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Abstract— Due to development of technology, linear con-
trollers cannot satisfy requirements of high-tech industry. One
solution is using nonlinear controllers such as reset elements
to overcome this big barrier. In literature, the Constant in
gain Lead in phase (CgLp) compensator is a novel reset
element developed to overcome the inherent linear controller
limitations. However, a tuning guideline for these controllers
has not been proposed so far. In this paper, a recently
developed method named higher-order sinusoidal input de-
scribing function (HOSIDF), which gives deeper insight into
the frequency behaviour of non-linear controllers compared to
sinusoidal input describing function (DF), is used to obtain a
straight-forward tuning method for CgLp compensators. In this
respect, comparative analyses on tracking performance of these
compensators are carried out. Based on these analyses, tuning
guidelines for CgLp compensators are developed and validated
on a high-tech precision positioning stage. The results show the
effectiveness of the developed tuning method.

I. INTRODUCTION

Development of the high-tech industry has pushed the
requirements of motion control applications to extremes
regarding precision, stability, and speed. Thus, Proportional
Integral Derivative (PID), which has been widely used in
industry for its ease of implementation and simple struc-
ture, cannot satisfy these requirements due to fundamental
limitations - waterbed effect [1], [2]. To overcome these
limitations, researchers have turned to nonlinear controllers
such as reset controllers [3]–[8].

In 1958, Clegg [9] proposed the first reset element which
resets the state of an integrator to zero when its input
crosses the zero point. Besides Clegg Integrator (CI), other
reset configurations have been developed to provide more
design freedom and applicability: Generalized First Order
Reset Element (GFORE) [10] and Generalized Second Order
Reset Element (GSORE) [11]. Apart from zero error crossing
condition, other conditions like reset band [12], [13] and
fixed reset instants [14] have also been studied. Moreover,
there are several techniques which are proposed to soften
nonlinearities of reset controllers such as Partial Reset and
PI+CI approaches [15].

Describing Function (DF) tool, which considers only the
first harmonic of the output of the controller for a sinusoidal
input shows that the gain slope of CI is the same as the
linear integrator while it produces 52◦ less phase lag than the
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latter. This phase lead advantage of reset controllers has been
used to introduce new phase compensators [6], [16], [17]. N.
Saikumar et. al. [17] proposed a novel reset element termed
’Constant in gain Lead in phase (CgLp)’ which produces
broadband phase lead while maintaining constant gain. This
compensator is made by combining the GFORE/GSORE
with the first/second order linear lead filter.

As a result of the design flexibility of CgLp compensators,
various combinations of tuning parameters could be used
to provide the same open-loop gain behaviour and phase
compensation at the crossover frequency based on the DF
analysis for these compensators. However, it was seen that
the improvement expected through describing function analy-
ses was not achieved in some cases [18]. Hence, DF analysis
is insufficient to perform frequency analyses for reset ele-
ments especially when precision applications are considered.
Recently, Nuij [19] has extended the DF method to higher
order sinusoidal input describing functions (HOSIDF) for
the frequency analyses of non-linearities such as backlash,
friction, etc. With this tool, Heinen [20] extended HOSIDF
for reset controllers and opened the possibility of more
accurate analyses of reset controllers. The objective of this
paper is to use HOSIDF to develop a tuning guideline for
CgLp compensators.

The structure of the paper is as follows. Section II gives
preliminaries on reset controllers. In Section III, the tuning
method is derived based on the analyses of DF and HOSIDF
using the simulation results as basis for time domain perfor-
mance. Then, Section IV presents the experiment verification
and, conclusions and remarks for further study are provided
in Section V.

II. PRELIMINARIES

A. Describing function (DF) and higher order sinusoidal
input describing function (HOSIDF)

The state-space representation of reset controllers is: ẋ(t) = Arx(t)+Bre(t) if e(t) 6= 0
x(t+) = Aρ x(t) if e(t) = 0
u(t) =Crx(t)+Dre(t)

(1)

where Ar, Br, Cr and Dr are the state matrices of the
base linear system, e(t) and u(t) are the error input and
control input, respectively. In addition, the resetting matrix
Aρ determines states’ value after reset action by which the
non-linearity of reset systems can be tuned. The sinusoidal
input DF of reset systems (1) is given in [21] as:

GDF( jω) =Cr ( jωI−Ar)
−1 Br (I + jΘD(ω))+Dr (2)

ar
X

iv
:2

00
9.

05
11

6v
1 

 [
ee

ss
.S

Y
] 

 1
0 

Se
p 

20
20



     Frequency
-100

0

100

P
h

a
se

(°
)

     
-100

-80

-60

-40

-20

0

M
a
g
n

it
u

d
e(

d
B

)
1

st

3
rd

5
th

7
th

Linear

ωrα ωp

Fig. 1: Frequency behaviour of FORE including its linear
base, DF, and higher order harmonics

where ΘD is:

ΘD(ω) =
−2ω2

π
(I + e

πAr
ω )
(
(I +Aρ e

πAr
ω )−1Aρ(I + e

πAr
ω )− I

)
(ω2I +A2

r )
−1

(3)
To include higher order harmonics and obtain a more reliable
frequency description of reset systems, HOSIDF is obtained
in [20] as:

G( jω,n) =
{

Cr( jωnI−Ar)
−1 jΘD(ω)Br for odd n≥ 2

0 for even n≥ 2
(4)

where n is the order of harmonics.
Now consider a GFORE which is represented as

GFORE =
1

��
��*

Aρs
ωrα

+1

(5)

where ωrα is the corner frequency of GFORE and γ deter-
mines reset values after reset action Aρ = γInr×nr . Based on
the above relations, harmonics of the GFORE (with γ = 0)
along with the frequency response of its base linear system
(first order filter) are shown in Fig. 1. Based on the first
harmonic, it can be seen that the reduction of phase lag
is obtained without significant change of gain magnitude.
Based on (4), since the magnitude of higher order harmonics
decreases with increasing order (n), we only use the third
harmonics to analyze the effect of the higher order harmonics
on closed-loop performances. Denote ωp as frequency at
which the magnitude of higher order harmonics reach the
peak and Mp as the peak magnitude of 3rd harmonic.

B. Pseudo-sensitivity for reset systems

In linear systems, the sensitivity function from reference
signal r(t) to error e(t) can be calculated by

S(s) =
e
r
=

1
1+G(s)C(s)

(6)

where G(s) and C(s) are the transfer function of the plant and
controller, respectively. This transfer function indicates the
ability of the system to precisely track the reference signal.

For non-linear controllers, C(s) can be substituted with
DF of the controller to analyze tracking performance. How-
ever, it is not accurate enough to predict the precision
of tracking performance since higher order harmonics are
neglected. To obtain a better indicator for reset systems, a
pseudo-sensitivity function (S∞) for a sinusoidal reference
r = r0 sin(ωt) is defined as:

∀ω : |S∞(ω)|=
max
t≥tss

(|e(t)|)

r0
=

max
t≥tss

(|r(t)− y(t)|)

r0
(7)

where y(t) is the system output, and tss indicates the time
after which the system reaches its steady-state output.

C. Constant in gain Lead in phase (CgLp) compensators

In [17], CgLp is introduced as a phase compensator
by combining GFORE or GSORE with a corresponding
order of lead filter. It was proven that CgLp can be used
advantageously to overcome the fundamental limitations of
linear controllers. The first order CgLp is defined as follows:

CCgLp1(s) =
1

�
��
�*

Aρs
ωrα

+1


s

ωr
+1

s
ωt

+1

 (8)

in which ωr and ωt are the starting and taming frequencies of
linear lead filter. The corner frequency of the GFORE is set
ωrα = ωr

α
where α is the correction factor accounting for the

shift of the corner frequency of GFORE to ensure constant
gain of CgLp elements. The values of α with respect to γ

are listed in [17]. Similarly, the second order CgLp can be
defined as:

CCgLp2(s) =
1

���
���

���:
Aρ

(
s

ωrα

)2 +2s
βrα

ωrα

+1


(

s
ωr

)2

+2s
βr

ωr
+1(

s
ωt

+1
)2


(9)

where ωrα = ωr
α1

and βrα = βr
α2

are the corner frequency
and damping ratio of the reset element, respectively. α1
and α2 (Table I) are correction factors considering the shift
of corner frequency and adjustment of damping ratio to
guarantee constant gain of second order CgLp elements (βrα

is considered as 1 in this paper). The phase compensation
provided by CgLp elements at a pre-determined cross-over
frequency ωc of a system can be defined as θ(ωr,γ). The
mapping of θ to ωr and γ is one to many; hence, no unique
solution exists for γ and ωr. Figure 2 shows DF and HOSIDF
behaviour of CgLp configurations which provide the same
amount of phase compensation at ωc. In this paper, we will
analyze the 3rd harmonic of the constituent reset element
(GFORE or GSORE) instead of the entire CgLp in order
to find a relation between performance and higher order
harmonics. As shown in Fig. 2b, it is seen that the 3rd

harmonic of the different configurations are quite different
even though their first harmonics are very similar. It is
observed that the Mp increases with decreasing γ (Mp is
only depended on γ).



TABLE I: Correction factors α1 and α2 of second order CgLp

γ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α1 30.09 14.11 8.66 5.89 4.23 3.11 2.43 1.92 1.52 1.23 1.03 0.93 0.89 0.90 0.92 0.94 0.96 0.98 0.99
α2 3.28 3.20 3.01 2.76 2.49 2.21 2.10 1.91 1.63 1.36 1.14 1.02 1.00 1.03 1.06 1.07 1.07 1.05 1.03

To summarize, it is desired to tune CgLp parameters γ

and ωr such that the required phase (θ) is achieved at the
cross-over frequency ωc and the negative effects of higher
order harmonics are minimized.

III. TUNING GUIDELINES

This section presents the process of developing CgLp
tuning guidelines in simulation. Once several CgLp elements
are designed to provide the same phase compensation θ , it is
assumed that the case with optimal tracking performance is
affected the least negatively by higher order harmonics. The
tracking is evaluated based on the pseudo-sensitivity (S∞).
Then, the relation between the open-loop 3rd harmonic be-
haviour and closed-loop tracking performance is postulated,
which leads to the tuning guidelines.

A. Design of controllers

Due to the design flexibility of CgLp configurations,
several groups of the first and second order CgLp elements
are designed to produce θ (20◦, 30◦, 40◦,50◦) phase compen-
sation at the cross-over frequency ωc by varying γ and ωr.
The value of γ is chosen from -0.9 to 0.9 (to guarantee the
open-loop convergence [21]) with an increment of 0.1, and
ωr =

ωc
b where b is used to obtain the corner frequency of

CgLp elements and is determined by γ and θ . Furthermore,
ωt = 5ωc to reduce lag effect on the phase margin of the
controller while attenuating noise of the system.

B. Closed-loop precision performance

In this part, the closed-loop performance of a system
controlled by CgLp configurations are analyzed through
simulink (Fig. 3). For simplicity, a mass system controlled by
first and second order CgLp is considered (most of precision
motion systems can be considered as a mass system). Addi-
tionally, effects of resonance are removed leading to easier
analysis. The parameter kp is tuned so that all configurations
have the cross-over frequency at 100 Hz. The performance
of the system is evaluated based on tracking precision using
the defined pseudo-sensitivity S∞ (7). Since reference signals
for tracking are composed of low frequency components
in comparison to the cross-over frequency, S∞ behaviours
are compared for frequencies smaller than 40Hz and the
best configuration is selected. For this purpose, the designed
controllers are digitalized with sampling time 100 µs using
Tustin method [1]. Then, the r(t) = sin(ωt) is applied at
each frequency while n = 0 (Fig. 3), and S∞(ω) is calculated
through (7).
For instance, S∞(ω) of configurations provide 30◦ phase lead
are shown in Fig. 4. As was show, there are several CgLp
compensators which provide 30◦ phase. The configuration
with lowest S∞(ω) is selected as the optimal configuration.
Similarly, the optimal configurations for 20◦, 40◦ and 50◦

compensation are obtained and all of the cases which provide
optimal performance within their group are listed in Table II.
Furthermore, to investigate the noise attenuation performance
of these controllers, the reference signal is set as 0 and white
noise (n) is added to the feedback branch of the system as
shown in Fig. 3. The configurations that have the best noise
rejection are also shown in Table II.

To understand how the open-loop higher order harmonics
affect the closed-loop tracking performance, we characterize
the 3rd harmonic by Mp and ωp. By comparison, it is
found out that the configurations which has optimal tracking
performance among the group always have the largest value
of ωp within the group. Also, these optimal configurations
from a tracking perspective, have almost the lowest magni-
tude of third harmonics at low frequency among the group.
In addition, the best configuration for noise attenuation in
each group corresponds to the lowest Mp in that group (the
maximum value γ). These optimal cases have the lowest
magnitude of harmonics at frequencies larger than ωc. These
relations between open-loop 3rd harmonic behaviour and
closed-loop performance, although heuristic, provides us
with insights for the tuning of CgLp elements.
Apart from relations in each group, for constant value of
γ , since there is a direct relation between ωrα and ωp,
reducing the ωrα will reduce the ωp which causes low
magnitude of higher order harmonics at high frequency.
Thus, for a constant value of γ , reducing ωrα enhances
noise rejection and increases phase margin at cross-over
frequency; however, it sacrifices the tracking performance of
the system. In conclusion, for a given phase compensation θ ,
greater value of ωp results in higher precision for tracking,
and also, the lower value of Mp results in the better noise
rejection performance. Although the aforementioned results
are obtained based on investigation for a mass system,
results for mass spring damper systems with a low resonance
frequency (as compared to control cross-over frequency) and
a high damping coefficient are expected to show the same
pattern. This is because CgLp controllers are usually used in
combination with proportional integral (PI) controllers which
shape the open-loop behaviour of considered mass spring
damper systems into mass-like systems. Additionally, a high
damping ratio ensures that the third harmonic is not higher
than the first harmonic at any frequency.

IV. VALIDATION

This section presents the experiments performed on a
high precision positioning stage to validate the previously
obtained tuning guidelines. This stage is a mass-spring-
damper system which meets the condition of low resonance
frequency compared to cross-over with a large damping
factor. The precision positioning stage is shown in Fig. 5.
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Fig. 2: The Frequency behaviour of CgLp element including DF and 3rd order harmonic of reset element

TABLE II: Tuning parameters for the first (8) and second (9) order CgLp configurations

CgLp
Type

20◦ 30◦ 40◦ 50◦

γ b
ωc

ωp
Mp(dB) γ b

ωc

ωp
Mp(dB) γ b

ωc

ωp
Mp(dB) γ b

ωc

ωp
Mp(dB)

First
Order

Tracking -0.3 1.34 1.94 -16.77 -0.4 1.71 2.81 -16.02 -0.5 2.23 4.25 -15.3 -0.6 3.07 7.03 -14.62
Noise 0.3 6.41 6.11 -22.63 0.1 6.8 7.05 -20.31 0.0 25.82 28.49 -19.32 -0.2 23.78 31.05 -17.56

Second
Order

Tracking 0.2 0.75 1.06 -18.59 0.2 1.0 1.43 -18.59 0.2 1.35 1.91 -18.59 -0.1 1.26 1.48 -15.73
Noise 0.5 1.44 2.07 -22.74 0.4 1.61 2.25 -21.14 0.3 1.39 2.34 -19.77 0.3 3.53 4.63 -19.77

TABLE III: RMS and maximum steady state error for noise attenuation and tracking performance (T and N indicate tracking
and noise performance, respectively )

γ
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

N T N T N T N T N T N T N T N T N T N T N T N T

C1

20◦ Max e(t) 338 39 150 30 74 22 55 7 45 7 31 7 23 7 20 6 10 9 10 12 - - - -
RMS 143.6 15.5 43.9 13.1 32.8 9.9 29.3 1.9 14.5 2.1 19.9 1.7 7.2 2.1 7.8 1.7 3.6 2.1 3.3 4.63 - - - -

30◦ Max e(t) 65 27 63 10 53 7 35 7 29 7 26 7 13 8 8 13 - - - - - - - -
RMS 31.7 8.1 29.1 3.2 28.4 2.23 17.0 2.5 12.4 2.5 10.6 2.4 4.3 2.9 2.4 5.2 - - - - - - - -

40◦ Max e(t) 59 12 58 9 34 10 29 9 12 12 8 15 6 31 - - - - - - - - - -
RMS 30.3 4.2 30.1 2.8 14.1 3.2 13.4 3.0 3.3 4.3 2.6 5.7 2.0 12.5 - - - - - - - - - -

C2

20◦ Max e(t) - - - - 29 119 26 40 19 27 26 7 20 5 19 4 19 3 15 3 14 4 11 8
RMS - - - - 9.8 69.2 6.7 18.0 5.4 13.45 4.9 1.9 10.0 1.4 7.5 1.2 5.4 1.2 4.4 1.2 4.0 13 3.3 2.9

30◦ Max e(t) - - - - 20 38 20 17 19 8 19 6 16 5 16 5 14 4 11 4 10 5 - -
RMS - - - - 7.7 13.1 4.5 5.8 6.2 2.1 6.2 1.7 4.3 1.5 3.8 1.6 3.8 1.2 3.9 1.4 2.8 1.7 - -

40◦ Max e(t) - - - - 24 15 17 8 15 7 15 11 15 10 14 5 13 6 7 6 - - - -
RMS - - - - 7.4 4.8 6.4 2.3 5.4 2.2 4.6 3.7 4.8 3.7 4.4 1.2 5.2 2.1 2.5 2.1 - - - -

−
r ye 1

ms2

+

CgLp

n

Plant

kp

Fig. 3: Block diagram of the closed-loop system including a
mass plant controlled by CgLp compensators
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Fig. 4: The defined pseudo-sensitivity S∞ of the mass system
controlled by CgLp elements to achieve 30◦ phase

Three actuators are angularly spaced to actuate 3 masses
(indicated by B1, B2 and B3) which are constrained by
parallel flexures. These masses are connected to the central
mass D through leaf flexures. For simplicity, only actuator
A1 is utilized to control the position of B1, so we have a
SISO system. Mercury M2000 encoder is used the measure
the position of mass B1 with a resolution of 100 nm. Figure
6 shows the frequency response of the stage. The system can
be approximated as a single mass spring damper system with
estimated transfer function as follows:

Pest(S) =
8695

s2 +4.36s+7627.3
(10)

In order to validate the proposed relation, two control
configurations

C1(s) = kp

(
1+

ωi

s

)
︸ ︷︷ ︸

PI

CgLp1 and C2(s) = kp

(
1+

ωi

s

)
︸ ︷︷ ︸

PI

CgLp2

are implemented on the precision positioning stage. The
CgLp configurations of controllers are tuned to produce 20◦,
30◦, and 40◦ degree phase lead at the crossover frequency.
The cross-over frequency of all designed controllers is set to
100Hz. Also, ωi is tuned as ωc

10 as per guideline provided in
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[2]. All in all, we have six groups of control configurations
and within each group the phase margin, the cross-over
frequency and the type of CgLp element are the same.

The sinusoidal tracking experiments are carried out to
validate the tuning guidelines based on the defined pseudo-
sensitivity S∞ analysis. Since it is time-consuming to obtain
the behaviour of S∞ over the entire frequency range, the
maximum steady state errors of sinusoidal inputs with fre-
quencies of 5Hz, 10Hz, and 20Hz were used for performance
analysis. Figure 7 shows the maximum steady state error of
reference tracking and corresponding ωp for each control
configuration of the first and second order CgLp. It is seen
from the figures that the lowest value of maximum steady
state error is obtained when the ωp is the maximum which
is consistent with the analysis in the previous section.

In the experiments of noise rejection, zero reference is
used and additional white noise with a maximum magnitude
of 5000 nm (50 times the resolution of the sensor) is applied
to the feedback branch of the system as shown in Fig. 3, and
the results are shown in Table III. It can be seen that the
configurations with optimal noise attenuation performance
within the group are consistent with cases indicated in Table
II. Moreover, it is noteworthy that the optimal cases of first
order CgLp outperform that of second order CgLp for noise
attenuation. This can be explained by the fact that the optimal
cases of the first order CgLp have the lowest magnitudes of
Mp than the ones of the second order as seen in Table II.

Furthermore, since industrial motion control is achieved
with a predefined trajectory, the tracking performance for
a smooth trajectory (Fig. 8) which is the combination of
sinusoidal waves with different frequencies is investigated.
Table III shows the Root Mean Square (RMS) and maximum
steady state error for each scenario. It is observed from
the tables that the optimal performance regarding RMS and
maximum steady state error are still obtained with reset
values that produce a maximum ωp. Additionally, from the
results, we see that the optimal case in the sense of tracking
performance has the moderate performance in the sense of
noise rejection. Indeed while CgLp has allowed us to reduce
waterbed effects of linear controllers, a new design trade off
between noise rejection and tracking performance is created
by higher order harmonics for this kind of controllers which
has been found in this paper. Based on these analyses, the
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tuning method can be summarized as:
1) Use describing function to design a group of CgLp

elements that provide the required phase lead as com-
pensation at crossover frequency.

2) Check the frequency ωp at which the 3rd harmonic
peak is placed for each configuration using HOSIDF.

3) If tracking performance is important, choose the CgLp
configuration that has the largest value of ωp.

4) If noise rejection is important, choose the configuration
with lowest Mp (highest value of γ).

V. CONCLUSION

This paper has proposed a tuning guideline for Constant in
gain Lead in phase (CgLp) configurations. Several groups of
CgLp controllers are designed to achieve the same amount
of phase compensation, and their open-loop higher order
harmonics behaviour are investigated through higher order
sinusoidal describing function analysis (HOSIDF). Then, the
closed-loop tracking precision performances are evaluated
by a defined pseudo-sensitivity function which considers all
harmonics. It is found that the optimal tracking precision
performances are obtained with cases that have the largest
frequency of 3rd harmonic peak (ωp) which have almost
the smallest magnitude of higher order harmonics at low
frequencies. On the other hand, configurations with maxi-
mum value of γ (the lowest value of Mp) which result in
the lowest magnitude of 3rd harmonic at higher frequencies
have the best noise attenuation performance. Results are
also validated by the experiments performed on a precision
positioning stage. Although the exact relation between open-
loop higher order harmonics and closed-loop performance
has not completely been theoretically established, this paper
provides guidelines to minimize the negative effect of higher
order harmonics on the performance of the system. For future
study, it is interesting to establish a H∞ by combining it with
the proposed tuning guideline.
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(c) CgLp1, 40◦ Phase Compensation
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(d) CgLp2, 20◦ Phase Compensation
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(e) CgLp2, 30◦ Phase Compensation
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Fig. 7: Maximum steady state error of the system with various sinusoidal reference inputs
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