Loading [MathJax]/extensions/MathZoom.js
Decentralized spectrum allocation in D2D underlying cellular networks | IEEE Conference Publication | IEEE Xplore

Decentralized spectrum allocation in D2D underlying cellular networks


Abstract:

The proliferation of novel network access devices and demand for high quality of service by the end users are proving to be insufficient and are straining the existing wi...Show More

Abstract:

The proliferation of novel network access devices and demand for high quality of service by the end users are proving to be insufficient and are straining the existing wireless cellular network capacity. An economic and promising alternate to enhance the spectral efficiency and network throughput is device to device (D2D) communication. However, enabling D2D communication poses significant challenges pertaining to the interference management. In this paper, we address the resource allocation problem for underlay D2D pairs. First, we formulate the resource allocation optimization problem with an objective to maximizes the throughput of all D2D pairs by imposing interference constraints for protecting the cellular users. Second, to solve the underlying mixed-integer non linear resource allocation problem, we propose a stable, self-organizing and distributed solution using matching theory. Finally, we simulate our proposition to validate the convergence, cellular user protection, and network throughput gains achieved by the proposal. Simulation results reveal that D2D pairs can achieve significant throughput gains (i.e., up to 45 - 91%) while protecting the cellular users compared to the scenario in which no D2D pairs exist.
Date of Conference: 05-07 October 2016
Date Added to IEEE Xplore: 10 November 2016
ISBN Information:
Conference Location: Kanazawa, Japan

Contact IEEE to Subscribe

References

References is not available for this document.