1] holds with
H(x) = −M−12 M1x which always exists. By using H(x),
we have that the reduced system is given by

ẋ = A0x+Gγ(Fx) + σ(ys, u), (23a)
ys = Cx, (23b)

where A0 = A−BM−12 M1 and C = C1−C2M
−1
2 M1, and

the pair (A,C) is detectable.
Assumption VII. The reduced system (23) is input-to-state
practical stable (ISpS), such that there exists a Lyapunov
ISpS function that satisfies [Asumption 3, 1].

We require Assumption VII because there is no need
for A0 to be Hurwitz. Assumption VII allows more generality
for the matrix A0.

We now define the change of variables z = ξ−M−12 M1x.
Then, the original system (22) in the (x, ξ) variables is given
by

ẋ = Ax+Gγ(Fx) + σ(y, u) +B(ξ −M−12 M1x), (24a)

εξ̇ = M2ξ + ε(M−12 M1)[Ax+Gγ(Fx) + σ(y, u)

+B(ξ −M−12 M1x)], (24b)
y = Cx+ C2ξ (24c)

By expressing (24) in the fast time-scale τ = t/ε, we have
that the boundary layer system at ε = 0 is given by (6).
It follows, under the same study as in Section II-B, that
[Assumption 4, 1] holds with αW (|ξ|) = λmin{Pξ}|ξ|2
and αW (|ξ|) = λmax{Pξ}|ξ|2 being the lower and upper
bounds for W (ξ) respectively, and with ζ3 = −λmin{Qξ}
and αW (|ξ|) = |ξ| being the terms bounding the derivative
of W (ξ) as in (11).
Assumption VIII. The full system (24) satisfies the inter-
connection conditions in [Assumption 5, 1].

The functions upper bounding the interconnection con-
ditions come from [Assumptions 3 and 4, 1]. We need
Assumption VIII due to the generality of the Lyapunov
function in Assumption VII.

C. Observer design and verification of [Assumptions 6
and 7, 1]

We now consider the circle criterion observer proposed
in [4], for the reduced order model (23), with the following
dynamics

˙̂x = A0x̂+ L(Cx̂− y) +Gγ(Fx̂+K(Cx̂− y)) + σ(y, u),
(25)

where x̂ ∈ Rn is the observer’s state and an estimate of
the state, K and L are gain matrices of appropriate dimen-
sions which must be designed. By following the approach
described in [1], the observer (25) must be designed for
the reduced system (23), and then implemented on the full
singularly perturbed system (24). Therefore, we design an
observer for (23) by using the approach in [1]. Define the
estimation error as e := x − x̂. It follows that the error
dynamics is given by

ė = (A0 + LC)e+G[γ(Fx)− γ(F (x− e)−KCe)].
(26)

To check [Assumption 6, 1], we consider the Lyapunov
function V2(e) = eTP3e, where P3 = PT3 > 0. The
matrix P3 is obtained by solving the following LMI from [4][

A
T
P3 + P3A+ ν̂ P3G+ (F +KC)TΛ

GTP3 + Λ(F +KC) 0

]
≤ 0,

(27)

where Λ > 0 is a diagonal matrix and an observer design
parameter, ν̂ > 0 is also an observer design parameter and



A = (A0 + LC). When the LMI in (27) is satisfied, it
follows that [4]

∂V2
∂e

fe(x, e) ≤ −ν̂|e|2, (28)

with fe(x, e) = (A0 + LC)e + G[γ(Fx) − γ(F (x −
e) − KCe)]. Then, [Assumption 6, 1] holds with
αV2

(|e|) = λmin{P3}|e|2 and αV2
(|e|) = λmax{P3}|e|2

being the lower and upper bounds for V2(|e|) respectively,
with ζ2 = ν̂ and αV2

(|e|) = |e| being the elements that
satisfy the bound in (28), and with ζ̂2 = 2|P3| being the
constant that multiplies αV2(·) to bound the norm of the
gradient of V2(e) with respect to e.

When the observer (25) is implemented on the full sys-
tem (24), the error dynamics becomes

ė = (A0 + LC)e+Gγ(Fx) +Bξ + LC2ξ

−Gγ(F (x− e)−K(Ce+ C2ξ)). (29)

By considering (26) and (29), we have that [Assumption 7, 1]
holds with a4 = 0, a5 = 0, b4 = 2(|P1||B + LC2| +
L1|P1G||KC2|), and γ5(·) = 0.

We have checked that all assumptions in [1] hold for plants
in the form of (22) and the circle criterion observer (25).
Therefore, we conclude that the error dynamics (29) are
SPA stable when the observer is implemented on the original
system, see [Theorem 1, 1].
Remark IV. The global Lipschitz assumption on γ(·)
and σ(·, ·) can be relaxed to local Lipschitz condition and
then we can still conclude SPA stability.
Remark V. If the matrix A0 is Hurwitz, [Assumption 3, 1]
holds with V1(x) being a quadratic Lyapunov function.
Moreover, it is straightforward to find the functions and
constants for which [Assumption 5, 1] is satisfied.

D. Example: A class of chemical systems with a fast linear
sensor

In this subsection, we study a class of chemical systems
with a linear fast sensor covered by the class of system in
the form of (22). First, we show that the system satisfies
[Assumptions 1 - 5, 1]. Then, we design the circle criterion
observer (25) for the reduced system, and check [Assump-
tions 6 and 7, 1]. Simulations results are presented too.

1) Model of the system: Consider the model for two
chemical species given by

ẋ1 =
1

tr
(x2 − x1), (30a)

ẋ2 = −x32 + µx2 − λ− kx1, (30b)

where x1 ∈ R and x2 ∈ R corresponds to the rate reactions
of two chemical species, the constants µ, λ and k are
parameters of the system, and tr is the relaxation time for x1
to approach x2. The model in (30) represents a number of
chemical systems, particularly those containing autocatalytic
reactions, when the reaction is carried out in a continuous-
flow stirred tank reactor [12].
Assumption IX. The species x1 evolve in the same time-scale
of the species x2, i.e., tr = 1.

Reactions that occur at the same rate are common in
chemical processes as the SCR catalyst [13], and also in
biological systems as in the predator-pray system [12], [14].
Assumption X. The output of the system (30) is measured by
using a sensor with a linear fast dynamics given by

εż = x1 − z. (31)

Sensors with a fast linear dynamics are common in chemi-
cal and biological reactors [2]. Under Assumptions IX and X
we have that the full singularly perturbed system is

ẋ1 = x2 − x1, (32a)

ẋ2 = −x32 + µx2 − λ− kx1, (32b)
εż = x1 − z, (32c)
y = z. (32d)

Note that we can rewrite (32) in the form of (22) with

A =

[
−1 1
−k µ

]
, G =

[
0
−1

]
, F =

[
0 1

]
, B = 0,

M1 = 1, M2 = −1, C1 = 0, C2 = 1 and σ(y, u) =
[0,−λ]T .

2) Verification of [1, Assumption 1 - 5]: We found that
it is more convenient to check [Assumption 1 - 5, 1] by
studying the system in its state space representation given
by (32). Note that λ in (32b) can be seen as a constant input,
so [Assumption 1, 1] is satisfied.

We set ε = 0 so that we obtain from (32c) that the slow
manifold is given by: x1 − z = 0. We have that the isolated
solution of the algebraic equation is H(x) = x1, which
implies that the system (32) satisfies [Assumption 2, 1].
Then, the reduced system is given by

ẋ1 = x2 − x1, (33a)

ẋ2 = −x32 + µx2 − λ− kx1, (33b)
ys = x1. (33c)

To check [Assumption 3, 1], consider the Lyapunov function
V1(x) = 1

4x
4
1 + 1

2x
2
2 for the slow system (33) . We take

the derivative of V1(x) along the solutions of the reduced
system (33). Then, we apply completion of squares and
perform algebraic manipulations to obtain

∂V2
∂x

f(x) ≤ −ζ1α2
V1

(|(x1, x2)|) + δV1
, (34)

with f(x) = [x2 − x1,−x32 + µx2 − λ − kx1]T and where
αV1(|(x1, x2)|) = |(x1, x2)|, ζ1 = 1/8 and δV1 = k4 +
1
4λ

2 +2(µ2 +1)+ 3
8 . Then, it follows that [Assumption 3, 1]

is satisfied with the given Lyapunov function V1(x).
Now, consider the change of variables z = ξ + x1 such

that, from (32c), we have εξ̇ = −ξ−ε(x2−x1). Then, in the
fast time scale τ = t/ε, the boundary layer system is given
by dξ/dτ = −ξ. In order to verify that the boundary layer
system satisfies [Assumption 4, 1], we consider the Lyapunov
function W (ξ) = 1

2ξ
2. By computing the derivative of W (ξ),



in the fast time scale, along the solutions of the boundary
layer system, we have that

∂W

∂ξ
ξ ≤ −ζ3α2

W (|ξ|), (35)

where αW (|ξ|) = |ξ| and ζ3 = 1. As a consequence,
[Assumption 4, 1] holds.

We now check the interconnection conditions in [Assump-
tion 5, 1]. It can be verified that [eq. (11), 1] is satisfied with
a1 = 0, b1 = 0 and γ1(·) = 0. We have that [eq. (12), 1]
holds with a2 = 0, b2 = 0, and γ2(·) = 0, and [eq. (13), 1]
is satisfied with a3 = 0, b3 = 2, γ3(·) = 0, and γ4(·) = 0.
Then, [Assumption 5, 1] holds.

3) Observer design and verification of [1, Assumptions 6
and 7]: Let µ = 2, λ = 1, and k = 1. We now aim to design
a circle criterion observer (25) for the reduced system (33)
which can be rewritten in the form of (23) with

A0 =

[
−1 1
−1 2

]
, G =

[
0
−1

]
, H =

[
0 1

]
, C =

[
1 0

]
,

and σ(y, u) = [0,−1]T . By setting ν = 1 and solving
the LMI (27), we obtain that the gain matrices for the
observer designed for the reduced system (33) are given by

K = − 2.4905, L =

[
−3.2359
−13.5228

]
, and that the symmetric

matrix P2 =

[
101.05 −28.10
−28.10 11.28

]
. Note that we can conclude

from results in Section III-C that [Assumptions 6 and 7, 1]
hold.

4) Simulation results: The simulation results for the circle
criterion observer implemented on (32) are shown in Fig-
ure 1. We present the estimation error performance for three
different values of ε. It is observed that the estimation error
converges to a region around the origin.

IV. CONCLUSIONS

This manuscript complements our theoretical results given
in our companion paper [1]. We have shown through two
classes of systems and nonlinear observers that the given
assumptions and results in [1] cover existing results in the
literature [2]. Moreover, they apply to a new class of systems
not previously covered in the literature when the reduced
order model allows for a circle criterion observer.
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