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ABSTRACT

Power consumption is an increasingly pressing problem in
high performance processors, and the caches usually
consume a significant amount of power. This paper
presents a new cache partition architecture, called paged
cache, which is beneficial for area, power and
performance. In the paged cache, we divide the entire
cache into a set of partitions, and each . partition is
dedicated to only one page cached in the TLB. By
restricting the range in which the cached block can be
placed, we can eliminate the total or partial tag depending
on the partition size. Furthermore, by accessing only a
single partition, instead of accessing the entire cache, both
the power consumption per cache access and the average
access time can be reduced largely. We use SimpleScalar to
simulate the SPEC2000 benchmarks and perform the
HSPICE simulations (with a 0.18 um technology and 1.8V
voltage supply) to evaluate the proposed architecture.
Experimental results show that the paged cache is very
efficient in reducing both power consumption and tag area
of the on-chip L1 caches, while the average access time of
cache can be improved.

1. INTRODUCTION

The on-chip caches have been shown to be one of the
major power and area consumers. To allow high clock
frequencies to be wused, these on-chip caches are
implemented using arrays of densely packed SRAM cells.
The number of transistors devoted to the on-chip caches is
often a significant fraction of the total transistor budget for
the entire chip. As the on-chip cache size keeps increasing,
the power dissipated by the on-chip caches become
significant (e.g., 25% of the total chip power in the DEC
21164 [1], 43% of the total power in the SA-110 [2]), but
also it occupies a large portion of the chip-area [3]. Since
this trend will likely continue as processors become more
sophisticated, both area and power savings resulting from a
cost-effective on-chip cache design can have a significant
impact on the overall system performance.
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Clearly, cache is one of the most attractive targets for
both power and area reduction. There have been several
techniques for reducing the cache power consumption
[41[5](6][7] and the cache area cost [8][9][10].

In this paper, we investigate a cache architecture from
three different perspectives: area, power and performance
(i.e., access time). To reduce both the area cost of
implementing the tag array and the power consumption per
cache access, we took a closer look at the relationship
between the translation lookaside buffer (TLB) and the
cache. The TLB is a small associative memory that maps
virtual page number to physical page number. As we know,
in most conventional architectures, the cache access
follows the TLB access. The cache hit or miss is
independent of the result of TLB access. In contrast, we
propose a new cache architecture, called paged cache, in
which the-cache memory holds only blocks belonging to
the pages that are contained in the TLB. We further divide
the entire cache into a set of partitions. All partitions have
the same size and the number of partitions is the same as
the entry number of TLB, i.e., the number of pages cached
in TLB. Each partition is dedicated to one and only one
page, and thus the tag area can be dramatically decreased.
In addition, by triggering a single partition per access, both
the power consumption and the access time can be reduced
largely.

The rest of this paper is organized as follows. Section 2
identifies the problems of the conventional cache
architecture, and we describe the details of the proposed
paged cache architecture. In Section 3, we give a detailed
power estimation model and timing simulation for the
proposed architecture. Experimental results are given in
Section 4, and Section 5 offers some conclusions.

2. PAGED CACHE ARCHITECTURE

2.1 Conventional Cache

In most computers, caches are accessed with the
physical address. After TLB translation, the physical



address issued to the cache consists of three parts: tag,
index, and offset. Suppose that the cache is organized as a
collection of S=C/(Bx4) sets, where 4, B, and C represent
associativity, block size and cache size, respectively. The
index part has length of log,(S) bits, which is used to index
the set that potentially contains the desired data. The offset
_ part has length of Jog,(B) bits, and is used to select the
appropriate byte within a block. Finally, if the address
space is 32-bit, the tag part has length of 32-log,(S)-log,(B)
bits, which is used to check whether the access is hit or
miss.

The cache consists of the tag array and the data array.
Each cached block in the data array has only one address
tag corresponding to it in the tag area. It is clear that the
tag array is the storage overhead needed to determine
whether the corresponding cached data is what we want.
For example, in a 32KB 2-way cache with block size of 32
bytes, the area proportion of tag array to data array is about
1:15. If a 64-bit wide address space were used, the tag
length would be 50 bits and then the area ratio of tag array
to data array would be /:5. From this example, it is clear
that the tag area takes a notable fraction of space as
compared to data area. It will take more area as the
memory address space increases.

2.2 Paged Cache

Figure 1(a) shows a possible access flow of the
conventional cache. Normally, the virtual address (VA4)
generated by the CPU is fed into the TLB to generate the
physical address (PA), after that a cache lookup is done. It
is very important that we only consider a physically
addressed cache in this study. That is, the cache cannot be
accessed until the generation of physical address. Note that
there is no relationship between the TLB access and the
cache access in the conventional cache architecture, and
the result of cache access is independent of the TLB access
result.

(a) Conventioanl cache.
Figure 1: Cache architecture. (The gray blocks symbolize active
component)

(b) Paged cache.

We now propose a new cache architecture, called paged
cache, for parallel address transiation and area cost
reduction. In the paged cache shown in Figure 1(b), we
divide the entire cache into several pieces, named

partitions, and limit the partition size to be not larger than
the page size. Note that the number of partitions must be
the same as the TLB entry number. In contrast to the
conventional cache, each partition is dedicated to only one
page that is cached in TLB. There is one-to-one
correspondence between partitions and TLB entries.
Consequently, we connect the cache access with the TLB
access, that is, the cache hit implies the TLB hit (or the-
TLB miss implies cache miss). By restricting the range in
which the cached block can be placed, we can map one
page into the specific partition. The tag length of the paged
cache is determined by the partition size and given by:
page size
Partition size
Because the page size is fixed at 4KB throughout this
paper, the reasonable partition sizes used in this paper are
1KB, 2KB or 4KB, and thus the tag length are 2-bit, 1-bit

tag length = log (
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Figure 2: A paged cache example with a 32-entry fully-associative
TLB and a 64KB cache. (The gray blocks symbolize
active partition.)

Consider a 64KB paged cache with a 32-entry fully-
associative TLB as shown in Figure 2. Throughout this
paper, we fix the address space to be 32-bit wide, the page
size 4KB and the block size 32B. Because the number of
partitions must equal the TLB entry number, the size of
partition is 2KB. For mapping one page to one partition,
we have to use 1-bit as tag to determine whether the access
is hit or not. The address format is shown in Figure 3(b).
Comparéd to the conventional one shown in Figure 3(a),
which is a one-way 64KB cache architecture, we can
observe the tag length is reduced from 16-bit to 1-bit.
Hence, the tag area can be largely reduced. The access
flow in the paged cache architecture is described as
follows: )

31 16715
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Figure 3: Address format,
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1. The virtual address generated by the CPU is
concurrently fed into the TLB and the decoder of
each partition. The bus widths of input for TLB and
partition decoder are 20-bit (i.e., V4/31...12]) and 6-
bit (i.e., VA[10...5]), respectively.

2(a). In case of TLB hit, the match lineis used to enable the
corresponding partition decoder to decode the index
part of the reference address.

2(b). In case of TLB miss, it implies this reference would
miss in cache access. We must reload the demand
page from the page table. It is important to note that if
this reloading induces the TLB replacement, the
partition corresponding to the replaced page must be
flush. By resetting the valid bit of all cache blocks,
the partition can be easily flushed.

3. To determine a cache hit, we must concurrently check
the valid bit and compare the tag with that of selected
block. If the valid bit of selected block is 0, it means
this block is not available.

4(a). In case of a cache hit, the desired data is returned to
the processor.

4(b).In case of a cache miss, the physical address
generated by the TLB can be used to load the desired
block from the lower level of memory hierarchy, and
then the corresponding valid bit and tag must be
updated.

3. EVALUATION FOR AREA AND POWER

3.1 Area Cost Analysis

An important cost measure for the on-chip cache is its’

occupied chip area. In this paper, we use the simplest area
cost model, the number of tag cells, for both the
conventional cache and the paged cache. Because the tag
array of paged cache and that of conventional cache have
the same structure and implementation, the reduction in
terms of the number of tag cells in the paged cache
architecture can directly reflect the actual savings in chip
area. Note that the sizes of data array for both architectures
are identical.

Table 1: Tag length for various cache configurations.

1-way 2-wa 4-way P=lK P=2K P=4K

16K 18 19 20 2 1 0
32K 17 18 19 2 1 [
64K 16 17 18 2 1 []
128K 15 16 17 2 1 o

Based on the cache configuration, the lengths of tag for
both conventional cache and paged cache are summarized
in Table 1. We observed that the tag length of the
conventional cache is dependent on the cache size and
associativity. By contrast, the tag length of the paged cache
is only dependent on the partition size. For example,
suppose that the partition size is 1K (P=1K). Because the
page size is 4K, there are four possible blocks that can be
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mapped to the same set. Consequently, we use two bits as
tag to check whether the selected set contains the required
data. Because we do not take into account the valid bit, the
tag length is O for partition size of 4K. In Figure 4, we
depict the number of tag cells in the caches for the various
configurations of the paged cache architecture.

Figure 4: The number of tag cells for various cache configurations,

3.2 Power Consumption Per Access

Based on the cache access model described in [11], we
perform the HSPICE simulation and summarize the power
consumption per access for various cache configurations in
Table 2. The key observation is that with the use of the
paged cache architecture, a large reduction in the power
consumption per access can be easily achieved. In the
conventional cache, the power consumption is proportional
to the cache size and the degree of associativity. By
contrast, the power consumption per access of the paged
cache architecture is independent of the cache size, but
only dependent on the partition size.

Table 2: Power consumption per access for various cache
configurations.

{Power (mip| 1-way | 2-way | d-way | P=IK | P=2K | P=4K
16K | 6455 | 10615 | 193.53 | 4213 | 4292 | 4488
32K 85.50 12911 | 21230 | 42,13 42.92 44.88
64K 13649 | 171.01 | 25822 | 42.13 42.92 44.88
128K [ 25425 | 27298 [ 34201 | 4213 | 4292 | 44.88 |

3.3 Estimation of Access Time Spent in the Bitlines

Up to this point, we have investigated the impact of both
area cost and power consumption of the proposed
architecture. Another imiportant factor is the cache access
time. Because the size of partition in the proposed
architecture is very small compared to the conventional
cache and only one partition would be active in each cache -

“access, we can infer the access time of the paged cache is -

shorter than that of the conventional cache. To measure the
access time of the two architectures more accurately, we
performed timing simulations of the two implementations.
In this simulation, we compare the smallest cache studied
in this paper (i.e., 16K direct-mapped cache, the best case
in the conventional cache) and the paged cache with 4K
partition size (the worst case in our page cache) to show
the gain of access time. Note that here we do not consider
the access time spent in other components, e.g., decoder,
comparator, multiplexer, output driver, etc. As illustrated in
Fig. 5, the access time spent in the bitlines of the paged



cache architecture is about 0.2ns faster than that of the
conventional cache.

Veltage: (i)
g

(i.e., 16K and 32K in Figure 6(a)) does not result in hit
ratio improvement as in the case of larger cache (i.e., 64K
or 128K). This is because the number of partitions is too
small to cache sufficient pages. By contrast, for the D-
caches which has poor locality, decreasing the partition
size to 1KB (i.e., enlarging the number of partitions) would
be beneficial for all cases.
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Figure 5. Bitlines signal waveforms in (a) the conventional
16KB direct-mapped cache, and (b) the paged
cache with 4KB partition size.

4. EXPERIMENTAL RESULTS

In this paper, we use SimpleScalar [12] in conjunction
with the HSPICE simulations (with a 0.18 um technology
and 1.8V voltage supply) to evaluate the proposed
architecture. The numbers of cache accesses were obtained
from the simulation of a set of SPEC2000 benchmarks. To
get a good mix of CPU-intensive and memory-intensive
loads, we randomly chose eight CINT2000 benchmarks
(164.gzip, 175.vpr, 176.gcc, 18l.mcf, 197.parser,
253.perlbmk, 255.vortex, 256.bzip2) and four CFP2000
benchmarks (177.mesa, 179.art, 183.equake, 188.ammp).

4.1 Configurations Studied

For the results presented here, we use a two level on-
chip cache hierarchy, with split L1 caches and unified L2
cache. To avoid an explosion in the number of results, the
page size is fixed as 4KB, so the partition size can be 1KB,
2KB or 4KB. For our base case, we assume a 64KB,
direct-mapped L1 I-cache and a 64KB 4-way L1 D-cache.
The block sizes for both caches are set to 32B. The L2
cache is assumed to be a 256KB 4-way unified on-chip
cache with a block size of 64B.

4.2 Results and Discussions

Figure 6 shows the impact of using the paged cache
architecture on the hit ratio. In the conventional
architecture, the hit ratio increases with the degree of
associativity. The decrease in hit ratio with the use of the
-paged cache architecture is as expected; this is because the
paged caches hold only blocks belonging to the pages that
are contained in the TLB. An interesting variation in hit
ratio is observed between the I-caches and the D-caches.
For the I-caches, which has superior spatial locality,
increasing the partition size to 4KB for the smaller cache

(a) Instruction cache. (b) Data cache.

Figure 6: Hit ratio for various conventional caches and paged
caches.

In the following discussions, we use area cost, power
consumption and access time as the evaluation criteria to
compare the base case implemented in conventional cache
architecture with that 'implemented in paged cache
architecture.

Area Cost: In Figure 7, we depict how hit ratio in our
base case is reduced by using the paged cache architecture
with various partition sizes. From these results, we decide
to use the page cache with 4KB partition size for I-cache,
because the hit ratio decrease is the smallest (i.e., from
0.98 to 0.97). Similar to the D-cache, the partition size that
we use in the proposed architecture is 1KB.

Base P=1K P=2K P=4K
Icache | 0.9862 | 0.9417 | 0.9725 | 0.9734
D-cache | 0.9697 | 0.9614 | 0.9616 | 0.9545

g
oPeiK|
o p=2x|
m ek

Figure 7: Hit ratio for base case and paged cache architecture,

For simplicity, we use the number of tag cells to
estimate the area of tag array in the paged cache
architecture. The tag length is 16-bit for the base case of
L1 I-cache, and it is 7/8-bit for the base case of L1 D-cache.
Because the partition size is 4KB, the tag length is 0-bit for
the paged L1 I-cache. In the paged L1 D-cache, the tag
length is 2-bit. Note that we do not take ‘into account the
status bits, such as valid bit, dirty bit, etc. For a 64KB
cache, there are 2'/=2048 blocks in the data array. As we
know, each cache block in the data area has only one
corresponding tag. For the L1 I-cache, the number of tag
cells for the conventional cache and the paged cache are
2'"x16 and 0, respectively, i.e., the tag area savings is

476



100%. In the case of L1 D-cache, the number of tag cells
was reduced from 2'/xI8 to 2'/x2, representing the tag
area savings of about 88%.

Power Consumption: According to the memory
hierarchical model, the average power consumption per
access for the conventional cache and our proposed
architecture can be expressed by the following equations:

Pcony_ave = Pri_convt (I-HRL;_comv )*PL2s )
Ppc_ave = Pri_pct (1-HRyy_pc)*Pra, @)

where Pr; cony and Py, pc are the power consumption per
access of the L] conventional cache and L] paged cache,
respectively, , HR ;,is the hit ratio of the L1 cache, and Py,
is the power consumption of the L2 on-chip cache. Based
on the analysis model of power consumption described in
Section 3, we obtain the values of Py;_com, Pri_pc and Py,
for both I-cache and D-cache, as shown in Table 3(a). -

Combine Equations (1), (2) and the resuits illustrated in
Table 3(a), the average power consumption per cache
access measured in mWatts for both conventional cache
and paged cache are shown in Table 3(b). Clearly, for I-
cache, if the paged cache with 4KB partition size was
employed, the average power consumption per access can
be reduced from 144.03mW to 59.39mW, representing a
power savings of about 58%. Similarly, in the D-cache, if
the paged cache with 1KB partition size was used, the
average power consumption per access can be reduced
from 274.76mW to 63.22mW, representing a power savings
of about 77%.

Table 3: Power consumption per access (in m#).

PLI Conv. PLI PC PLZ PCanv_ave PPC ave
Lcache | 13649| 4488 ., o Lcache | 14403| 59.39
D-cache | 25822 42.13 : D-cache | 274.77] 6322

(a) Power consumption per (b) Average power consumption per
access for L1 and L2 on- access for both conventional
chip cache. cache and paged cache.

. Access Time: A simple rule of hardware design: Smaller
is faster. This simple principle is particularly applicable to
memories built from the same technology. Because the
partition in our proposed architecture is smaller than the
conventional L1 cache, it should have a faster access time.
We use the tool Cacti, described in [11], to estimate the
access time of the conventional on-chip caches, as well as
the paged cache that was proposed to reduce mainly the
area cost and power consumption. Note that the cache
models used in this tool is not precisely equal to the paged
cache. Actually, the access time of the partition is slightly
faster than the results shown here. This is because the tag
length of our proposed architecture is far shorter than that
of the conventional cache. In our experiments, the partition
in the paged cache is implemented as a direct-mapped
organization, with size ranging from 1KB to 4KB, and
block size is 32 bytes. Figure 8 shows the access time of

base case with various partition sizes, based upon the
cache model described in [11] using 0.18 pm technology.
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Figure 8: The access time of base case with various partition

Similar to the average power consumption per access,
the average access time for the conventional cache and our
proposed architecture can be expressed by the following
equations:

TCanv_ave = TLI_Cnnv + (1 'HRLI_Conv) X TLJ: (3)
Tpc_ave = Tus_pct (1-HRps_pc)*T1a, )

where Teom_me ad Tpc_ave are the access time of the L1
conventional cache and L1 paged cache, respectively, and
Ty, is the access time of the L2 on-chip cache. Combine
Equations (3), (4) and the results illustrated in Table 4(a),
the average cache access time measured in nanosecond for
both conventional cache and paged cache are shown in
Table 4(b). The key observation is approximately a 40%
reduction in access time when using the paged L1 I-cache
with 4KB partition size, and 6/% for the paged L1 D-
cache with 1KB partition size can be obtained.
Consequently, our proposed cache architecture can
improve the cache access time, and this improvement in L1
cache access time may presents an opportunity to increase
the fundamental processor clock. i

Table 4: Access time (in #s).

Time ;s conv | Time 1y pc | Time TimMe comy ave | TiMe pc ave

I-cache 1.3410 0.7649 26383 1-cache 13774 0.8350
D-cache| 1.9237 0.6749 | D-cache 2.0037 0.7768
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(a) Access time for L1 and
L2 on-chip cache.

(b) Average access time for both
conventional cache and paged
cache.

Summarize the performance comparisons in power
consumption, area cost and access time, the improvements
due to the use of paged cache are shown in Table 5. One
can see that the paged cache is very effective in reducing
both power consumption and area cost for the on-chip L1
caches, while the average access time of cache is also
improved.

Tabel 5: Summary of performance improvement.

power area cost |access time
consumpnon
L1 I-cache - 58% 100% 40%
L1 D-cache 11% 88% 61%



5. CONCLUSIONS

On-chip cache is a major source of both area consuming
and power dissipation in most modern processors. In this
paper, a new cache architecture, called paged cache, was
proposed, in which we use a simple partition scheme to
divide a large cache into several partitions. The
experimental results showed that it is very effective in
reducing both power consumption and area cost in on-chip
L1 caches, while the average access time of cache is also
improved. For the base case of L1 on-chip I-cache (64KB,
1-way), the paged cache with partition size of 4KB can
result in roughly 58% reduction in power consumption,
100% reduction in tag area and 40% reduction in -average
access time. Similarly, for the base case of L1 on-chip D-
cache (64KB, 4-way), the paged cache with partition size
- of 1KB can result in roughly 77% reduction in power
consumption, 88% reduction in tag area and 6% reduction
in average access time.
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