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Abstract—Accurate channel state information (CSI) is 

necessary for coherent detection in amplify and forward (AF) 
broadband cooperative communication systems. Based on the 
assumption of ordinary sparse channel, efficient sparse channel 
estimation methods have been investigated in our previous works. 
However, when the cooperative channel exhibits partial sparse 
structure rather than ordinary sparsity, our previous method 
cannot take advantage of the prior information. In this paper, we 
propose an improved channel estimation method with partial 
sparse constraint on cooperative channel. At first, we formulate 
channel estimation as a compressive sensing problem and utilize 
sparse decomposition theory. Secondly, the cooperative channel is 
reconstructed by LASSO with partial sparse constraint. Finally, 
numerical simulations are carried out to confirm the superiority 
of proposed methods over ordinary sparse channel estimation 
methods. 

I. INTRODUCTION 

Relay-based cooperative communication systems (CCS) [1-
4] have been studied in the last decade due to its capability of 
enhancing the transmission range and providing the spatial 
diversity for single-antenna receivers by employing the relay 
nodes as virtual antennas [5-7]. A typical example of 
cooperative communication system is shown in Fig.1. It is well 
known that utilizing multiple-inputs multiple outputs (MIMO) 
transmission can boost the channel capacity [8,9] in broadband 
communication systems. In addition, diversity techniques in 
MIMO system could mitigate selective fading and hence 
enhance the quality of service (QoS) [10,11]. However, it poses 
a practical challenge to integrate multiple antennas onto a small 
handhold terminal. To deal with the contradiction between 
them, one could choose relay-based cooperation networks 
which have been investigated in last decade [1,2,4]. The main 
reason is that the diversity from relay nodes existing in the 
network could be exploited, where relay can either be provided 
by operators or be obtained from cooperating terminals of other 
users. 

In the relay-based cooperative communication system, data 
transmission is usually divided into two time slots. During first 
time slot, the source broadcasts its own information to both 
relay and destination. During second one, the relay could select 
different protocols and then transmit signal to the destination. 
Usually, there has two kinds of protocols in cooperative 
communication systems, one is amplify the received signal at 
relay and forward it to destination, which is termed as amplify- 

 
and-forward (AF); and the second is to decode the received 
signal, modulate it again, and then retransmit to destination, 
which is often termed as decode-and-forward (DF). Due to 
coherent detection in these systems, accurate channel state 
information (CSI) is required at the destination (for AF) or at 
both relay and destination (for DF). About DF cooperative 
communication systems, the channel estimation methods could 
be borrowed from point-to-point (P2P) communication systems 
directly. However, extra channel estimation will increase the 
computational burden at relay and broadcasting the estimated 
channel information will result in further interference at 
destination. On the other hand, AF cooperative communication 
technique can avoid this disadvantage and focus on AF CCS in 
this study.  

Based on the theory of compressed sensing [12,13], sparse 
channel estimation methods [18-20] have been proposed for 
P2P communication systems. However, sparse channel 
estimation is also one of the key challenges in cooperative 
communication systems shown in Fig. 1. Linear channel 
estimation for the relay-based AF cooperative networks has 
been proposed [4] which is based on the assumption of dense 
multipath. Even though the proposed method can achieve lower 
bound performance, low spectrum efficiency is unavoidable 

Fig.1. An example of AF broadband cooperative communication system, 
where source (MT) transmits signal to destination (BS) with the help of 
relay (RS). Since the RS can improve communication quality, the 
multipath channels are sparse and dense in direct link (   ) and 

cooperative link (     ), respectively. 



since the utilized training sequence take a large space at the 

fixed bandwidth. As the channel measurement technique 
improves in the last decade, broadband wireless channels have 
been confirmed to exhibit inherent sparse or cluster-sparse 
structure in delay spread. One method to improve the spectrum 
efficiency is by reducing the number of training sequence for 
channel estimation. In order to take the advantages of channel's 
sparsity, we have proposed a sparse channel estimation scheme 
for ordinary sparse CCS [14] and global sparse constraint was 
considered in the proposed method. However, when the 
cooperative channel is partial sparse rather global sparse, the 
proposed method cannot fully take advantage of the prior 
information. In this paper, based on the partial sparse constraint, 
we propose a partial sparse channel estimation method by using 
LASSO [15] (PEL) to further exploit the channel prior 
information. Based on this idea, improved partial sparse 
channel estimation by using LASSO (IEL) is proposed by 
utilizing both partial sparse constraint and global sparse 
constraint. On one hand, partial sparse constraint can exploit 
partial sparse prior information. On the other hand, global 
sparse constraint can mitigate noise interference under low 
SNR. To confirm the effectiveness of the two proposed 
methods, we give various numerical simulation results in 
section IV.  

Section II introduces the system model and problem 
formulation. In section III, two improved channel estimation 
methods are proposed. The first method is the improved 
channel estimation method by using partial sparse constraint 
and the second one is an improved partial sparse constraint. In 
section IV, we give various numerical simulation results and 
related discussions. Concluding remarks are presented in 
section V.  

Notations: In this paper, we use boldface lower case letters 
x  to denote vectors, boldface capital letters X  to denote 
matrices. x represents the complex Gaussian random variable.  
E[.]  stands for the expectation operation and X , †X  denote 
the matrix HX  transposition and conjugated transposition 

operations.  
0
x  accounts the nonzero number of x  and   

2
x  is the Euclidean norm of  x .  

II. SYSTEM MODEL 

Consider a multipath fading AF broadband CCS where the 
source   sends data to destination   with the help of relay   
as shown in Fig. 2. The three terminals are assumed to equip 
single antenna each. SDh , SRh  and RDh  denote the impulse 
response of the frequency selective fading channel vectors 
between three links   ,    and   , respectively. 
Note that differ from our previous research in [14], impulse 
response of cooperative channels,  SRh  and RDh  are modeled 
as dense channel model due to the fact that relay can reduce 
transmission range and improve channel quality. In other words, 
multipath taps arrive in a very short delay spread. The two 
channels are assumed to have length SRL  and RDL , 
respectively. For simplicity, we assume that they have same 
length / 2SR RDL L L= = , and the channel model of SRh  can be 
written as 
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where ,SR lh  and ,SR lτ  represent the complex-valued path gain 
with 

2

,E[ ] 1SR ll
h =  and symbol spaced time delay of the l -

th path, respectively. The training sequence vector x  is 
denoted as 

 [ (1), (2),..., ( )] ,Tx x x N=x  (2) 

where the power constraint of the transmit power is 
E[ ]H

SP NP= =x x , where P  is the unit transmitting power. 
According to the property of AF cooperative system which is 
shown in Fig.1, one full transmission can be divided into two 
time slots. At the first time slot, signal x  be broadcast the 
equivalent complex baseband received signal at   and   are 
given by 
 ,1 ,1,D SD D= +y H x z  (3) 

 ,1 ,1,R SR R= +y H x z  (4) 

respectively, where SDH  and SRH  are N N×  complex 
circulant channel matrices with its first columns 

1 ( )[ , ]T T
SD N L× −h 0  and 1 ( /2)[ , ]T T

SR N L× −h 0  respectively; ,1Dz  and 

,1Rz  is a realization of a complex additive Gaussian white noise 
vector with zero mean and covariance matrix 

2
,1 ,1 ,1 ,1E[ ] E [ ]H H
D D R R n Nσ= =z z z z I . Then the relay   amplifies 

the received signal ,1Ry  and retransmits the signal during the 
second time slot. The received signal vector at the destination  
  is given by 

 ,2 ,1 ,2

,2 ,
D RD R D

RD SR D

β
β

= +
= +

y H y z
H H x z


 (5) 

where RDH  is a circulant channel matrix with first column 
vector 1 ( /2)[ , ]T T

RD N L× −h 0 ; ,2 ,1 ,2D RD R Dβ= +z H z z  is a 
composited AWGN with zero mean and covariance matrix 

22 2
,2 ,2E[ ] ( )H
D D RD N nβ σ= +z z H I , where  ,2Dz   is a 

realization of a complex additive Gaussian white noise 
(AWGN) vector with zero mean and covariance matrix 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Lenght of channel impulse response

M
ag

ni
tu

de

sparse channel impulse response dense channel impulse response

Fig.2. A typical example of partial sparse cooperative channel, where the 
first part of sparse impulse response is supported by direct link and the 
second part of dense impulse response is contributed by cooperative 
cascaded link. 
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,2 ,2E[ ]H
D D n Nσ=z z I  . Considering long-time averaging, β  is 

given by 

 2 2 .R h S nP Pβ σ σ= +  (6) 

where RP  is the transmit power of relay. Using Eq. (3) and Eq. 
(5), the effective input-output relation in the AF cooperative 
communication system can be summarized as 

 ,1 ,1

,2 ,2

.D DSD

D DSR RDβ
      

= = +      
     

y zH x
y

y zH H x
  (7) 

According to matrix theory [22], all circulant matrices can 
share the same eigenvectors. That is to say, the same unitary 
matrix can work for all circulant matrices. Hence, the matrices 

SDH , SRH  and RDH  in Eq. (7) are de-composited as 
,H

SD SD=H F D F  ,H
SR SR=H F D F and ,H

RD RD=H F D F  
respectively, where  F  is the unitary discrete Fourier 
transform (DFT) matrix with entries 

2 ( 1)( 1 /)  [ ] 1/ j m n N
mn mnf Ne π− − −= =F , , 1,2,...,m n N= . Hence, 

cooperative channel matrix  SR RDH H  can be written as 

 ,H
SR RD SRD=H H F D F  (8) 

where SRD SR RD=D D D  denotes a diagonal matrix. At the 
same time, H

SRDF D F is the decomposition of a circulant 
matrix which is constructed from a cascaded channel impulse 
response *SRD SR RDh h h . SDD  and SRDD   are diagonal 
matrices which are given by 
 { }(0),..., ( ),..., ( 1) ,SD SD SD SDdiag H H n H N= −D  (9) 

 { }(0),..., ( ),..., ( 1) ,SRD SRD SRD SRDdiag H H n H N= −D  (10) 

respectively, where ( )SDH n  and ( )SRDH n   are given by 
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respectively, where [ (0), (1),..., ( 1)]TSD SD SD SDh h h h L= −  
denotes direct link from source   to destination   at the first 
time slot and [ (0), (1),..., ( 2)]TSRD SRD SRD SRDh h h h L= −   
represents cascaded channel from source   to destination   
via help of the relay   at the second time slot. Based on the 
above analysis, Eq. (7) is left multiplied by F  and it can be 
rewritten as 
 ,= +y Xh z  (13) 
where ,1 ,2[( ) , ( ) ]T T T

D D=y Fy Fy  denotes 2N -length received 
signal vector; X  denotes equivalent training matrix and it can 
be written as 

 ( 1)( )
,

( )
SD N L

N L SRD

diag

diag
× −

×

 
=  
 

F x F 0
X

0 F x F
 (14) 

with 2 (2 1)N L× −  dimension; [ ]T T T
SD SRD=h h h represents  

(2 1)L − -length cooperative channel vector; 

,1 ,2[( ) ( ) ]T T T
D D=z Fz Fz denote 2N -length complex 

AWGN vector; SDF   and SRDF  are partial DFT matrices taking 
the first L   and ( 1)L −  columns of F , respectively. And the 
z  is a realization of a complex Gaussian random vector with 
zero mean and covariance matrix 

22 2
2E[ ] ( )H

SR N nβ σ= +zz D I . 

III. HIGH-RESOLUTION COMPRESSIVE CHANNEL ESTIAMTION 

In this section, we discuss partial sparse channel estimation 
for AF CCS. At first, we review briefly CS theory and 
restricted Isometry property (RIP) of training signal matrix. 
Then, we propose improved sparse channel estimators by using 
partial sparse constraint.  

A. Review of the CS 

In a typical complex sparse identification system, one can 
use known matrix N L×∈U   to estimate a L -length unknown 
sparse signal vector a   based on the observation linear system 
model 
 ,= +b Ua c  (15) 

where N∈b   is a complex observation signal vector, 
N∈c  is a noise vector, and a  is K  sparse vector which 

means the number of dominant entries is no more than K , i.e., 

0
K L≤a  . The position of dominant entries is randomly 

distributed. In addition,  L N according to CS assumption. 
Mathematically, the optimal sparse solution opta   can be 

obtained uniquely by solving minimization problem 

 { }2

0 2
arg min ,    ,opt subject to ξ= − ≤

a
a a b Ua  (16) 

where 0ξ ≥ denotes noise error tolerance. Above minimization 
problem in Eq. (16) is also equivalent to 
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02 0

1
arg lim ,

2opt λ = − + 
 a

a b Ua a  (17) 

where 0λ  is regularized parameter which tradeoffs the mean 

square error (MSE) and sparsity. However, solving 0  norm is 
NP hard and cannot be utilized in practical applications [12].  

Fortunately, alternative sub-optimal sparse recovery 
methods have been studied if the known measurement matrix  
U  satisfies RIP [23]. Let ΩU , { }1, 2,...,NΩ ⊂  be the  

N × Ω  submatrix extracting those columns of U  that are 

indexed by the elements of Ω . Then the K -restricted 
Isometry constant (RIC) of U  is defined as the smallest 
parameter (0,1)Kδ ∈  such that 

 
2 2

2 2
2

2

,KδΩ Ω Ω

Ω

−
≤

U a a

a
 (18) 

for all Ω  with  KΩ ≤  and all vector Ω
Ω ∈a  .  

Theorem 1 [16]: Assume that U  is an N L×  random 
measurement matrix that satisfies the RIP of order K  with RIC  

Kδ , that is RIP( , )KK δ∈U . Consider an arbitrary sparse 

vector a  in observation model  = +b Ua c , where 
2

ξ≤c , 

by solving 1  minimization problem and sub-optimal sparse 

solution  ˆsuba   is obtained by 

 
2

2 1

1
ˆ arg min ,

2sub subλ = + 
 a

a b -Ua a  (19) 

where 0· logsub nC Nλ σ=  and 0C  is a parameter which is 
decided by the noise level and RIC of U . Hence, the estimator 
ˆsuba  satisfies sparse recovery performance with 



 { }12 1
ˆ max ,1/  sub KC Kξ− ≤ −a a a a  (20) 

where 1C  is a parameter which is also decided by noise level 
and RIC of U . Let us recall the channel estimation problem 
for AF cooperative systems in Eq. (13), if the equivalent 
training matrix X  satisfies RIP, then accurate sparse channel 
estimation can be achieved. In the next, we will present 
improved sparse channel estimation methods by using LASSO 
algorithm [15]. 

B. Partial sparse channel estimation 

In this section, channel estimation is done on partial sparse 
channel h  by sending the training symbols. Conventional 
sparse channel estimation method using LASSO algorithm 
(SEL) has been proposed for deriving sparse impulse response 
for AF CCS [14]. According to the system model in Eq. (13), 
the ordinary sparse channel estimator ˆ

SELh  can be achieved by 

 
2

2 1

1ˆ arg min ,
2SEL SEL SELλ = − + 

 h
h y Xh W h  (21) 

where 
 (2 1) (2 1) ,SEL L L− × −=W I  (22) 

is a identity matrix and 0SELλ >  is a regularization parameter 
which decides the tradeoff between mean square error 

2

2
y -Xh  and sparse constraint 

1SELW h .  

The above estimation method can solve global sparse 
solution well while neglecting the inherent partial sparse 
structure. From signal processing perspective, extra prior 
information can be further utilized. In this situation, partial 

sparse channel estimation by using LASSO (PEL) ˆ
PELh could 

be achieved by 

 
2

2 1

1ˆ arg min ,
2PEL PEL PELλ = + 

 h
h y -Xh W h  (23) 

where 

 ( 1)

( 1) ( 1) ( 1)

,
L L L L

PEL
L L L L

× × −

− × − × −

 
=  
 

I 0
W

0 0
 (24) 

is a diagonal weighted matrix and  0PELλ >  is a regularization 
parameter which controls the trade-off between square error 

2

2
y -Xh   and partial sparse constrained 

1PELW h . 

Based on the partial sparse constraint on cooperative 
channel impulse response, we consider an improved PEL (IEL) 
estimator. On one hand, local sparse constrain on cooperative 
can improve estimation performance. On the other hand, global 
sparse constraint can mitigate noise interference in the low 

SNR regime. The IEL estimator ˆ
IELh  can be obtained by 

 
2

2 1 1

1ˆ arg min ,
2IEL SEL SEL PEL PELλ λ = − + + 

 h
h y Xh W h W h

 (25) 
where the regularization parameters SELλ  and PELλ  are given 
by the Eq. (21) and Eq. (24), respectively. In the following, we 
will give various simulation results to confirm the effectiveness 
of the improved sparse channel estimation methods. 

IV. NUMERICAL SIMULATIONS 

In this section, we will compare the performance of the 
proposed PEL estimator and IEL estimator with traditional 
methods: SEL estimator and LS estimator. To achieve average 
estimation performance, 10000 independent Monte-Carlo runs 
are adopted. The length of training sequence is 36N = . The 
length of direct link  SDh  is 32L =   with number of dominant 

channel taps 2, 4,8K =  and cooperative channels SRh  and 

RDh  are  / 2L -length dense impulse response. All of the 
nonzero channel taps are generated following Rayleigh 
distribution and subject to  
 

22 2
E[ ] E[ ] E[ ] 1.SR RD SD= = =h h h  (26) 

Transmit power and AF relay power are fixed as 

S RP P NP= = , where P  is a unit transmit power. The 

received SNR is defined as 2/S nP σ . Channel estimator ĥ  is 
evaluated by average mean square error (average MSE) which 
is defined by  

 

2

2

ˆE
ˆ ( ) ,

2 1
Average MSE

L

 −  =
−

h h
h  (27) 

where h  and ĥ  denote composite channel vector and its 
estimator, respectively; (2 1)L −  is the overall length of 
channel vector h . At first, we compare their estimation 
performance with different number of dominant channel taps in 
the direct link of cooperative channel. When the number of 
dominant channel taps in direct link is 2K = , two proposed 
channel estimators (PEL and IEL) are better than SEL and LS 
based estimator as shown in Fig. 3. From the figure, we can 
find that IEL estimator has a better performance than PEL 
under low SNR (less than 15dB). However, when the number 
of dominant channel taps increase, the advantage of IEL 
reduces and its performance is close to PEL as shown in Figs. 4 
and 5.  
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Fig.3. Channel estimation performance versus SNR. The number of 
dominant channel taps in direct link is 2K = . 



 

 
On sparse channel estimation, channel sparsity often affects 

the channel estimation performance. That is to say, sparser 
channel can achieve more accurate estimation performance 
under the same condition. We evaluate the performance of the 
channel estimators (PEL and IEL) with the different number of 
dominant channel taps 2,4,8K =  as shown in Figs. 6 and 7. 
When the number of dominant channel taps is very small, e.g., 

2K = , the estimation performance is close to the lower bound. 
However, if the direct link is dense channel impulse response, 
then the two proposed estimator are close to LS-based channel 
estimator. At the same time, if the cascaded link is sparse 
channel impulse response then the two proposed estimator have 
same performance as SEL. According to the above analysis, we 
can find that the proposed methods are generalized from both 
LS-based and SEL, since they are either based on dense or 
sparse channel assumption. Hence, our proposed methods in 
this paper can work well in different channel environments.      

In the next, the relationship between the proposed method 
and channel sparsity is considered. Since the space limitation, 

here, we only consider the uniform distribution of dominant 
taps on compressive channel estimation. Assume that the 
number of channel length is same, while the number of 
dominant taps is 2, 4, 6 and 8, respectively. We also compare 
their recovery probability of dominant channel taps (see Fig. 9) 
and average MSE (see Fig. 10). From the two figures, whatever 
the channel sparsity, our proposed method can always close to 
their lower bound. Hence, the proposed method is stable for the 
sparse channel with different number of dominant channel taps. 

 

 

V. CONCLUSION 

Traditional channel estimation methods are based on 
assumptions of either dense channel model or sparse channel 
model in AF CCS. In this paper, the two kinds of channel 
models have been generalized as a partial sparse channel. By 
means of compressive sensing and partial sparse constraint, we 
have proposed an improved sparse channel estimation method 
to fully exploit channel prior information. Numerical 
simulations have confirmed the performance superiority of the 
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Fig.6. PEL channel estimators' performance versus the number of 
dominant channel taps in direct link of cooperative channel. 
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Fig.7. IEL channel estimators' performance versus the number of 
dominant channel taps in direct link of cooperative channel. 
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Fig.5. Channel estimation performance versus SNR. The number of 
dominant channel taps in direct link is 8K = . 
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Fig.4. Channel estimation performance versus SNR. The number of 
dominant channel taps in direct link is 4K = . 



proposed method to the conventional ordinary sparse channel 
estimation method and traditional linear LS method. 
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