
Stakeholder Discovery and Classification Based on Systems Science Principles

Otto Preiss
Department of Information Technologies

ABB Corporate Research Ltd
5405 Dattwil, Switzerland
otto.preiss @ ch.abb.com

Abstract

It is the goal of our research work to elaborate on
improvements to the sofrware development methods so
that quality attributes can be handled more
systematically. By quality attributes we mean the large
group of typically systemic properties of a sofrware
system, such as availability, security, etc., but also
reusability, maintainability and many more. We define
quality attributes as stakeholder-centric conditions on the
behavior or structure of a system. The importance of the
notion of a stakeholder cannot surprise, but the lack of a
general theory on how to define and identify the relevant
set of stakeholders does. Drawing from systems theory we
claim that four basic, generic types of stakeholders are
sufJicient to be able to derive a specialized set of
stakeholders for any considered system and domain of
inquiry. It is only when we understand the generic
concepts and principles behind quality properties of
systems, that we can properly derive methods and build
tools to cope with them.

1. Introduction

The increasing popularity of compositional means to
develop software, driven by component-based software
engineering, or Web service composition, has raised the
priority of all extra-functional aspects of software systems.
The absence of fully specified reusable assets together
with the composition of black-box (possibly commercial-
of-the-shelf) components and services, results in less
confidence in the proper prediction of the overall system
behavior, in particular the different qualities of behavior.
However, to reason about properties a posteriori
immediately calls for their reference, i.e. for a wellness
grading of these properties. It is the stakeholder-derived
requirements that are at the root of the relevant properties
and their achievement criteria. In the context of a software
system, quality attributes refer to the large group of
properties, sometimes referred to as “Ilities” [11, which

Alain Wegmann
Department of Computer Science

Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

alaimwegmann @epfl.ch

are either discernable at system runtime (such as
dependability, usability, safety, security, consistency) or
observable over the product lifecycle (such as
extendibility, evolvability, reusability, etc.). Since quality
attributes are the motivation but not the primary subject of
discussion in this paper, we refer to [2] for a more
exhaustive list of software related quality attributes as well
as references to quality attribute related work.

While there is agreement neither on the set of quality
attributes nor on a classification of them there is
consensus that the relevant attributes are dependent on the
various stakeholders, who represent parties that have
stakes on the behavior of the system or the way the system
is being built. Ramesh [3] states that “high-end
[requirements] traceability users” recognize stakeholder
traceability as one of the most important aspects in their
software process improvement programs. Unfortunately,
the identification and characterization of the relevant set
of stakeholders for a certain system at a certain moment in
time is largely unclear and thus done in an ad hoc way,
supported only by experience and intuition. We believe
that by adopting some fundamental principles of systems
science, we are able to provide a generic, scientifically
recognized, basis that can aid the stakeholder discovery
and classification.

2. Concepts and Principles Derived from
Systems Science

Systems science, being part of the systems theory
framework, is concerned with processes of complex
systems. It studies both the commonalties of all complex
systems and the models to describe them. It claims that the
same principles and concepts are applicable to the
different disciplines, such as physics, biology, technology,
etc. Systems may be living, nonliving, or mixed living and
nonliving [4]. A typical software system, being a man-
machine system, falls into the latter category. As opposed
to classical science, system science is not a reductionism
approach, but promotes the theory, that the behavior of a
system cannot be predicted by looking at the individual

0-7695-1287-9101 $17.00 0 2001 IEEE 194

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:28:38 UTC from IEEE Xplore. Restrictions apply.

http://ch.abb.com

parts only. For us, the value of systems science lies in its
generic and therefore trans-disciplinary means to study
and model systems.

In order to develop a conceptual scheme of a complex
system, i.e. a system model, we must identify and describe
the set of concepts and their relationships, from which we
can then construct the general system principles. Since a
system is just the perceived behavior of reality, and a
system model the “...organized description of an existing
or designed future system”[5], we imply that a model of a
future system is in fact only an organized description of
the perception of the future reality. This perception is, of
course, dependent on the viewer, whom we represent by
the notion of a stakeholder. A stakeholder is a person
entrusted with the stakes of bettors [6] , i.e. someone
whose profession entails to be concerned with the
outcome of a system action. The idea of a viewer-specific
perception is in line with the theory of uncertainty, which
has helped us to learn that “the observer cannot be
separated from what is observed” [5] .

With respect to quality, which is defined as the “grade
of excellence” [6] , we infer that Quality attributes of a
system describe the grade of excellence of a perceived
(jiiture) behavior of reality determined by a stakeholder.

From this we conclude that the notion of stakeholder is
central to capturing the entirety of qualities of a system,
and especially, to define the quality requirements on a yet
to be designed system. But how can we make sure that we
identify all the relevant stakeholders for this undertaking?
By adopting the systemic view of systems theory, we are
guided by a framework that theoretically guarantees to
identify the complete set of relevant, abstract concepts and
thus also of all the stakeholders. Only if we have this, can
we successfully design tools to support engineering and
traceability with stakeholder-centric quality attributes.

The following fundamental definitions and principles
of systems science and systemic modeling are influencing
our work:
I . “System means a configuration of parts connected and

joined together by a web of relationships.” [5]
2 . There exist two types of systems: Natural systems

(e.g., living systems) and designed systems (e.g.,
manmade artifacts, human activity systems).

3. A complex system is one that cannot be divided into
an independent set of sub-systems and that is open
(i.e., it is always interacting with other systems in a
dynamically changing environment). The relevant
environment at any moment in time is comprised of
the set of other systems, which, together with the
system under consideration, makes up the suprasystem
[7]. Classical science, on the contrary, views systems
as essentially being closed with very limited and
highly controllable interactions with the environment.

4. Studying systems involves both the study of the total
system behavior (“the goal of the system”) as well as
the structure that performs this total behavior (“the
means to achieve the goal”).

5. The application of a systems view requires the
consideration of the concepts and principles in a
functional context, i.e., it requires selecting the type of
system and the domain of inquiry.

6. A system attempts to organize itself in such a way that
it serves the purpose of the individual parts as well as
the purpose of the entire system (self-organization
principle).

From the above rather philosophical statements we
derive the following four, seemingly trivial, concrete
interpretations and conclusions:
(a) Sofnyare systems are complex, designed systems:

They either belong to the type of “human activity
system”, when the total software system is considered
in its execution environment, or to “fabricated-
engineered, physical systems (manmade artifacts)”,
when observed in isolation.

(b) Two systems: A software system cannot be modeled
without considering the system it is embedded in (i.e.,
the environment). Consequently, there are always at
least two systems to be considered: the suprasystem
and the system under consideration.

(c) Two viewpoints: We must always explicitly analyze
both the goals of a system and the means to achieve
the goals.

(d) Life-cycle based domains of inquiry: The (software)
system life-cycle lends itself to define the relevant
domains of organizational inquiry.
This kind of systemic view, which is subsequently used

as a classification basis, is depicted in Figure 1 .

i
Means ‘1, _---_

*- -\.\ Suprasystem Goals i; : other :,

‘.-

Figure 1. Two relevant system layers with “goals-
means” viewpoints

Because principle 6 is not further explored in this
paper but is relevant to our future research work, we

195

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:28:38 UTC from IEEE Xplore. Restrictions apply.

briefly show its concrete value by an example. If a
company organization maps to a suprasystem and a
business information system to the system under
consideration (SuC), we can see that the self-organization
principle has profound impact on our SuC. Because the
interacting parts with the SuC (e.g. users, other systems,
etc.) will strive for optimization of their personal goals as
well as the overall goals of the suprasystem, the
interaction pattern with our SuC are likely to change quite
frequently. Supporting evidence for this generic
observation is given by the never-ending streamlining
activities of business processes (business reengineering)’,
which yield new or changing requirements on the business
support systems we build. Secondly, a more subtle result
of self-organization is the system user’s behavior, which
must be anticipated to change, too. A user will try to
optimize her usage of the system, e.g., omit optional
entries to save time, find (not intended) backdoors to
circumvent inconvenient working procedures, or
increasingly use shortcuts when being more proficient
with the system. Hence, in order to provide sufficient
flexibility for system changes, it is of utmost importance
that we design our components that interface the other
parts of the suprasystem, before any other, with as much
anticipated and conceivable variability in interaction
behavior as possible. To be able to do so, we need to
increasingly emphasize the domain engineering aspects of
systems development. Hence, the focus on early
development phases is indeed justified.

3. Stakeholder Classification

Although the notion of stakeholder is found in many
areas of software engineering we, the authors, do not
know of any method or model to systematically discover
and classify stakeholders. Requirements engineering and
software architecture are two fields in which the concept
of stakeholder is prominent. In requirements engineering,
viewpoint-based requirement modeling uses stakeholders
as viewpoint representatives (for a survey see [SI),
methodologies exist for stakeholder requirements
elicitation and negotiation [9] [101 [1 11, and scenario-
based capturing of contextual knowledge [121 is expressed
through different kinds of interactions between
stakeholders and the system. However, they all implicitly
assume that the relevant set of stakeholders was identified
somehow. The discipline of software architecture uses the
concept of stakeholder as a means to typify the audience
interested in architectural concerns. Stakeholders are used
to assess the quality of architecture [13] as well as to
make the “customers” of an architect more concrete to

’ These activities are in turn caused by the changes of their suprasystem,
i.e. the market environment, society, etc.

derive the important aspects an architect has to consider
[141. Again, the systematic discovery of the set of relevant
stakeholders is not defined.

3.1. Stakeholder Classification Framework

In the following we propose a generic stakeholder
classification scheme that is based on our derived, basic
principles in section 2: two systems, two viewpoints, and
two domains of inquiry. The life cycle based domains
constrain our universe of discourse, i.e. they support the
separation of concerns. They represent snapshots, and thus
portray the system under consideration at certain moments
in time. Life cycle based partitioning of domains of
inquiry help to establish system boundaries and context,
which limits the potential stakeholders to be considered.

While a finer granularity is always possible, we can
limit ourselves to two life-cycle phases to make our point:
creation and operation. More concretely:

System development; this includes the conception,
the design of the envisioned system, and the
implementation of the design. In essence, it
provides all the developed artifacts of a
development project.
System operation; this includes the execution of the
running system in its real environment as well as
the management of change to support evolution of
the system.

The classification scheme has a generic layout as
shown in Table 1. Section 3.2 gives a concrete, simple
application of the framework by using the two above-
mentioned domains of inquiry.

Table 1 : Generic stakeholder classification
layout

1.

2.

Domain of
inquiry

Goal stakeholder for
Suprasystem

Goal stakeholder for
“System under
Consideration”
(SUC)

stakeholder for
Suprasystem

Means
stakeholder for
S U C

The informal definition of the generic stakeholders is

. Goal stakeholder for Suprasystem; the type of
stakeholder that is interested in the perceived
behavior of the suprasystem only. It does not even
know that our system under consideration is part of
the suprasystem and it is also not interested in how
the suprasystem achieves its behavior.

the following:

196

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:28:38 UTC from IEEE Xplore. Restrictions apply.

Means stakeholder for Suprasystem; the type of
stakeholder that is interested in the way the
suprasystem achieves its behavior, i.e. its structure.
Hence, these stakeholders would typically be
concerned about some (or all) of the inner systems
and their interactions.
Goal stakeholder f o r System under Consideration:
the type of stakeholder that is interested in the
perceived behavior of the SuC. It does not know or
care about the means by which this behavior is
achieved.
Means stakeholder for SuC: the type of stakeholder
that is interested in the way the SuC achieves its
behavior. I.e., such a stakeholder is interested in the
internal structure of the SuC.

Domain of
inquiry

Development

Note that these abstract stakeholder classes can be
applied to any system. For instance, the system under
consideration may be an individual software component
that is a part of the application - the suprasystem.

Informal description of Goal stakeholder Means stakeholder
system

Suprasystem: Company board; company shareholders; Company line management; employees
Development company technology/tool provider

suc: Company marketingkales; other company Project member (programmer, architect,

3.2. An Example

Operation

In the following we present a simple example to
illustrate the above proposed generic classification
framework.

Let us assume we are a company producing e-
commerce applications for online supermarkets.

The domains of inquiry define the suprasystem and the
SuC. Our selection of these systems is influenced by
business value chain considerations. A value chain is a
sequence of actions, each adding value by transforming its
input to value-added output, which in turn constitutes

Suprasystem: Shopper; Supermarket suppliers (goods, Supermarket company line
Company running the e- etc.); Supermarket board; Supermarket management; employees
commerce application shareholders;

integrates them into a marketable system. The value-
adding activity is the actual integration process, which is
the core value-generating (and possibly protected) asset of
this company. A second company might now procure such
a system and produce an added value by employing the
system to provide a service to their customers. This
generic scenario is representative also for our e-commerce
application.

In the “development” domain of inquiry, we define the
suprasystem as being the development company with the
development project being the SuC. The latter is
producing the added value in the form of the development
artifacts, of which a subset (say the e-commerce
application executable) is then input to the supermarket to
help create added value in their system. Theoretically, all
stakeholders identified in Table 2 will constrain, directly
or indirectly, the realization of the software system to be
developed. Ideally, we would analyze and model all,
stakeholder specific, perceptions of the system to derive
qualitative requirements. Since this undertaking is almost
impossible to do, it is easy to understand why current
development projects consider a small subset of
stakeholders and models only. It is only the stakeholders
discovered for the SuC in the operation domain of inquiry,
which current development methods usually identify in the
analysis phase as actors for our system to be built (i.e.,
direct users, other systems). It becomes evident that these
primary stakeholders directly relate to the quality
attributes that are discernable at system runtime
(performance, usability, etc.). However, one can notice
that by investigating the secondary stakeholders, we are
lead to all other quality attributes, such as maintainability,

suc:
E-commerce application
executing in target
environment

(part of) the input for the next action. For instance, an
engineering company procures basic components and

reusability, etc.

Supermarket system user (back office,
warehouse workers); in-house system
administrator; in-house data maintenance
personnel; other supermarket computer
systems and applications (e.g. ERP)

Supermarket IT department; IT
manufacturer/products for e-commerce
platforms; e-commerce application
vendor’s hot line and maintenance crew

rable 2. Stakeholders of an e-commerce application for a supermarket

Development project products’ etc.); project management; other
company projects; QNprocess staff;

I I I company maintenance/support crew

197

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:28:38 UTC from IEEE Xplore. Restrictions apply.

4. Conclusion and Future Work

We have derived some generic principles for software
systems analysis and modeling from systems science.
Basically, we suggest modeling any system by (a)
considering the system and the embedding system of
which it is part of, (b) by separating two distinct views,
the “goal-centric” view from the “means-to-achieve-the-
goal” view, and (c) by defining the system under
consideration and its boundaries with the help of life-cycle
partitioning. Among others, these general principles can
be used to classify stakeholders. Furthermore, by treating
the software development project, i.e. the process that
generates a system, also as a system (essentially a life-
cycle based partitioning of the domain of inquiry), we are
able to conceptualize quality attributes very generically.
More concretely, we are able to apply the same principles
to discover and analyze both types of quality attributes,
those that are observable during software system runtime
(performance, dependability, etc.) and those that are not
(reusability, maintainability, testability, etc.).

It is the goal of our research work to elaborate on
improvements to the software development methods so
that quality attributes can be handled more systematically.
Quality attributes are stakeholder-centric conditions on a
system’s behavior, i.e. the visible goal and its realization.
Therefore, we found it important, as a first step, to find or
develop a theory on how to discover stakeholders and
relate to their views and objectives. More empirical
studies need to be conducted to evaluate the presented
framework that resulted from the theory. Because
stakeholder discovery and classification on its own is of
limited value to industry, we intend to evaluate this part as
soon as we are ready to conduct case studies based on a
framework that covers stakeholders, quality attributes, and
can be related to current software development processes.

In agreement with systems science, we believe that for
understanding systems and systems modeling the
emphasis should be much more on interactions, i.e. the
collaborative behavior, than on the individual parts.
Therefore, the notion of use cases and collaborations are
central to our conducts in the second step [2] .
Collaborations are our first-class behavioral concepts for
which we want to investigate the application of feature
modeling approaches [1 I] [151. Opposed to current
practice, we intend to restrict features to quality attributes.
The feature space would thus represent the possible
quality properties that can be or shall be realized by a
collaboration of entities. In other words, a quality feature
model would be a declarative, formal specification of the
qualities of a behavioral concept.

Let us finally remark that software systems are still
modeled and built under the premise of classical science
(see definition 3 in section 2). Hence, requirements are

captured in this world-view, although for instance
organizations that shall use these software solutions are
best modeled in the systems science worldview. We
believe that this is one of the reasons, why software
systems can hardly ever cope with the evolution of
organizations and thus become. inadequate, simply
because the context (the suprasystem) has changed.

References

[I] F. Manola, “Providing Systemic Properties (Ilities) and
Quality of Service in Component-Based Systems,” Object
Services and Consulting, Inc., Technical Report, 1999.

[2] 0. Preiss, A. Wegmann, and J. Wong, “On Quality
Attribute Based Software Engineering,” accepted at 27th
Euromicro 2001, Warsaw, Poland, 2001.

[3] B. Ramesh, “Factors Influencing Requirements Traceability
Practice,” Communications of the ACM, vol. 41, pp. 37 -
44, 1998.

[4] J. G. Miller and J. L. Miller, “Applications of Living
Systems Theory,” 2001 : International Society for the
Systems Sciences (ISSS), 1997.

[SI B. Banathy, “A Taste of Systemics,” The Primer Project, A
Special Integration Group of the International Society for
the Systems Sciences (ISSS), Web-document, 2001.

[6] Merriam-Webster, Collegiate Dictionary: Merriam-Webster
Online, 2001.

[7] J. G. Miller, Living Sysrems: University Press of Colorado,
1995.

[8] I . Sommerville and P. Sawyer, “Viewpoints: principles,
problems and a practical approach to requirements
engineering,” Annals of Software Engineering, vol. March,
1996.

[9] W. N. Robinson and S. Volkov, “A Meta-Model for
Restructuring Stakeholder Requirements,” presented at
International Conference on Software Engineering (ICSE
97), Boston, 1997.

[IOIB. W. Boehm, P. Bose, E. Horowitz, and M.-J. Lee,
“Software Requirements as Negotiated Win Conditions,”
presented at International Conference on Requirements
Engineering (ICRE), 1994.

11IK. Czamecki and U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications: Addison-
Wesley, 2000.

121 K. Pohl and P. Haumer, “Modeling Contextual Information
about Scenarios,” presented at Third International
Workshop on Requirements Engineering: Foundation for
Sofware Quality RESFQ, Barcelona, Spain, 1997.

131 S. Bot, C.-H. Lung, and M. Farrell, “A Stakeholder-Centric
Software Architecture Analysis Approach,” presented at
2nd International Software Architecture Workshop (ISAW-
2) as part of SIGSOm ‘96, 1996.

141L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 6 ed: Addison-Wesley, 1999.

15lR. W. Krut, “Integrating 001 Tool Support into Feature-
Oriented Domain Analysis Methodology,” Software
Engineering Institute, Pittsburgh, Technical Report
CMU/SEI-93-TR-I 1, 1993.

198

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:28:38 UTC from IEEE Xplore. Restrictions apply.

