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Abstract— In this paper 1 we address the problem of estimat-
ing the parameters of multicomponent polynomial phase signals
in impulsive noise which arises in many practical situations. In
the presence of this non-standard noise, existing techniques
perform can poorly. We propose a nonlinear M -estimation
approach to improve the existing techniques. The phase param-
eters are obtained by solving a nonlinear optimisation problem.
A procedure is proposed to find the global minimum at low
computational cost. Simulation examples show the proposed
method performs better than existing methods.

I. INTRODUCTION

In many signal processing applications such as those in
synthetic aperture radar (SAR) or in radio communications
where the phase is continuously modulated, the signal of
interest is nonstationary. The most commonly used model
in parametric analysis of analytic and nonstationary signals is
the polynomial phase signal (PPS) model which is motivated
by Weierstrass’ theorem. This theorem implies that for a fi-
nite duration of observations, an arbitrary time varying phase
can be well approximated by a polynomial of sufficiently
higher order.

Most signal processing techniques for extracting useful
information from received signals are usually developed
under the assumption that the noise is additive Gaussian
[1], [8], [10]. However, practical measurements reveal that
the noise behaviour is of a more impulsive nature and the
probability density function does not follow the Gaussian
distribution. Non-Gaussian noise has been observed over a
wide range of important practical applications such as those
in wireless communication channels [5], switching transients
in power lines [6], automobile ignition noise [7], [12],
and synthetic aperture radar [3]. Under these circumstances
conventional signal processing techniques suffer from a
considerable performance loss. Thus there is a need for
alternative methods. With this motivation we propose an
effective method in this paper.

The paper is organised as follows. In Section 2 we explain
the signal model and derive the Cramér-Rao bound. In

1This research was in part supported by the Australian Research Council
(ARC) under grant DP0211849.

Section 3 we propose a nonlinear M -estimation approach
to obtain robust estimates of the parameters, which can be
formulated as a nonlinear optimisation problem. Then we
propose a computationally efficient procedure for solving
this optimisation problem. Section 4 studies the performance
of the proposed approach via a simulation example. Section
5 concludes the paper.

II. SIGNAL MODEL AND THE CRAMÉR-RAO BOUND

Consider a complex-valued K-component polynomial
phase signal embedded in complex circular white non-
Gaussian noise with total variance σ2:

y(t) =
K∑

k=1

αksk(t) + x(t), (1)

where αk is the amplitude of the kth component,

sk(t) = exp

{
j

M∑
m=0

ωk
mtm

}
, (2)

and x(t) is the noise whose real and imaginary parts are
uncorrelated and each follows the ε-contaminated model [13]

f(x) = (1 − ε)fG(x; ν2) + εfG(x;κν2), (3)

where fG(x; ν2) denotes the zero-mean Gaussian distribu-
tion with variance ν2 and (1 + (κ − 1)ε)ν2 = σ2/2. The
parameter κ > 1 represents the impulsive strength of the
noise. This model has been used to characterise impulsive
noise in practical situations [13].

The problem is as follows: given N samples of the
received signal y(t) at time instances t0, . . . , tN−1, find
estimates of the amplitudes αk, the polynomial phase co-
efficients ωk

m for k = 1, . . . ,K, m = 0, 1, . . . , M , and
the noise variance σ2. We have assumed, without loss
of generality, that all components have the same order
M . Denote ωk = [ωk

0 , . . . , ωk
M ]T , t = [t0, . . . , tN−1]T ,

y = [y(t0), . . . , y(tN−1)]T , α = [α1, . . . , αK ]T , x =
[x(t0), . . . , x(tN−1)]T , sk(t,ωk) = exp

{
j
∑M

m=0 ωk
mtm

}
,

sk(t,ωk) = [sk(t0,ωk), . . . , sk(tN−1,ωk)]T = sk(ωk)2,

2The parameter t is omitted for notational simplification.
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ω = [ωT
1 , . . . ,ωT

K ]T , S(ω) = [s1(ω1), . . . , sK(ωK)], and
ϑ = {α,ω, σ2}. We can rewrite (1) as:

y = S(ω)α + x

= η(ϑ) + x (4)

When the noise is purely Gaussian, it was shown in [11,
ch. 5] that the Fisher information matrix is

JG =


 Jαα Jαω 0

Jωα Jωω 0
0 0 Jσ2σ2


 , (5)

where

Jαα =
2
σ2

�{
S(ω)HS(ω)

}
,

Jωω(ωk
m, ωk′

m′) =
2
σ2

�
{

αkαk′sk(ωk)HTm+m′
sk′(ωk′)

}
,

Jωα(ωk
m, αk′) =

2
σ2

�{αksk(ωk)Tmsk′(ωk′)} ,

Jσ2σ2 = N/σ4, (6)

T = diag(t0, . . . , tN−1), and � and � denote the real and
imaginary operators. The Cramér-Rao bound is given by

CG = J−1
G . (7)

Denote the maximum likelihood score function

ψML(x) = −∂ ln f(x)
∂x

. (8)

It has been shown [11, ch. 5] that the Cramér-Rao bound in
the case of non-Gaussian noise is

C =
E{ψ2

ML(x)}
(E{ψML(x)})2

2
σ2

CG. (9)

III. NONLINEAR M -ESTIMATION

Since the noise parameters in (3) are unknown, the exact
maximum likelihood (ML) solution is not available. We
propose to estimate the parameters of the polynomial phase
signals via the M -estimation approach

ϑ̂ = arg min
ϑ

C(ϑ)

= arg min
ϑ

N−1∑
n=0

ρ(�{zn}) + ρ(�{zn}) (10)

where zn = yn−ηn(ϑ). The penalty function is designed to
suppress the outliers in the residuals zn. The least-squares
(LS) solution is equivalent to choosing ρ(x) = x2. For robust
estimation, the penalty function is required to be less rapidly
increasing as the aforementioned quadratic function. In this
work we shall use Huber’s minimax solution given by

ρ(x) =

{
x2

2ν2 for |x| ≤ kν2

k|x| − k2ν2

2 for |x| > kν2
(11)

For details on the minimax score function and its approxima-
tion, see [13]. Denote the minimax score function ψ(x) =
∂ρ(x)/∂x, it follows directly from (9) that the theoretical

bound on the performance of the proposed robust estimator
is given by

C =
E{ψ2(x)}

(E{ψ(x)})2
2
σ2

CG. (12)

The formulation (10) is a difficult optimisation problem
since for a general PPS problem it contains numerous local
minima. Several sub-optimal techniques are available in the
literature such as the product high-order ambiguity function
(PHAF) [4] or nonlinear instantaneous least-squares (NILS)
[2]. However, they are not robust against impulsive noise and
they are not optimal for the multicomponent case.

To solve the nonlinear optimisation problem (10) we
propose the following computational procedure

• Step 1: Use the PHAF technique to initialise the esti-
mates (see [4] for details).

• Step 2: Move the parameter estimates to the vicinity of
the global minimum via a global optimisation search.
In this work, we shall use a recently proposed filled
function approach [14].

The motivation of the proposed method is as follows. Step 1
makes use of a computationally attractive technique available
in the literature to avoid the exhaustive grid search. However,
in the presence of outliers and multicomponents the PHAF
estimates can be far away from the global minimum. In
Step 2, the filled function is used to search for a better
local minimum within the current neighbourhood. Two key
features of the technique are the construction of the filled
function and the directions for which the search should be
carried out.

A. Initialisation

The PHAF method [4] is a generalised version of the
HAF method originally introduced by Peleg and Porat [9].
We define the multi-lag high-order instantaneous moment
(ml-HIM) of y(t) as follows:

y1(t) = y(t),
. . .

yM (t; τM−1) = yM−1(t + τM−1; τM−1)
×yM−1(t − τM−1; τM−1)∗, (13)

where τi = [τ1, τ2, . . . , τi−1]. The multi-lag HAF is defined
as the finite Fourier transform of the ml-HIM

Ym(f ; τM−1) =
t=tN−1∑

t=t0

yM (t; τM−1)e−j2πft. (14)

Introduce L sets of lags TL
M−1 = [τ (1)

M−1, τ
(2)
M−1, . . . , τ

(L)
M−1],

where τ
(l)
M−1 = [τ (l)

1 , τ
(l)
2 , . . . , τ

(l)
M−1]

T . The PHAF is then
defined as:

Y L
M (f ;TL

M−1) =
L∏

l=1

YM (β(l)f ; τ (l)
M−1), (15)
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where β(l) is the scale factor for the lth set of lags

β(l) =

(∏M−1
k=1 τ

(l)
k

)
(∏M−1

k=1 τ
(1)
k

) . (16)

By searching for the minima of Y L
M (f ;TL

M−1) in the
frequency domain, the highest-order phase parameters
(ω1

M , . . . , ωK
M ) can be found. The parameters of lower orders

can be found via demodulation and local search. The details
can be found in [11].

B. Global Search

Consider the problem (10) with some initial estimate
ϑ̂0 which is supposed to be a local minimiser. We define
the basin B0 about ϑ̂0 as the neighbourhood such that the
steepest descent trajectory of C(ϑ) converges to ϑ̂0 from
any point within B0. To move the current point to a better
position, a filled function p(ϑ; ϑ̂0) is to be constructed with
the following requirements [14]:

• ϑ̂0 is a maximiser of p(ϑ; ϑ̂0) and the whole basin B0

is covered by p(ϑ; ϑ̂0).
• p(ϑ; ϑ̂0) does not have minimisers or saddle points in

any basin of C(ϑ) higher than B0.
• Suppose that there is a basin B1 lower than B0, then

there exists a minimiser ϑ1 ∈ B1 of C(ϑ) along the line
through ϑ0 to ϑ1.
The following filled function was proposed in [14]:

p(ϑ; ϑ̂0) = min
{
C(ϑ), C(ϑ̂0)

}
− 
 ‖ ϑ − ϑ̂0 ‖2

+µ
(
max

{
0, C(ϑ̂0 − C(ϑ)

})2

(17)

The parameters 
 and µ are chosen such that 
 > 0 and
0 ≤ µ < 
/L2 where L is the Lipschitz constant of C(ϑ).
Depending on the conditions of the current point, one carries
a search along one of the following directions

D1 = −∇p(ϑ; ϑ̂0) (18)

D2 = − ∇C(ϑ)
‖ ∇C(ϑ) ‖ − ∇p(ϑ; ϑ̂0)

‖ p(ϑ; ϑ̂0) ‖
. (19)

The algorithm iteratively adjusts 
 and µ to find a better local
minimiser until ρ reaches its minimum value. The algorithm
then accepts the current minimiser as the global minimiser.
For a more complete description of the steps, see [14, p.30].

To demonstrate the filled function technique, we consider
a second-order monocomponent PPS in the absence of noise
with the following parameters: α = 1, (ω0, ω1, ω2) =
(0.942, 2,−0.025). In a nonlinear least-squares (NLS) for-
mulation, minimising the NLS cost function which involves
(α, ω0, ω1, ω2) is equivalent to minimising an augmented
cost function of only (ω1, ω2) [11]. Fig. 1 shows the contour
plot of the augmented NLS cost function whose global
minimum is at (2, -0.0125) on the (ω1, ω2) plane. We
arbitrarily initialise the estimates at (1.00,0.08) and perform
the global search. As can be seen, the cost function contains
numerous local minima and the radius of convergence at

the global minimum is very small. The simulation example
indicates that the method first found a local minimum, then in
the second move it reached the boundary. Finally, the region
containing the global minimum was successfully identified.

As with many global optimisation techniques, the method
does not always guarantee the true global minimum to be
found. This depends on a number of factors such as the
radius of convergence about the global minimum, its distance
to the initialisation point, and the preset threshold values of
the algorithm’s parameters. Besides, there may be computa-
tional time contraint whereby one must terminate the search
when a maximum number of iterations has been reached.
However, this method at least improves over conventional
gradient search techniques in that the solution found is
always at an equal or lower basin. Extensive numerical
studies in the context of the polynomial phase signal problem
also confirm this.
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Fig. 1. Illustration of the filled function method.

IV. SIMULATION EXAMPLE

In this section we illustrate the proposed nonlinear
M -estimation approach with a simulation example. Con-
sider a two-component second-order PPS with amplitudes
α1 = α2 = 1, and frequency parameters (ω1

0 , ω1
1 , ω1

2) =
(0, 0.20π, 0.22π) and (ω2

0 , ω2
1 , ω2

2) = (0, 0.80π,−0.31π).
The sampling period is ∆ = 1 and the total number of
observations is N = 64. This choice of parameters satisfies
the Nyquist-like criteria for polynomial phase signals [11].
The Wigner-Ville distribution plot which indicates the time-
frequency behaviour of individual components is given in
Fig. 2. To model impulsive noise, we select ε = 0.1 and
κ = 100. For comparison, we also include the following
methods:

• The NLS method which was originally formulated for
Gaussian noise. It consists of PHAF initialisation and
a local search via the simplex method over the NLS
cost function. It is known to improve over the original
PHAF method, especially for the multicomponent case
[11] .
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Fig. 2. Wigner-Ville distribution plot of the studied mc-PPS signal.

• The nonlinear M -estimator with PHAF initialisation
and a local search over the Huber’s cost function (11)
via the simplex method.

The main purpose is to see the performance gain when using
the global search technique. The mean-square error (MSE)
performance is shown in Fig. 3. We made the following
observations:

• All methods suffer from a threshold effect, i.e. when
the signal-to-noise ratio (SNR) is low, the performance
is poorer. This can be explained by the dependence of
the methods on PHAF initialisation, which is poor at
low SNRs. It appears that with the original settings
the global optimisation method does not find the global
minimum successfully at low SNRs.

• When the SNR is beyond the threshold, which is
3dB in this case, the proposed robust method clearly
outperforms the NLS as expected. It also approaches
the theoretical performance bound. Compared with the
result on the local search, the global search helps further
reduce the MSE. As the MSE of the proposed method
approaches the theoretical bound, the figure indicates
that the global minimum is more likely to be found
with the fill function technique.

V. CONCLUSION

We have presented a nonlinear M -estimation approach
to the robust estimation of multicomponent PPS’s in the
presence of impulsive noise modelled by a Gaussian mix-
ture. The nonlinear optimisation problem is solved in two
steps. Being different to other techniques, we employed a
global optimisation search to find the estimates rather than
relying only on gradient search. This makes the approach
more robust against large deviation of the initial estimates
about the global minimum. Simulation results show that
our proposed approach offers considerable performance gain
when compared to conventional techniques.
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Fig. 3. Example of a 2nd-order mc-PPS in impulsive noise with ε = 0.1,
κ = 100.

REFERENCES

[1] T. J. Abatzoglou, “Fast Maximum Likelihood Joint Estimation of
Frequency and Frequency Rate,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 22, no. 6, pp. 708–715, 1986.

[2] J. Angeby, “Estimating Signal Parameters Using the Nonlinear In-
stantaneous Least Squares Approach,” IEEE Transactions on Signal
Processing, vol. 48, no. 10, pp. 2721–2732, 2000.

[3] A. Banerjee, P. Burlina, and R. Chellappa, “Adaptive Target Detection
in Foliage-Penetrating SAR Images Using Alpha-Stable Models,”
IEEE Transactions on Image Processing, vol. 8, no. 12, pp. 1823–
31, Dec 1999.

[4] S. Barbarossa, A. Scaglione, and G. B. Giannakis, “Product High-
Order Ambiguity Function for Multicomponent Polynomial Phase
Signal Modeling,” IEEE Transactions on Signal Processing, vol. 46,
no. 3, pp. 691–708, Mar 1998.

[5] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements
and Models of Radio Frequency Impulsive Noise for Indoor Wireless
Communications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 11, no. 7, pp. 991–1001, 1993.

[6] V. Degardin, “Classification and Characterization of Impulsive Noise
on Indoor Power Line Used for Data Communications,” IEEE Trans-
actions on Consumer Electronics, vol. 48, no. 4, pp. 913–918, Nov
2002.

[7] H. Hsu, R. Storwick, D. Schlick, and G. Maxam, “Measured Ampli-
tude Distribution of Automotive Ignition Noise,” IEEE Transactions
on Electromagnetic Compatibility, vol. EMC-16, no. 2, pp. 57–63,
May 1974.

[8] S. Peleg and B. Friedlander, “The Discrete Polynomial-Phase Trans-
form,” IEEE Transactions on Signal Processing, vol. 43, no. 8, pp.
1901–1914, Aug 1995.

[9] S. Peleg and B. Porat, “Estimation and Classification of Polynomial
Phase Signals,” IEEE Transactions on Information Theory, vol. 37,
no. 2, pp. 422–430, Mar 1991.

[10] ——, “The Cramér-Rao Lower Bound for Signals with Constant
Amplitude and Polynomial Phase,” IEEE Transactions on Signal
Processing, vol. 39, no. 3, pp. 749–752, Mar 1991.

[11] D. S. Pham, “Robust Estimation of Signals in Heavy Tailed Noise,”
Ph.D. dissertation, Curtin University of Technology, 2005.

[12] R. A. Shepherd, “Measurements of Amplitudes Probability Distri-
butions and Power of Automobile Ignition Noise at HF,” IEEE
Transactions on Vehicular Technology, vol. 23, pp. 72–83, Aug 1974.

[13] X. Wang and H. V. Poor, “Robust Multiuser Detection in Non-
Gaussian Channels,” IEEE Transactions on Signal Processing, vol. 47,
no. 2, pp. 289–305, Feb 1999.

[14] L.-S. Zhang, C.-K. Ng, D. Li, and W.-W. Tian, “A New Filled Function
Method for Global Optimisation,” Journal of Global Optimisation,
vol. 28, pp. 17–43, 2004.

APCCAS 2006 835

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 6, 2009 at 21:20 from IEEE Xplore.  Restrictions apply. 


