© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

A lightweight Max-Pooling method and architecture
for Deep Spiking Convolutional Neural Networks

Duy-Anh Nguyen*$, Xuan-Tu Tran*f, Khanh N. Dang*, Francesca Iacopi®
*SISLAB, University of Engineering and Technology — Vietnam National University, Hanoi
TUniversity of Technology Sydney
§ UTS-VNU Joint Technology and Innovation Research Centre (JTIRC).

t Corresponding author’s email: tutx@vnu.edu.vn

Abstract—The training of Deep Spiking Neural Networks
(DSNNs5) is facing many challenges due to the non-differentiable
nature of spikes. The conversion of a traditional Deep Neural
Networks (DNNs) to its DSNNs counterpart is currently one of
the prominent solutions, as it leverages many state-of-the-art pre-
trained models and training techniques. However, the conversion
of max-pooling layer is a non-trivia task. The state-of-the-art con-
version methods either replace the max-pooling layer with other
pooling mechanisms or use a max-pooling method based on the
cumulative number of output spikes. This incurs both memory
storage overhead and increases computational complexity, as one
inference in DSNNs requires many timesteps, and the number
of output spikes after each layer needs to be accumulated. In
this paper', we propose a novel max-pooling mechanism that is
not based on the number of output spikes but is based on the
membrane potential of the spiking neurons. Simulation results
show that our approach still preserves classification accuracies on
MNIST and CIFAR10 dataset. Hardware implementation results
show that our proposed hardware block is lightweight with an
area cost of 15.3kGEs, at a maximum frequency of 300 MHz.

Index Terms—Deep Convolutional Spiking Neural Networks,
ANN-to-SNN conversion, Spiking Max Pooling

I. INTRODUCTION

Ecently, Spiking Neural Networks (SNNs) have been
shown to reach comparable accuracy on modern ma-
chine learning tasks in comparison with traditional DNNs ap-
proaches, while improving energy efficiency, especially when
running on dedicated neuromorphic hardware [1]. However,
the training of SNNs is currently facing many challenges.
The traditional back-propagation based methods of training
DNNs is not directly applicable to SNNs, due to the non-
differentiable nature of spike trains. Many training approaches
have been proposed, including finding a proxy to calculate the
backpropagated gradients or using bio-inspired STDP training
methods. Another approach is to leverage the pre-trained
DNNs models and convert the trained network architecture
and parameters to the SNNs domain. [2], [3]. This method has
shown state-of-the-art classification performance on complex
image recognition dataset such as ImageNet challenge [4],
with modern Deep Convolutional Spiking Neural Networks
(DCSNNSs) architecture.
However, the conversion from DNNs to DCSNNs is cur-
rently having many limitations, including the needs to prop-

'This work is supported by Vietnam National University, Hanoi under grant
number TXTCN.20.01

erly normalize the network’s weights and biases, and the
many restrictions on available techniques/layer types that are
convertible. For example, many works must use a bias-less
network architecture, or the batch-normalization layer is not
used [2], [4]. Most notably is the lack of efficient max-pooling
(MP) layers for SNNs. In traditional DNNs, MP layers are
widely used to reduce the dimension of feature maps, while
providing translation invariance [5]. MP operations also lead
to faster convergence and better classification accuracy over
other MP methods such as average pooling [5]. However, for
DCSNNs, it is not easy to convert MP operations, as the
spike trains output is binary in nature, and the lack of proper
MP methods could easily lead to loss of information in the
course of inference [2]. Many works in the past have avoided
MP operations by replacing MP layers with the sub-optimal
average pooling method.

Previous works in the field have tried to convert the MP
layers to SNNs domains. Notably is the work by Rueckauer
et al. [3], where the authors proposed to use the cumulative
number of output spikes to determine the max-pooling outputs.
The neuron with the maximum online firing rate is selected
as the max-pooling output. However, these methods incur a
very large memory storage overhead, as all output spikes after
each inference timestep will need to be accumulated. For
very large networks with hundreds of layers and thousands of
timesteps, this method is not suitable. Other work proposed
to use approximated pooling method by using a virtual MP
spiking neuron, connected to the spiking neurons in the
pooling regions [5]. The threshold of the virtual MP neurons
and the weights are set manually, which may lead to more
output spikes are generated compared to the method in [3].

In this work, we propose an approximating MP method
for DCSNNs. Instead of using the accumulated spikes to
calculate and chose the neurons with the maximum firing
rates, we use the current membrane potential of the previously
connected convolutional layer neurons to determine the MP
output. Compared to the method in [3], we do not need to
store any output spikes, hence does not incur memory storage
overhead. Compared to the method in [5], we do not need
any additional computation with MP spiking neurons. Our
contributions are summarized as follows:

o A novel MP method for DCSNNs is proposed. The

pooling output is determined based on the membrane

potential of the convolutional layer’s spiking neurons.
Software simulations show that our proposed method
reach comparable accuracies with DNNs models.

e A novel hardware architecture for our MP method is
proposed. Hardware implementation results show that the
area cost of our hardware block is 15.3k Gate Equivalents
(GEs) at a maximum frequency of 300 MHz. Our MP
block is lightweight as our MP method does not require
any additional computational or memory storage over-
head.

II. APPROXIMATED MAX-POOLING METHOD FOR DCSNN
A. Background

For traditional DNNs architecture, pooling layers are often
put after the convolutional layers to reduce the dimension of
output feature maps, and make the DNNs translation invariant.
There are two common types of pooling layers in DNNS,
which are max pooling (get the maximum output in the pooling
window), and average pooling (get the average values of
the output in the pooling window). Parameters for pooling
layers include the pooling windows size NN, and the stride S
of the pooling window. Based on the values of N, and S,
the pooling window can be overlapping or non-overlapping.
Figure 1 demonstrates the pooling operation.

Np=2 Max
Pooling
52 | 08 | 06 | 70
25 16 | 33
25 | 33
.. 39 |37 |18 |Averace
Pooling

Output of convolution layer

S§=2

Fig. 1. Pooling methods in DNNs. Based on the value of N, and s,
the pooling operation can be overlapping or non-overlapping. The figure
demonstrates the two popular pooling methods, with overlapping and non-
overlapping regions.

However, in DCSNNS, the task of developing efficient MP
operations is a non-trivial task, since the output of convolu-
tional spiking layers is output spike trains, and is a discrete
binary value over simulation time steps. It is not possible to
directly apply the concept of max-pooling in such a scenario.
The conversion process between DNNs and DCSNNSs is based
on the principal observation of the proportional relationship
between the output of ReLU based neurons to the firing rate
(total spikes fire over a timing window) of the spiking neurons.
To preserve such a relationship after MP layers, the MP
operation in DCSNN is required to select the spiking neurons
with the maximum firing rates in the pooling windows. A
solution is to accumulate the output spike in every time
step, and at each time step, the MP layers will select the

output spikes from the neurons with the maximum number
of accumulated spikes [3]. Another solution is to approximate
the maximally firing neurons by putting a virtual MP, which
is connected to the pooling region. The output of this neuron
is used to select the output of the MP layers. Figure 2a and
2b illustrate these two methods.

o I o R o N 0
e (SR8 N O T
layer
:) G
wcomiea 0 0
numberoflstpiﬁes %“%@@ ﬂ% @
S o
utput o @
maxzotglir:g :ayer @
7 2 3 T cen

(a) Choose the maximally firing neurons based on the online accumulated spike
counts. At every time step, the pooling operations let the input spikes from the
neurons with the highest accumulated spike count pass.

Neuron in the
pooling region Output of max-pooling

operations

1010011\ Weight=1

Output spikes
11110011

Virtual
MP
neuron

00010010

Output from
convolutional layer
at current time step

00000001 V threshold = 1

01000010

(b) Approximate the maximally firing neurons based on a virtual MP layer
spiking neuron. The virtual neuron is connected to all the input from the pooling
regions. The threshold V4, is a hyper-parameter to control the rates of output
spikes.

Fig. 2. Pooling methods in DCSNNs

B. Proposed max pooling method for DCSNN

We propose a novel method, in which the online membrane
potentials of the convolutional layers’ neurons are used to
determine the MP outputs. In our experiments, if a convo-
lutional layer is followed by an MP layer, then the neurons
in the pooling region with the highest membrane potential are
selected as the output of the MP layer. The output spikes from
this neuron are passed to the next layer. We observed that the
neurons with the highest accumulate potentials are usually the
neurons with a maximal online firing rate. After firing, the
firing neurons membrane potential is reset by the reset-by-
subtraction mechanism [3]. This is illustrated in Figure 3.

In our hardware platform, the membrane potential of spiking
neuron is stored in local register files and are updated in every
timestep. With our proposed method, there is no additional
memory storage overhead for storing output spike trains, as
we directly use the membrane potential values stored in the

Threshold set at 30

roeniainot @8 R @8 B
convolution layer %@ﬁ %@@ %ﬁ@ %%a

Output of @ @ @ @ 6 @
max-poc?ling layer
i TS W e
convolution layer %96 %@9 %@g %%gg
(after reset by
subtraction) o Time
1 2 3 4 step

Fig. 3. The proposed pooling method

hardware register to determine the MP output. Also, when
compared with the solution in [5], there is no additional
overhead of computing with the virtual MP neuron.

III. HARDWARE ARCHITECTURE FOR OUR PROPOSED
MAX-POOLING METHOD

A hardware architecture to demonstrate the capability of
our max-pooling methods for DCSNNSs is also proposed. This
will serve as a basic building block for our implementation of
a neuromorphic hardware system for DCSNNs. In this work,
we will focus on the hardware architecture of a max-pooling
block that supports our proposed MP method. The architecture
of our MP block is shown in Figure 4.

Input
potentials

—{o]1
[

i I—’l Multiplexer
| T 171

n-stage shift register

[2]-[w]n]

Output
potentials

Controller B Max Comparator

Fig. 4. The proposed max pooling block

We utilize a streaming architecture with an n-stage shift
register. The input potentials are continuously streamed from
the spiking convolutional core, to support a maximum frame
size of n x n spiking neurons. A controller and a multiplexer
will determine the correct output potentials in the pooling
regions, as different pooling size [V, and pooling stride s is
supported. A max comparator block will select the maximum
output potentials.

IV. EXPERIMENTS AND EVALUATION RESULTS
A. Dataset & Networks models

We validate the classification performance on two different
popular image recognition datasets, which are MNIST and
CIFAR-10. The network models used in our experiments are
summarized in Table I.

We used a shallow network for MNIST and a deep VGG-
like network for CIFAR10. 64¢c3 means a convolutional layer

TABLE 1
SUMMARY OF NETWORK MODELS

Network name Dataset Network Configuration

Shallow network ~ MNIST 12¢5-MP-64¢5-MP-FC120-FC10
64c3-64c3-MP-128¢3-128c3-MP-256¢3-

VGG16 CIFAR10 256c¢3-MP-512¢3-512¢3-MP-FC2048-

FC512-FC10

with 64 kernels of size 3 x 3. F'(C'512 means a fully-connected
(FC) layers with 512 neurons. All the MP used in this
work has a stride of 2 with a pooling size of 2 x 2. For
the convolution layers used in VGG16 networks, we use a
padding value of 1 and a stride of 1 to keep the same output
feature maps dimension. The activation function used after
all the convolution layers and FC layers are ReLU. A batch-
normalization layer is inserted after every convolution layer.
We trained the networks with dropout technique and without
bias. After training, the network’s weights are normalized
using the techniques described in [3], with a value of p
percentile set at p = 99.9. The batch-normalization layers are
incorporated in the weights of the convolutional layers, and
analog values for the input layers are used. All the experiments
are conducted with the PyTorch deep learning framework.

B. Software simulations results

The simulation time steps set for the MNIST and CIFAR-
10 datasets are 10 and 100, respectively. Figure 5 shows the
classification accuracy vs simulation time steps for the two
datasets. For comparison, we have replicated the strict MP
method used in the work by Rueckauer er al. [3]. We have
also trained the same DNN models with the average pooling
method. The dashed red line and blue line shows the baseline
accuracy reached when we train the same DNN’s network
models with the max pooling and average pooling method,
respectively.

It can be seen that the DCSNN’s models converge much
more quickly for the MNIST dataset, as it usually requires
about 6 time steps to reach saturated accuracy. For the more
complicated CIFARI10-dataset, the latency is about 60-70
timesteps. For the MNIST dataset, our proposed methods show
a peak accuracy of 99.2%, which incurs a negligible loss when
compared with the DNN’s accuracy of 99.38%, and the strict
MP method in [3] ’s accuracy of 99.3%. For the CIFAR-10
dataset, our method incurs a loss of 5.9% and 4.3% when
compared to the two above mentioned methods. Table II shows
a comparison for CIFAR10 and MNIST dataset classification
accuracy with other state-of-the-art DCSNN’s architecture.
In both datasets, our proposed methods performs better in
comparison with the DNNs with average pooling methods.
It is noted that our goal is to prove that the proposed method
is still competitive in terms of classification accuracy, while
greatly reducing hardware storage and computation overheads.

100 [T T T T T [N I e e ity kel Sl
X X 80 .
- - >
- 80 5
g £
g g60r i
S 60F 1s
g s
F U 1
g 0T DNN-MP 1 DNN-MP
E --- DNN-AvgPooling {% -== DNN-AvgPooling
%} 20 I —o— Rueckauer et al. JT 20 [—e— Rueckauer et al.
—+— This work —+— This work
1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 0 20 40 60 80 100
Time step Time step

(a) Shallow network on MNIST

(b) VGG16 on CIFAR10

Fig. 5. Classification acuracy on different datasets

TABLE 11
COMPARISON WITH OTHER STATE-OF-THE-ART DCSNN WORKS

Work Dataset DNN’s acc. SNN’s acc. loss
Rueckauer et al. [3] MNIST 99.44% 0%

Guo et al. [5] MNIST 99.24% 0.07%

This work MNIST 99.38% 0.18%
Rueckauer et al. [3] CIFAR10 88.87% 0.05%

Guo et al. [5] CIFARIO0 90.7% 2.8%

Sengupta et al. [4] CIFARIO 92% 0.2%

This work CIFARI0 92.1% 5.9%

C. Hardware Implementation results

The proposed hardware block for MNIST has been written
in Verilog and synthesized with Synopsys tools in NANGATE
45nm library. The harware implementation results are shown
in Table IIT shows the hardware implementation results for our
proposed MP blocks.

TABLE III
HARDWARE IMPLEMENTATION RESULTS
Implementation Digital
Technology 45nm
Area 0.012 mm?
Equivalent Gate Count | 15.3k GEs
Precision 16-bit
Maximum Frequency 300 MHz
Maximum Throughput | 326k frame/s

We have implemented the MP blocks which support a
maximum frame-size of 32 x 32 neurons. The implementation
results show that our hardware block is lightweight with an
Equivalent Gate Count of 15.3k Gate, and reach a maximum
throughput of 326k Frame/s.

D. Complexity Analysis

Our proposed MP method does not require any memory
overhead. Consider the case of pooling with a generic frame
size of n x n, with T timesteps. The method in [3] requires

storing a total number of n? x log,(7") bits for output spikes,
hence a space complexity of O(n? x logy(T))). Our method
and the method in [5] do not incur memory overhead, with
space complexity of O(1).

In comparison with the method in [5], our method does
not require any additional computational complexity.In [5], for
the generic case of pooling size of N, = n, each pooling
operations requires an additional of n x n addition and one
comparison with Vip eshotd- In the best case of Vipreshoida = 1,
those operations could be realized with simple OR gates, but
for other cases, adder and comparator circuits are required.

V. CONCLUSION

In this work, we have proposed method and hardware
architecture for an approximated Max-Pooling methods for
DCSNNs. Simulation results on MNIST and CIFAR 10 dataset
show that our method reaches competitive accuracy, while
greatly reducing the memory storage overhead and computa-
tional complexity. The proposed hardware block is lightweight
and will serve as a basic building block for our future
implementation of DCSNN’s neuromorphic hardware system.

REFERENCES

[1] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82—
99, January 2018.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International Joint Conference on Neural
Networks (IJCNN), July 2015, pp. 1-8.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification,” Frontiers in Neuroscience, vol. 11, p. 682, 2017.
A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
Neuroscience, vol. 13, p. 95, 2019.

S. Guo, L. Wang, B. Chen, and Q. Dou, “An overhead-free max-pooling
method for snn,” IEEE Embedded Systems Letters, vol. 12, no. 1, pp.
21-24, 2020.

(2]

31

(41

(5]

