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Abstract— This paper considers the problem of localiza-
tion and circumnavigation of an unknown stationary target
by a group of autonomous agents using only local bearing
measurements. We assume that no direct communication or
exchange of information is permitted among the group of
agents and propose an algorithm to approximate the angular
separation between agents and a distributed control law that
forces the agents to circumnavigate the target at a desired orbit
with any prescribed angular separation. Global asymptotic
stability of the system is analyzed rigorously using Lyapunov
theory, cascade control strategy, and perturbation method. The
performance of the proposed algorithm is verified through
simulations.

Index Terms— Bearing-only measurements, circumnaviga-
tion, distributed control, localization, multi-agent system.

I. INTRODUCTION

The task of target circumnavigation has drawn extensive
research attention in recent decades owing to its wide ap-
plications in both civil and military fields. Circumnavigation
tasks are typically performed by steering one or more agents
toward and then on a circular trajectory centered at the target
with a prescribed radius. As the target to be monitored in
practical applications is often uncooperative such that its
location is unknown to the agent(s), the circumnavigation
task usually encompasses two sub-problems, namely, the
target localization and the formation maneuver around the
target. The literature often refers to this kind of uncooperative
circumnavigation task as a dual control problem [1].

In existing studies, the assumption that the sensing capa-
bility of the agent(s) provides information-rich measurements
(such as distance, bearing angle, and velocity) of the target
is frequently adopted to decouple the two sub-problems
and thereby simplify the circumnavigation task; see for
example [2]–[7]. However, the circumnavigation tasks are
often subject to measurement incompleteness due to practical
circumstances such as limited payload, and therefore, it is
preferred to restrict the available sensor knowledge in the-
oretical development. When the agent is required to remain
in stealth or radio silence, bearing-only measurement is ne-
cessitated as it is a passive measurement technique [8]. Due
to this merit, extensive research efforts [8]–[13] have been
devoted to the problem of bearing-only target localization
and circumnavigation (abbrev. BoTLC hereafter).

In comparison to single-agent systems, multi-agent sys-
tems are superior in meeting the increasingly complex and di-
verse circumnavigation task due to their enhanced robustness
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d.sui@unsw.edu.au, m.deghat@unsw.edu.au).

and versatility. A typical approach to coordinate the group
of agents in BoTLC is to distribute the agents uniformly or
distribute them according to a set of pre-defined separation
angles on a single or multiple circles centered at the target,
where the separation angle refers to the angle subtended at
the target by two neighbor agents, see for instance [12]–[18].
Along a different train of thought, controllers used in [19],
[20] drive the agents to form an evenly distributed circular
formation using only a ratio of bearing angles subtended
at an agent by its neighbor agents and the target, whereas
[21]–[23] make use of heading angles of neighbor agents
to achieve formation maneuver. In a different vein, authors
in [11] employed the bearing rigidity theory to tackle the
circumnavigation task.

However, with the exception of [19]–[21], all studies cited
above assume there exists at least some local communication,
to deliver necessary information, among agents. The reliance
on inter-agent communication can be unfavorable in appli-
cations where the system is exposed to adversarial attacks
targeting radio channels such as jamming or spoofing. The
need for communication also significantly compromises the
stealthiness of the system, which is one of the driving force to
study the problem of BoTLC. Further, a communication-free
system offers many appealing features such as not suffering
from transmission errors such as latency, data collision, and
packet loss, and an enhanced capability to be deployed in
harsh environments such as underwater. Therefore, the afore-
mentioned discussions prompt this paper to study the BoTLC
problem under the assumption that no communication is
permitted among agents.

Contributions. A novel communication-free algorithm is
proposed in this paper for arbitrarily spaced circular for-
mation on the problem of multi-agent BoTLC. The paper’s
primary contributions are threefold: Firstly, to the best of
the authors’ knowledge, the proposed method represents the
first result on a fully communication-free circumnavigation
algorithm for a multi-agent system using solely bearing
measurements. Avoiding communications among agents has
significantly complicated the stability analysis and offers
evident practical applications. In comparison to [11]–[18],
the proposed controller does not require any inter-agent
communication and uses strictly local on-board bearing mea-
surements. In contrast to [19], [20], global rather than local
asymptotic stability is rigorously derived in this paper, and
furthermore, the angular separation between agents can be ar-
bitrarily assigned. Unlike [21]–[23], the proposed controller
does not need to use additional information of the heading
angle of neighboring agents. Secondly, all measurements
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are within local coordinate frames that are not necessarily
aligned. Last but not least, unlike most of the existing studies,
agents are not required to possess any knowledge about the
total number of agents in the formation.

The rest of this paper is structured as follows. Section II
formally states the BoTLC problem. The proposed solution
is formulated in Section III. Section IV is devoted to the
stability analysis. Section V shows the simulation results,
and Section VI provides concluding remarks.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

The interaction topology of the multi-agent system is
described by a directed graph (digraph) G = (V, E ,A).
The group of agents are represented by the vertex set V =
{1, 2, . . . , n}. E = {eij = (i, j)} ⊆ V × V is the edge
set where the edge eij = (i, j) ∈ E indicates that agent
i considers agent j as its neighbor. The neighbor strategy
will be explained later. The adjacency matrix is denoted by
A = [aij ] ∈ Rn×n where aij = 1 if eij ∈ E and aij = 0
otherwise. We stipulate that G contains no self-loops, that is,
aii = 0. Let Ni = {j : eij ∈ E} denote the set of agent i’s
neighbors. The Laplacian matrix of the digraph G is denoted
by L(G) = [ℓij ] ∈ Rn×n where ℓij = −aij for i ̸= j and
ℓii =

∑n
j=1 aij .

B. Useful Lemmas

Lemma 2.1 ([24, Theorem 7&8]): If a digraph denoted
by G is strongly connected, balanced, and nonswitching, then
the generalized Fiedler’s notion of algebraic connectivity
λ2(G) has the following property on G:

inf
x ̸=0

1⊤
n x=0

x⊤L(G)x
x⊤x

= λ2(G), (1)

where x = [x1, . . . , xn]
⊤ ∈ Rn, and 0 = λ1 < λ2(G) ≤

· · · ≤ λn are eigenvalues of the Laplacian matrix L(G).
Lemma 2.2 ([25], [26]): Consider the cascaded nonlinear

systems taking the form of

Σ

{
Σ1 : ẋ1 = f1(x1,x2), (2a)
Σ2 : ẋ2 = f2(x2). (2b)

The origin of Σ is globally asymptotically stable (GAS) if
the following conditions are met:
(C1) The origin of ẋ1 = f1(x1,0) is GAS;
(C2) The origin of ẋ2 = f2(x2) is GAS;
(C3) The solution of ẋ1 = f1(x1,x2) is bounded in

the sense of Converging Input - Bounded State
(CIBS) [25], that is, for each input x2(t) such that
lim
t→∞

x2(t) = 0, and for each initial state x1(0) = x1,o,
the solution of Σ1 with x1,o exists for all t ≥ 0 and is
bounded.

Lemma 2.3 ([27, Theorem 4.9]): Consider the system

ẋ = f(t,x). (3)

Suppose x = 0 is an equilibrium point of (3) and D ⊂ Rn

is a domain containing x = 0. Let W1(x), W2(x), and

W3(x) be continuous positive definite functions on D, and
let V : [0,∞) × D → R be a continuously differentiable
function such that

W1(x) ≤ V (t,x) ≤W2(x), (4)
∂V

∂t
+

∂V

∂x
f(t,x) ≤ −W3(x), (5)

for all t ≥ 0 and for all x ∈ D. Then, x = 0 is uniformly
asymptotically stable. Moreover, if r and c are chosen such
that Br = {||x|| ≤ r} ⊂ D and c < min||x||=rW1(x), then
every trajectory starting in {x ∈ Br|W2(x) ≤ c} satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t ≥ t0 ≥ 0, (6)

for some class KL function β. Finally, if D = Rn and W1(x)
is radially unbounded, then x = 0 is uniformly globally
asymptotically stable (UGAS).

Lemma 2.4 ([27, Theorem 9.1]): Consider the nominal
system Π and the perturbed system Π′ given as follows,

Π : ẋ = q(t,x), (7a)
Π′ : ẋ = q(t,x) + g(t,x). (7b)

Let D be a domain that contains the origin, and suppose the
following conditions are met:
(C1) The perturbation term g(t,x) is piecewise continuous

in t, locally Lipschitz in x, and there exists a positive
constant ϖ such that

||g(t,x)|| ≤ ϖ, ∀(t,x) ∈ [0,∞)×D; (8)

(C2) The origin of the nominal system (7a) is an exponen-
tially stable equilibrium point;

(C3) There exists a Lyapunov function V (t,x) that satisfies
the conditions of Lemma 2.3 for the nominal system
(7a) for (t,x) ∈ [0,∞) × D and {W1(x) ≤ c} is a
compact subset of D.

Let y(t) and z(t) denote solutions of the nominal system
(7a) and the perturbed system (7b), respectively. Then, for
each compact set Ω ⊂ {W2(x) ≤ ρc, 0 < ρ < 1}, there
exist positive constants χ, γ, µ, and k, independent of ϖ,
such that if y(t0) ∈ Ω, δ < η, and ||z(t0) − y(t0)|| < µ,
the solutions y(t) and z(t) will be uniformly bounded for
all t ≥ t0 ≥ 0 and

||z(t)− y(t)|| ≤ ke−γ(t−t0)||z(t0)− y(t0)||+ χϖ. (9)

C. Background and Notations

Consider a 2D plane containing a group of n ≥ 2 agents
and a target to be localized and circumnavigated by the
agents. The location of agent i, i ∈ V , at time t is denoted
by pi(t) = [xi(t), yi(t)]

⊤ ∈ R2 and that of the stationary
target by x = [xt, yt]

⊤ ∈ R2. The agents are viewed as
holonomic moving points whose kinematics are described
by the following single-integrator model,

ṗi(t) = ui(t), i ∈ V, (10)

where ui(t) is the control input to be designed.
Agent i’s local bearing measurement of the target at time

t ≥ 0 is expressed in the form of a unit bearing vector φiT (t)



starting from agent i and pointing to the target,

φiT (t) =
x− pi(t)

||x− pi(t)||
=

x− pi(t)

di(t)
, i ∈ V, (11)

where di(t) is the Euclidean distance between agent i and
the target at time t. Similarly to (11), let φij(t) ∈ R2 be
the unit bearing vector on the line passing through pi(t)
and pj(t), and ψij(t) ∈ [0, 2π) be the angular spacing
rotated counterclockwise from φiT (t) to φij(t). Unit vector
φ̄iT (t) ∈ R2 is obtained by rotating φiT (t) clockwise by
π/2. Angle βij(t) ∈ [0, 2π) represents the actual angular
separation between agent i and agent j at time t ≥ 0, which
is not directly available to either agent i or j. A special case
of a two-agent system is depicted in Fig. 1. Symbols Ui,
ξi(t), γi(t), and βi(t) will be explained in later sections.

Fig. 1: A graphical illustration of notations.

D. Problem Statements and Assumptions

In this paper, we aim to simultaneously solve the following
two problems.

Problem 2.1 (Localization): Design a target estimator
˙̂xi(t) for i ∈ V , such that each agent localizes a stationary
target using only local bearing measurements. In particular,
for all i ∈ V , the estimation error x̃i(t), defined as x̃i(t) =
x̂i(t)− x, converges to zero.

Problem 2.2 (Circumnavigation and Circular Formation):
Given a circular formation characterized by a desired
circumnavigation distance d∗ > 0 and a sequence of desired
angular separation β∗ =

[
β∗
12, β

∗
23, . . . , β

∗
n−1,n, β

∗
n,1

]⊤
,

design a distributed control law ui(t) such that for any
multi-agent system with n ≥ 2, each agent converges to
the common circle centered at the target with the desired
radius d∗ while circumnavigating the target and maintaining
the desired angular spacing β∗. In particular, the proposed
control law should satisfy the following conditions:
(1) The tracking error converges to zero:

lim
t→∞

||x− pi(t)|| − d∗ = 0, ∀ i ∈ V. (12)

(2) The angular separation error b̃i(t), defined as b̃i(t) =
βij(t)− β∗

ij , converges to zero for all (i, j) ∈ E .
To address the above problems, we make the following
assumptions.

Assumption 2.1 (Initial Positions): We assume that all
agents and the target are occupying different locations at
t = 0. As the problem of collision avoidance between agents

is not a focus of the current paper, we further assume that the
initial positions of the group of agents are almost in order
[4], [28] such that no inter-agent collision could have evolved
from the considered initial conditions.

Assumption 2.2 (Zero Communication): No direct com-
munication, that is, any means of exchange of information,
is permitted between agents.

Assumption 2.3 (Limited Sensing Capacity): Each agent
i ∈ V only has access to local bearing measurements φiT (t)
and φij(t), and has only one neighbor j ∈ Ni where
j = i+ 1 if i < n and j = 1 if i = n, for all t ≥ 0.

Remark 2.1: Given Assumption 2.3, the digraph G is
strongly connected, nonswitching, and balanced.

Assumption 2.4 (A Priori Knowledge): We assume for
each agent i, the location of other agents and that of the
target are not known a priori. But it is assumed that each
agent i knows a priori the desired circumnavigation distance
d∗ > 0 and the desired angular separation β∗

ij ∈ [0, 2π). In
addition, we assume each agent does not have knowledge
about the total number of agents, n.

III. PROPOSED ALGORITHM

Adopting the target estimator proposed in [8], [9], agent
i’s estimate of the target location is obtained by

˙̂xi(t) = kest
(
I2 −φiT (t)φ

⊤
iT (t)

)
(pi(t)− x̂i(t)) , (13)

where kest ∈ R+ is an estimation gain, and I2 is a 2 × 2
identity matrix.

To distribute agents on the desired circle around the
target, we employ an estimate β̂ij(t) ∈ [−π, 3π), which
approximates the actual angular separation βij(t) using the
following equation,

β̂ij(t) =

{
2ψij(t)− 3π if ψij(t) ≥ π,

2ψij(t) + π otherwise.
(14)

A control law should be designed such that all β̂ij
converge to βij and eventually to the desired values β∗

ij .
With this goal in consideration, we propose the following
controller:

ui(t) = kc

(
d̂i(t)− d∗

)
φiT (t) + kω

(
α+ β̃i(t)

)
φ̄iT (t), (15)

where d̂i(t) = ||pi(t) − x̂i(t)||, β̃i(t) = β̂ij(t) − β∗
ij , and

kc, kω > 0 and α are control constants in which α should
be chosen to meet

α− sup
i∈V,t≥0

|β̃i(t)| ≥ κα > 0, (16)

where κα is some small positive constant.

IV. STABILITY PROOFS

In this section, we show that the proposed estimators (13),
(14), and controller (15) solve Problem 2.1 and Problem 2.2.
To this end, we first propose some lemmas.

Lemma 4.1: Under the target estimator (13) and the con-
troller (15), the estimation error in target’s position is



bounded by

||x̃i(t)|| ≤ ||x̃i(0)||, ∀ i ∈ V ∧ t ≥ 0. (17)

Proof: The proof of Lemma 4.1 is similar to that of
Lemma 3 in [8] and is therefore omitted.

Because the target estimator (13) and the controller (15)
make use of the signal φiT (t), we should show that φiT (t)
in (11) is well-defined for all t ≥ 0. A sufficient condition
is proposed in Lemma 4.2 below.

Lemma 4.2: Under the target estimator (13) and the con-
troller (15), for some dmax

i > 0 and some dmin
i satisfying

0 < dmin
i < d∗, if the initial conditions satisfy

di(0) ≥ dmin
i , ∀ i ∈ V,

||x̃i(0)|| = ||x̂i(0)− x|| ≤d∗ − dmin
i , ∀ i ∈ V,

(18)

then the agent-target distance di(t) is bounded by

dmin
i ≤ di(t) ≤ dmax

i , ∀ i ∈ V ∧ ∀ t ≥ 0. (19)

Proof: We first define two auxiliary variables,

δi(t) = di(t)− d∗, (20a)

ρi(t) = di(t)− d̂i(t), (20b)

and let δ(t) = [δ1(t), . . . , δn(t)]
⊤. Using triangular inequal-

ity and (20b), we have ||x̃i(t)|| ≥ |di(t) − d̂i(t)|, which
immediately implies using Lemma 4.1 that

|ρi(t)| ≤ ||x̃i(t)|| ≤ ||x̃i(0)||. (21)

The dynamics of δi(t) can be expressed using (11) and (15)
as (see also [8, Eq. (3)]),

δ̇i(t) = −δi(t) + ρi(t). (22)

Using (20) and (22), the agent-target distance di(t) can be
explicitly found as,

di(t) = d∗ + δi(0)e
−t +

∫ t

0

e−(t−τ)ρi(τ) dτ. (23)

Since ρi(t) is bounded by (21), di(t) is upper bounded by
some dmax

i > 0. Further, using (21) and (23), we have,

di(t)
(21),(23)
≥ di(0)e

−t + (d∗ − ||x̃i(0)||)
(
1− e−t

)
(18)
≥ dmin

i

(
e−t + 1− e−t

)
= dmin

i . (24)

Therefore, di(t) is lower bounded by dmin
i .

Lemma 4.3: Under the target estimator (13) and the con-
troller (15), the signal φ̄iT (t) is persistently exciting (p.e.)
for all i ∈ V and ∀ t > 0.

Proof: According to [29], the signal φ̄iT (t) is con-
sidered p.e. if there exist positive constants σ1, σ2, T such
that

σ1 ≤
∫ t0+T

t0

(
U⊤

i φ̄iT (t)
)2
dt ≤ σ2 (25)

holds for all constant unit vector Ui ∈ R2 (see Fig. 1) and
any positive constant t0. Equation (25) can be expressed in

terms of the angle γi(t) as

σ1 ≤
∫ t0+T

t0

cos2 γi(t) dt ≤ σ2, (26)

where γi(t) is the angle from the unit vector Ui to the unit
vector φiT (t), as depicted in Fig. 1. Noticing that φ̄iT (t) ⊥
φiT (t) and the angle ξi(t) − γi(t) is always constant, we
have

dγi(t)

dt
=
dξi(t)

dt
=
dβi(t)

dt
, (27)

where βi(t) is the angle rotated counterclockwise from the
x-axis of the i’s local frame to the unit vector φiT (t), as
illustrated in Fig. 1. For the purpose of stability analysis only,
we assume that all agents maintain a local frame aligned to
the global frame with the origin fixed at x. Note that the
controller (15) does not use any term involving βi(t). Using
(27) and (15), we obtain

dγi(t)

dt
=
dβi(t)

dt
=

kω
(
α+ β̃i(t)

)
di(t)

(16),(19)
≥ kωκα

dmax
i

. (28)

Consequently, it holds for all t ≥ 0 that

γi(t+ t0) ≥ γi(t0) +
kωκαt

dmax
i

, (29)

which means γi(t) is monotonically increasing, and it fol-
lows that there always exist σ1, T > 0 that satisfy (26).

Lemma 4.4: The angular separation error b̃i(t) = βij(t)−
β∗
ij is bounded for all i ∈ V and t ≥ 0.

Proof: Introduce the following auxiliary variable,

ϑ̃i(t) = βij(t)− β̂ij(t), (30)

and the auxiliary functions,

qi(t) =
kω

d∗

(
b̃j(t)− b̃i(t)

)
, (31)

gi(t) = αkω

(
1

δj(t) + d∗
−

1

δi(t) + d∗

)
−

kω

d∗

(
b̃j(t)− b̃i(t)

)
+kω

(
b̃j(t)− ϑ̃j(t)

δj(t) + d∗
−

b̃i(t)− ϑ̃i(t)

δi(t) + d∗

)
, (32)

and define the vectors q(t) and g(t) as q(t) =
[q1(t), . . . , qn(t)]

⊤ and g(t) = [g1(t), . . . , gn(t)]
⊤.

The angular separation βij(t) can be written in terms of
βi(t), as follows (see also Fig. 1)

βij(t) =

{
βj(t)− βi(t) if βj(t) > βi(t),

βj(t)− βi(t) + 2π otherwise.
(33)

Noticing that β̃i(t) = b̃i(t) − ϑ̃i(t), the time derivative of
b̃i(t) can be expressed as follows,

˙̃
bi(t) = β̇ij(t)− β̇∗

ij

(33)
= β̇j(t)− β̇i(t)− 0

(15),(20a)
=

kω
(
α+ β̃j(t)

)
δj(t) + d∗

−
kω
(
α+ β̃i(t)

)
δi(t) + d∗

(31),(32)
= qi(t) + gi(t). (34)

By defining b̃(t) = [b̃1(t), . . . , b̃n(t)]
⊤, the error dynamics



(34) can be written in a vector form as a perturbed system,

Π :
˙̃
b(t) = q(t), (35)

Π′ :
˙̃
b(t) = q(t) + g(t). (36)

in which (35) is the nominal system and (36) is the perturbed
system with g being the perturbation term.

Now consider each condition in Lemma 2.4:
(C1) of Lemma 2.4: From Lemma 4.2, we know that di(t)

is lower bounded. Noticing also that b̃i(t) ∈ (−2π, 2π) and
ϑ̃i(t) ∈ (−3π, 3π) for all i ∈ V and t ≥ 0, we can bound
the perturbation term g(t), as follows,

||g(t)|| <
√
nkω (α+ 14π)

min
i∈V

dmin
i

=: ϖ. (37)

(C2) of Lemma 2.4: Rewrite the nominal system (35) in
terms of b̃, we obtain

˙̃
b = −kω

d∗
L(G)b̃, (38)

where L(G) is the Laplacian matrix. Now consider the
Lyapunov candidate V (b̃) = 1

2 b̃
⊤b̃ and its derivative along

the trajectories of the nominal system (38),

V̇ = b̃⊤
˙̃
b

(38)
= −kω

d∗
b̃⊤L(G)b̃

Lemma 2.1
≤ −kωλ2(G)

d∗
b̃⊤b̃,

where λ2(G) is the algebraic connectivity. Note that 1⊤
n b̃ =∑

βij(t) −
∑
β∗
ij = 2π − 2π = 0. Therefore, we conclude

that the origin b̃ = 0 of the nominal system (35) is globally
exponentially stable (GES).

(C3) of Lemma 2.4: By choosing W1(b̃) = W2(b̃) =
1
2 b̃

⊤b̃ and W3(b̃) =
c3
2 b̃

⊤b̃ where c3 = kωλ2(G)
d∗ , it is easy

to show that the origin of the nominal system (38) is GES,
and therefore GAS.

Therefore, we conclude that the solutions to the perturbed
system (36) are uniformly bounded.

We now present the main results of this paper.
Theorem 4.1: Under the target estimator (13) and the

controller (15), the estimation error x̃i(t) converges to zero
exponentially fast for all i ∈ V .

Proof: The proof is an immediate consequence of
Lemma 4.3 and Theorem 1 of [30].

Theorem 4.2: Under the target estimator (13) and the
controller (15), the tracking error δi(t) converges to zero
exponentially fast.

Proof: From Theorem 4.1, we know that x̃i(t) con-
verges to zero exponentially fast, and because of (21),
the signal ρi(t) also converges to zero exponentially fast.
Then from (22), the tracking error δi(t) converges to zero
exponentially fast.

Theorem 4.3: Under the estimator (13) and (14), and the
controller (15), the angular separation βij(t) asymptotically
converges to the desired separation β∗

ij .
Proof: The error dynamics (36) and (22) can be seen

as a cascaded system, as follows,

Σ

{
Σ1 :

˙̃
b(t) = q(t) + g(t) =: f1(b̃(t), δ(t)), (39a)

Σ2 : δ̇(t) = f2(δ(t)), (39b)

where f2(δ(t)) := [−δ1(t) + ρ1(t), . . . ,−δn(t) + ρn(t)]
⊤.

We now consider each condition in Lemma 2.2:
(C1) of Lemma 2.2: If δ(τ) = 0 at t = τ , then all

agents are on the desired circle around the target which
means every triangle formed by vertices x, pi(τ), and pj(τ)
is isosceles. Therefore, by simple trigonometry, we have
ϑi(τ) = βij(τ) − β̂ij(τ) = 0 for all i ∈ V . It then follows
that

f1(b̃(t),0) = q(t) + g(t)|δ=0 = q(t). (40)

From the proof of Lemma 4.4, we know that the origin of
˙̃
b(t) = q(t) is GES. Then, using (40), we conclude that the
origin of f1(b̃(t),0) is GES, and therefore also GAS.

(C2) of Lemma 2.2: From Theorem 4.2, we know that the
origin of the subsystem (39b) is GES.

(C3) of Lemma 2.2: From Lemma 4.4, we know that the
solutions of the cascaded subsystem (39a) exist and are
uniformly bounded.

Thus, we conclude that the origin (b̃(t), δ(t)) = (0,0) of
the cascaded system (39) is GAS.

V. SIMULATION RESULTS

We consider a stationary target situated at x(t) ≡ [0, 0]⊤,
which is to be localized and circumnavigated by a group
of five agents. The prescribed parameters are chosen as
d∗ = 1.2m and β∗ = [ 5π18 ,

π
9 ,

5π
18 ,

5π
18 ,

19π
18 ]⊤. The control

gains are selected as kest = 5, kc = 1.5, kω = 1, and
α1 = 3.5π according to (16). The neighbor topology is
defined in accordance with Assumption 2.3. The trajectories
of five agents are depicted in Fig. 2(a). As expected from
Theorem 4.1, the norm of the estimation error ||x̃i(t)||
converges to zero exponentially fast for all i ∈ V . According
to Theorem 4.2 and Theorem 4.3, we expect that the agent-
target distance di(t) converges exponentially fast to d∗ and
the separation angle βij(t) converges to β∗

ij , which are
confirmed by Fig. 2(c) and Fig. 2(d), respectively. Comparing
to controllers using communication-based βij(t) such as
[12], [14], [15], the proposed algorithm acquired the property
of not relying on communication at the expense of a slightly
slower convergence rate in the angular separation error b̃i(t).

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed a controller for the BoTLC
problem and an algorithm for angular separation. The con-
troller does not require any communication between agents to
achieve the prescribed spaced formation. The stability of the
proposed algorithm has been analyzed rigorously. Simulation
results put in evidence a satisfactory performance of the
proposed control algorithms.

Future directions of research include addressing collision
avoidance among agents and considering a moving target.
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