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Abstract—In many optimization problems in wireless commu-
nications, the expressions of objective function or constraints
are hard or even impossible to derive, which makes the solu-
tions difficult to find. In this paper, we propose a model-free
learning framework to solve constrained optimization problems
without the supervision of the optimal solution. Neural networks
are used respectively for parameterizing the function to be
optimized, parameterizing the Lagrange multiplier associated
with instantaneous constraints, and approximating the unknown
objective function or constraints. We provide learning algorithms
to train all the neural networks simultaneously, and reveal
the connections of the proposed framework with reinforcement
learning. Numerical and simulation results validate the proposed
framework and demonstrate the efficiency of model-free learning
by taking power control problem as an example.

I. INTRODUCTION

Various resource allocation and transceivers in wireless
networks, such as power allocation, beamforming, and caching
policy, can be designed by solving optimization problems with
constraints, say imposed by the maximal transmit power, cache
size, and the minimal data rate requirement [1, 2].

Depending on the applications, the objective function, con-
straints and the policy to be optimized may vary in different
timescales. If they are in the same timescale, the problem
is variable optimization, and the policy to be optimized is
a vector with finite dimension, e.g., optimizing beamform-
ing based on small scale channel gains to maximize the
instantaneous data rate subject to instantaneous transmit power
constraint. If they are in different timescales, the problem is
functional optimization [3], i.e., the policy to be optimized is
a function, which can be interpreted as a vector with infinite
elements. A classical example of functional optimization is
finding the instantaneous power allocation to maximize the
ergodic capacity under the average power constraint, whose
solution is the classical water-filling power allocation [4].

Variable optimizations have been well studied. Efficient
tools, such as interior point method [5], have been developed
to find the numerical optimal solutions of convex optimiza-
tions and various approximation methods have been widely
used in non-convex optimizations. The optimal solutions of
functional optimizations are, however, generally not in closed-
form and inefficient to be obtained numerically. One way
for numerical searching is the finite element method [6],
which converts the functional optimization into a variable
optimization by only optimizing the values of function on

a finite sampled points. However, such method suffers from
the curse of dimensionality. To overcome this shortage, an
unsupervised learning framework was developed in [7], which
parameterizes the functions by neural networks and trains the
network parameters with stochastic gradient descent (SGD).

To apply numerical searching methods, the expressions of
objective function and constraints, i.e., the model, should be
known. For methods like interior point method and SGD, the
gradients of objective function and constraints with respect to
the optimization variables or functions are further required.
However, in many scenarios, the expressions of the objective
or constraints are unavailable, or too complex to derive their
gradients. Finite difference method can be used to estimate
the gradients according to the observations of the objective
and constraints. However, such a method is inefficient when
the objective function and the constraints are in high dimen-
sions, and hence is not applicable for functional optimization
problems, which are with infinite dimensions.

In this work, we propose a model-free framework to solve
functional optimizations with instantaneous and average con-
straints without the supervision of optimal solution. We begin
with a model-based framework for unsupervised learning
where a neural network (called as policy network) is used
for parameterizing the function to be optimized. We recast
the original constrained problem in the dual domain where
the Lagrangian is served as the objective function and another
neural network (called as multiplier network) is introduced to
parameterize the Lagrange multiplier associated with the in-
stantaneous constraint. In the model-free framework, we resort
to neural networks (called as value networks) to approximate
the unavailable expressions of objective function or constraints
so that their gradients can be obtained for training the policy
and multiplier networks. Then, we reveal the connections of
the proposed framework with reinforcement learning and show
how to extend the proposed framework into stochastic policy
optimization, which is applicable for both continuous and
discrete policy optimizations. We study a simple power control
problem to illustrate how to apply the framework and show
the effectiveness of the model-free unsupervised learning.

II. UNSUPERVISED LEARNING FOR OPTIMIZATIONS

In this section, we introduce model-based and model-
free unsupervised learning frameworks for solving general
functional optimization problems. Since variable optimization
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can be treated as a special case of functional optimization,
these frameworks are also applicable to variable optimization.

Let h ∈ Rn denote a random vector reflecting environment
status, e.g., channel gains. For each realization of h, we aim
to find a vector x ∈ Rm to execute, e.g., transmit powers. Let
function (called as a policy) f : Rn 7→ Rm denote the mapping
from h to x, i.e., x = f(h). The performance metric is a scalar
function of x and h denoted by J(x,h), e.g., the instantaneous
data rate. The goal is to design a function f that maximizes the
performance metric averaged over h, i.e., Eh[J(x,h)], subject
to some constraints. This can be formulated as a general
functional optimization problem as follows,

P1 : max
f(h)

Eh[J(f(h),h)] (1a)

s.t. g(f(h),h) � 0 (1b)
Eh[c(f(h),h)] � 0 (1c)

where (1b) and (1c) denote the instantaneous and the average
constraints, respectively, and the curled inequality symbol “�”
(or “�”) denotes the element-wise inequality. It is noteworthy
that optimization problems minimizing the objective function
or having “�” or “=” constraints (e.g., minimal data rate
constraint) can be easily transformed into problem P1.

In general, problem P1 is hard to solve because it is a
function f(h) that needs to optimize, which can be interpreted
as vectors with infinite dimension when h is with infinity
number of possible values.

A. Model-Based Unsupervised Learning

To tackle with the constraints, we reconsider problem P1 in
its dual domain. The Lagrangian of P1 can be written as [8]

L(f(h),λ(h), ξ)

= Eh

[
J(f(h),h)− λ(h)Tg(f(h),h)− ξT c(f(h),h)

]
(2)

where λ(h) and ξ are the Lagrange multiplier associated with
constraints (1b) and (1c), respectively. When strong duality
condition holds [5], the original problem is equivalent to
finding the saddle point of the Lagrangian as

P2 : min
λ(h),ξ

max
f(h)

L(f(h),λ(h), ξ) (3a)

s.t. λ(h) � 0 (3b)
ξ � 0 (3c)

where λ(h) is also a function that needs to be optimized.
Thanks to the universal approximation theorem [9], we can
introduce two neural networks to approximate function f as
f(h) ≈ f̃(h;θf ) (called as policy network) and approximate
multiplier as λ(h) ≈ λ̃(h;θλ) (called as multiplier network),
respectively, with arbitrary accuracy by finite-dimension pa-
rameter vectors θf and θλ. Then, problem P2 degenerates into
the following variable optimization as

P3 : min
θλ,ξ

max
θf
L(̃f(h;θf ), λ̃(h;θλ), ξ) (4a)

s.t. λ̃(h,θλ) � 0 (4b)
ξ � 0 (4c)

To solve problem P3, we can adopt the primal-dual stochas-
tic gradient method [10] that iteratively updates the primal
variable θf , and the dual variables θλ and ξ along the
ascent and descent directions of sample-averaged gradients,
respectively. The gradients of the Lagrangian (4a) with respect
to θf , θλ, and ξ can be derived as

∇θfL =Eh

[
∇θf f̃(h;θf )

[
∇xJ(x,h)−∇xg(x,h)λ̃(h;θλ)

−∇xc(x,h)ξ
]∣∣

x=̃f(h;θf )

]
(5a)

∇θλL =− Eh

[
∇θλλ̃(h;θλ)g(̃f(h;θf ),h)

]
(5b)

∇ξL =− Eh

[
c(̃f(h;θf ),h)

]
(5c)

where ∇xy = [ ∂y∂x1
, · · · , ∂y∂xn ]T denotes the gradient, ∇xy =

[(∇xy1), · · · , (∇xym)] denotes the transpose of Jacobian ma-
trix and (·)T is the transpose operation. Both ∇θf f̃(h;θf ) and
∇θλλ̃(h;θλ) can be computed via back propagation.

Let B denote a batch of realizations of h. Then, the primal
and dual variables are updated by

θ
(t+1)
f ←θ

(t)
f +

δf
|B|

∑
h∈B

∇θf f̃(h;θf )
[
∇xJ(x,h)

−∇xg(x,h)λ̃(h;θ
(t)
λ )−∇xc(x,h)ξ(t)

]∣∣∣
x=̃f(h;θ

(t)
f )

θ
(t+1)
λ ←θ

(t)
λ +

δλ
|B|

∑
h∈B

∇θλλ̃(h;θ
(t)
λ )g(̃f(h;θ

(t)
f ),h)

ξ(t+1) ←
[
ξ(t) +

δξ
|B|

∑
h∈B

c(̃f(h;θ
(t)
f ),h)

]+

(6)

where δf , δλ and δξ are learning rates, and [x]+ =
[max(x1, 0), · · · ,max(x2, 0)]T . The operation [·]+ in (6) en-
sures constraint (4c). Constraints (4b) can be satisfied by
properly chosen the activation function of the output layer
of λ̃(h;θλ), e.g., ReLU.

If the gradients ∇xJ(x,h), ∇xg(x,h) and ∇xc(x,h) can
be computed, an approximated optimal solution of problem
P3 can be obtained after the iterations in (6) converges.

B. Model-Free Unsupervised Learning

For many problems in wireless networks, one or all of the
objective and constraint functions in problem P1 cannot be
derived in closed-form, and we can only observe the values
of these functions after executing x at a realization of h and
then observe the values of J(x,h), g(x,h), and c(x,h).
For example, we can measure the data rate J(x,h) after
transmit with power x at channel state h. For these scenarios,
the gradients cannot be derived analytically. In what follows,
we resort to model-free unsupervised learning that does not
require the explicit expressions of these gradients.

Again according to the universal approximation theorem,
we can approximate the objective function and constraints in
problem P1 by neural networks as J(x,h) ≈ J̃(x,h;θJ),
g(x,h) ≈ g̃(x,h;θg), and c(x,h) ≈ c̃(x,h;θc). With the
approximated objective function and constraints (called as
value networks), the gradients can be then computed.



The values of J(x,h), g(x,h), and c(x,h) can be mea-
sured and recorded in a system, which can be used as labels for
training. Then, the neural networks J̃(x,h;θJ), g̃(x,h;θg),
and c̃(x,h;θc) can be trained by minimizing the L2-norm
loss function with stochastic gradient descent as

θ
(t+1)
J ← θ

(t)
J −

δJ
|B|

∑
(x,h,J)∈B

∇θJ

[
J(x,h)− J̃(x,h;θ

(t)
J )
]2

θ(t+1)
g ← θ(t)

g −
δg
|B|

∑
(x,h,g)∈B

∇θg

∥∥∥g(x,h)− g̃(x,h;θ(t)
g )
∥∥∥2

θ(t+1)
c ← θ(t)

c −
δc
|B|

∑
(x,h,c)∈B

∇θc

∥∥∥c(x,h)− c̃(x,h;θ(t)
c )
∥∥∥2

(7)

where δJ , δg and δc are learning rates, B denotes a batch
of tuples whose elements are the realizations of h, the corre-
sponding vector x conditioned on h, and the values of J(x,h),
g(x,h) and c(x,h) measured after executing x.

In the following, we denote y , y(·) for notational
simplicity, e.g., J , J(x,h) and J̃ , J̃(x,h;θJ). By
substituting ∇xJ ≈ ∇xJ̃ , ∇xg ≈ ∇xg̃, and ∇xc ≈ ∇xc̃
into (6), we can obtain the update rule for θf , θλ, and ξ as

θ
(t+1)
f ← θ

(t)
f +

δf
|B|

∑
h∈B

∇θf f̃
[
∇xJ̃ − (∇xg̃)λ̃− (∇xc̃)ξ

] ∣∣∣
x=̃f

θ
(t+1)
λ ← θ

(t)
λ +

δλ
|B|

∑
h∈B

(∇θλλ̃)g

ξ(t+1)←
[
ξ(t) +

δξ
|B|

∑
h∈B

c

]+

(8)

Remark 1: When problem P1 has no constraints, our
model-free unsupervised learning framework degenerates into
a special case of reinforcement learning, where the policy
f(h) does not affect the distribution of state h. For the
unconstrained problem, the gradient of the Lagrangian with
respect to policy parameter θf in (5a) degenerates into

∇θfEh

[
J (̃f(h;θf ),h)

]
= Eh

[
∇θf f̃(h;θf )∇xJ(x,h)

∣∣
x=̃f(h;θf )

]
(9)

which coincides with the deterministic policy gradient (DPG)
theorem [11], where J(x,h) is actually the action-value
function (also known as Q-function or critic) and the policy
network f̃(h;θf ) is the actor. By replacing J in (9) with
its approximation J̃ , we can obtain the approximated policy
gradient used for updating the actor in deep deterministic
policy gradient (DDPG) algorithm [12].

Inspired by the great success of actor-critic approach in
reinforcement learning, we can train the neural networks
J̃ , g̃, c̃, f̃ , and λ̃ simultaneously via interactions with the
environment. Each time after we observe the values of J ,
g, and c, we update parameters θJ , θg , and θc to obtain
a better approximation of the Lagrangian. Meanwhile, we
also update parameters θf , θλ, and ξ to improve the policy.
Because J , g, and c are functions of x, to better approximate

J , g, c and their gradients at x, it is necessary to obtain the
values of J , g, and c in the neighborhood of x. To encourage
such exploration, we add a noise term n(t) that reduces over
iterations to the output of policy network, i.e., x = f̃ + n(t).
The detailed learning procedure is provided in Algorithm 1.

Algorithm 1 Model-Free Unsupervised Learning (Deterministic)

1: Initialize neural networks J̃ , g̃, c̃, f̃ , λ̃ with random parameters
θJ , θg , θc, θf , θλ and initialize multiplier ξ.

2: Initialize replay memory D.
3: for t = 1, 2, · · · do
4: Observe h(t) from the environment.
5: Execute x(t) = f̃(h(t);θ

(t)
f ) + ñ(t).

6: Observe values of J(t) = J(x(t),h(t)), g(t) = g(x(t),h(t)),
and c(t) = c(x(t),h(t)) from the system.

7: Store e(t) = [h(t),x(t), J(t),g(t), c(t)] in D.
8: Randomly sample a batch of training samples from D as B.
9: Update θJ , θg , θc by (7) and update θf , θλ, ξ by (8).

10: end for

So far, we have implicitly assumed that the policy to be
learned is continuous (i.e., f(h) is a continuous function of h),
and learn its parameterized form f̃(h;θf ) as a deterministic
policy in both model-based and model free unsupervised
learning frameworks. In some scenarios, we need to find a
discrete policy, e.g., for user scheduling, where parameterizing
a deterministic policy is not applicable because the output
of neural network is continuous w.r.t the input. Although
a discrete policy can be obtained by discretized a learned
deterministic policy, the constraints may not be satisfied after
the discretization.

Alternatively, we can parameterize a stochastic policy by
neural network, which can be used to learn both continuous
and discrete policies. Let π(x|h;θπ) denote the probability
that we execute x conditioned on h, and θπ is the network
parameter. In this case, the parameterized form of problem P1
becomes

P4 : max
θπ

Eh,x∼π[J(x,h)] (10a)

s.t. g(x,h) � 0 (10b)
Eh,x∼π[c(x,h)] � 0 (10c)

where x ∼ π denotes that random variable x is sampled from
distribution π(x|h;θπ), the objective function and average
constraints are also averaged over x. We can obtain the
Lagrangian and use neural network λ̃(h;θλ) to parameterize
λ(h). Then, the gradient of Lagrangian with respect to θπ can
be derived as

∇θπL = ∇θπEh,x∼π

[
J − λ̃Tg − ξT c

]
= Eh

[∑
x

∇θππ(x|h;θπ)(J − λ̃Tg − ξT c)

]
(11a)

= Eh

[∑
x

π(x|h;θπ)
∇θππ(x|h;θπ)

π(x|h;θπ)
(J − λ̃Tg − ξT c)

]
= Eh,x∼π

[
(J − λ̃Tg − ξT c)∇θπ log(π(x|h;θπ))

]
(11b)



The gradient of Lagrangian with respect to θλ and ξ can
be derived as

∇θλL = −Eh,x∼π

[
(∇θλλ̃)g

]
(12)

∇ξL = −Eh,x∼π[∇ξc] (13)

Different from the deterministic policy case, the gradients
∇xJ , ∇xg, and ∇xc are no longer necessary when we update
θπ , θλ, and ξ with stochastic gradient method. To compute a
sample of the gradient in (11b)∼(13), we only need to observe
the value of J , g, and c from the environment1 when executing
x at state h. Therefore, θπ , θλ, and ξ are updated by

θ(t+1)
π ← θ(t)

π + δf (J − λ̃Tg − ξT c)∇θπ log(π(x|h;θπ))

(14a)

θ
(t+1)
λ ← θ

(t)
λ + δλ(∇θλλ̃)g (14b)

ξ(t+1) ←
[
ξ(t) + δξc

]+
(14c)

Remark 2: Although (11b) is derived assuming discrete
distribution of x, it can also be derived from a continuous
distribution of x. Therefore, (14) (and the following updating
rules in (16)) are also applicable for learning a continuous
policy.

Remark 3: When there are no constraints in problem P4,
(11b) reduces to

∇θfEh,x∼π [J(x,h)]

= Eh,x∼π [J(x,h)∇ log(π(x|h;θπ))] (15)

which coincides with the policy gradient theorem [13] in rein-
forcement learning, and the update of θπ in (14) degenerates
into the REINFORCE method [13].

The stochastic gradient update in (14a) may exhibit large
variance [13] because the parameterized policy is stochastic
and hence converge slowly. Inspired by the advantage actor-
critic approach [14], we can subtract a term Ex∼π[J(x,h)−
λ̃Tg(x,h)− ξT c(x,h)] into the parenthesis of (11a), which
do not change the expectation of gradients but can reduce the
variance. Then, the update for θπ becomes

θ(t+1)
π ← θ(t)

π + δπ

[
(J − Ex∼π[J ])− λ̃T (g − Ex∼π[g])

− ξT (c− Ex∼π[c])
]
∇θπ log(π(x|h;θ(t)

π ) (16)

Again, the average terms can be approximated by neural
networks as Ex∼π[J ] ≈ J̄(h;θJ̄), Ex∼π[g] ≈ ḡ(h;θḡ) and
Ex∼π[c] ≈ c̄(h;θc̄), which are updated by minimizing the
L2-norm loss with stochastic gradient descent as

θ
(t+1)

J̄
← θ

(t)

J̄
− δJ̄∇θJ̄

[
J(x,h)− J̄(h;θ

(t)

J̄
)
]2

θ
(t+1)
ḡ ← θ

(t)
ḡ − δḡ∇θḡ

∥∥∥g(x,h)− ḡ(h;θ
(t)
ḡ )
∥∥∥2

θ
(t+1)
c̄ ← θ

(t)
c̄ − δc̄∇θc̄

∥∥∥c(x,h)− c̄(h;θ
(t)
c̄ )
∥∥∥2

(17)

The detailed learning procedure is provided in Algorithm 2.

1When model is available, we can compute the values J , g, and c from
their expressions.

Algorithm 2 Model-Free Unsupervised Learning (Stochastic)

1: Initialize neural networks J̄ , ḡ, c̄, π, λ̃ with random parameters
θJ̄ , θḡ , θc, θπ , θλ and initialize multiplier ξ.

2: for t = 1, 2, · · · do
3: Observe h(t) from the environment.
4: Sample x(t) from π(x(t)|h(t);θ

(t)
π ) and execute x(t).

5: Observe values of J(t) = J(x(t),h(t)), g(t) = g(x(t),h(t)),
and c(t) = c(x(t),h(t)).

6: Update θJ̄ , θḡ , θc̄ by (17), update θπ by substituting
Ex∼π[J ] ≈ J̄(h(t);θ

(t)

J̄
), Ex∼π[g] ≈ ḡ(h(t);θ

(t)
ḡ ) and

Ex∼π[c] ≈ c̄(h(t);θ
(t)
c̄ ) into (16), and update θλ and ξ by

(14b) and (14c), repsectively.
7: end for

III. CASE STUDY: POWER CONTROL PROBLEM

In this section, we illustrate how to apply the model-
based and model-free unsupervised learning frameworks for
solving optimization problems. For easy understanding, we
consider a simple power control problem in point to point
communications. To provide a baseline, we first derive the
analytical solution of the problem. Then, we show how to
employ the frameworks when the expression of the objective
function is known and unknown.

In what follows we optimize the instantaneous transmit
power to minimize the ergodic capacity under the constraints
of average transmit power and maximum transmit power,

P5 : max
P (h)

Eh [R (P (h), h)] (18)

s.t. Eh [P (h)] ≤ P̄ (18a)
0 ≤ P (h) ≤ Pmax, ∀h (18b)

where h is the small-scale channel gain, P (h) is the transmit
power adapted to h, R(P (h), h) is the channel capacity, P̄ > 0
is the maximum average transmit power, and Pmax > P̄ is the
maximum instantaneous transmit power.

A. Analytical Solution

When the channel coding is sufficient long and the noise
is Gaussian distributed, the channel capacity can be expressed
as the Shannon’s formula, i.e., R (P (h), h)=log2(1+ hP (h)

N ),
where N > 0 is the power of noise unified by the large-
scale channel gain. Then the Karush-Kuhn-Tucker (KKT)
conditions of problem (18) can be derived as [8],

1

N/h+ P (h)
+ λ1(h)− λ2(h)− ξ = 0 (19a)

ξ
(
Eh [P (h)]− P̄

)
= 0 (19b)

λ1(h)P (h) = 0, ∀h (19c)
λ2(h) (P (h)− Pmax) = 0, ∀h (19d)

(18a), (18b), ξ ≥ 0, λ1(h), λ2(h) ≥ 0, ∀h (19e)

As proved in the Appendix, the solution of the problem is,

P ∗(h) =


0, h ≤ ξ∗N
1/ξ∗ −N/h, ξ∗N < h < N

1/ξ∗−Pmax

Pmax, h ≥ N
1/ξ∗−Pmax

(20)



where ξ∗ satisfies Eh [P ∗(h)] = P̄ and can be computed via
bisection searching with known distribution of h. The solution
in (20) differs from the water-filling structure [4] due to the
additional constraint imposed by Pmax.

B. Model-Based Unsupervised Learning Method

Problem P5 may not have closed-form solution, say when
the finite block-length channel coding is used such that
R (P (h), h) is with complex expression. In the sequel, we
illustrate how to use model-based unsupervised learning to
solve the problem.

The function to be optimized is approximated by a policy
network P̃ (h;θP ). The constraints in (18b) can be satisfied
by setting the active function of the output layer in P̃ (h;θP )
as Sigmoid, and multiplying the final output by Pmax.
However, to validate the effectiveness of the multiplier net-
work in handling the instantaneous constraints in functional
optimization problems, we use ReLU as the active function
of the output layer to only ensure P̃ (h;θP ) ≥ 0, and
introduce the multiplier network λ̃(h;θλ) to ensure the con-
straint P̃ (h;θP ) ≤ Pmax with primal-dual stochastic gradient
method given by (8). Then, the power control policy and the
Lagrange multipliers can be updated by

θ
(t+1)
P ← θ

(t)
P +

δP
|B|
∑
h∈B

∇θP P̃ (∇PR− λ̃− ξ) (21a)

θ
(t+1)
λ ← θ

(t)
λ +

δλ
|B|
∑
h∈B

∇θλ λ̃(P̃ − Pmax) (21b)

ξ(t+1) ←
[
ξ(t) − δξ

|B|
∑
h∈B

P̃

]+

(21c)

where δP , δλ, and δξ are the learning rates, and B denotes a
batch of training samples.

C. Model-Free Unsupervised Learning Method

When the channel coding is short or the noise is not
Gaussian distributed, the Shannon’s formula is not applicable
and the expression of R (P (h), h) is hard to obtain. In the
following, we illustrate how to use the proposed model-free
unsupervised learning to solve problem P5.

The objective function is approximated by introducing the
value network R̃(P, h;θR), which is then used to compute the
approximated gradient ∇P R̃ ≈ ∇PR for updating the policy
network parameter θP in (21a). The updates for θλ and ξ
are the same as in (21b) and (21c) since the expressions of
constraints are known. After observing the actual data rate
acheived by transmiting with power P at channel state h, the
value network R̃(P, h;θR) is trained based on the observed
value of R(P, h) according to (7) as

θ
(t+1)
R ←θ

(t)
R −

δR
|B|

∑
(P,h,R)∈B

∇θR

[
R(P, h)− R̃(P, h;θR)

]2
(22)

where δR denotes the learning rate.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we validate the proposed mode-free unsuper-
vised learning frameworks by considering problem P5, where
in simulation the channel coding is assumed long and the noise
is assumed Gaussian.

The simulation setup is as follows. The maximal instanta-
neous and average transmit powers are Pmax = 40 W and
P̄ = 30 W, respectively. The distance between the transmitter
and the receiver is d = 500 m. The noise power spectral
density is −174 dBm/Hz and the bandwidth is 20 MHz.
We consider Rayleigh fading channels and the path loss is
modeled by 35.3 + 37.6 log10(d) in dB.

The hyper-parameters used for model-based and model-
free frameworks are as follows. Both λ̃ and P̃ have three
fully-connected hidden layers with 50, 40, and 30 nodes,
respectively. R̃ has two hidden layers with 200 and 150 nodes,
respectively. All the hidden layers and the output layers of λ̃
and P̃ use ReLU as the activation function. The output layer of
R̃ has no activation function. We use Adam [15] for training
all the neural networks with learning rate δP = δλ = 10−3

for P̃ and λ̃, and δR = 5 × 10−3 for R̃. The batch size is
|B| = 32. P̃ is initialized as 10. Both λ̃ and ξ are initialized
as 0. The noise term for exploration in model-free learning
is set as n(t) = ε(t)N (t) where N (t) denotes Gaussian noise
with zero mean and unit variance. The value of ε(t) is set as
10 for the first 5× 103 iterations and then decreases linearly
to zero for the next 1.5 × 104 iterations. All the simulation
results are averaged over 50 rounds of learning.

In Fig. 1, we compare the convergence of model-based
and model-free unsupervised learning. Both model-based and
model-free learning can converge to the average rate achieved
by the optimal solution P ∗(h) numerically computed with (20)
(with legend “Optimal”). The average rate achieved by model-
free learning can be even higher than the optimal solution
at the beginning due to violation of constraints. We show
the violations of instantaneous and average constraints in
Fig. 1(b) and Fig. 1(c), respectively. Since model-free learning
needs the exploration to learn the expression of the objective
function, the violations of constraints are more severe than
model-based method at the beginning of learning due to
insufficient training samples. With the increase of iterations,
both model-based and model-free learning can satisfy all
the constraints after convergence. Moreover, the number of
iterations for converging to the optimal solution are close
for model-based and model-free learning. This demonstrates
the efficiency of proposed model-free unsupervised learning
framework where the policy, multiplier, and value networks
are trained simultaneously.

In Fig. 2, we compare the behavior of the policies learned
by model-based and model-free frameworks with the optimal
solution. We can see that the learned policies behave almost
the same with optimal policy.

V. CONCLUSIONS

In this paper, we proposed an framework to solve optimiza-
tion problems with constraints by model-free unsupervised
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Fig. 1. Convergence comparison. The results are averaged over 500 succes-
sive iterations.
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Fig. 2. Comparison of learned policy after 105 iterations.

learning, and revealed the connections with reinforcement
learning. We illustrated how to apply the proposed framework
by a power control problem. Numerical and simulation results
validated our framework and showed that model-free unsuper-
vised learning can converge to the optimal policy with similar
speed as model-based unsupervised learning.

APPENDIX

To find the solution from the KKT conditions in (19),
P ∗(h), λ∗1(h), λ∗2(h), and ξ∗, we first prove ξ∗ > 0.

Assume ξ∗ = 0. Since 1
N/h+P∗(h) > 0 and λ∗1(h) ≥ 0, we

have λ∗2(h) > 0 according to (19a). Then, P ∗(h) = Pmax can

be derived from (19d). In this case, Eh [P (h)] = Pmax > P̄ ,
which violate the constraint in (18a). Therefore, ξ∗ > 0. From
(19b), we further have,

Eh [P ∗(h)] = P̄ (23)

When h < ξ∗N , we have 1
N/h+P∗(h) − ξ∗ < 0. In this

case, λ∗1(h) > 0 according to (19a) and P ∗(h) = 0 according
to (19c). When h = ξ∗N , 1

N/h+P∗(h) − ξ
∗ < 0 if P ∗(h) > 0,

which on the contrary results in P ∗(h) = 0. Therefore,
P ∗(ξ∗N) = 0.

When h > N
1/ξ∗−Pmax

, we have 1
N/h+P∗(h)−ξ

∗ > 0. In this
case, λ∗2(h) > 0 according to (19a) and P ∗(h) = Pmax ac-
cording to (19d). When h = N

1/ξ∗−Pmax
, 1
N/h+P∗(h) − ξ

∗ > 0

if P ∗(h) < Pmax, which results in P ∗(h) = Pmax, contradict-
ing with P ∗(h) < Pmax. Therefore, P ∗( N

1/ξ∗−Pmax
) = Pmax.

When ξ∗N < h < N
1/ξ∗−Pmax

, we have 1
N/h+Pmax

< ξ∗ <
1

N/h+0 . In this case, if P ∗(h) = 0, then λ∗2(h) > 0 according
to (19a), which results in P ∗(h) = Pmax, contradicting with
P ∗(h) = 0. Similarly, if P ∗(h) = Pmax, then λ∗1(h) > 0
according to (19a), which results in P ∗(h) = 0, contradicting
with P ∗(h) = Pmax. Therefore, we have 0 < P ∗(h) < Pmax

and λ∗1(h), λ∗2(h) = 0. According to (19a) we further have
P ∗(h) = 1/ξ∗ −N/h.

Finally, according to the solution of P ∗(h), ξ∗ can be solved
from (23).
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