
Contract-Based Security Monitors for Service Oriented Software Architecture

Alexander M. Hoole
Dept. of Electrical and Computer Engineering

University of Victoria, BC, Canada
alex.hoole@ece.uvic.ca

Issa Traore
Dept. of Electrical and Computer Engineering

University of Victoria, BC, Canada
itraore@ece.uvic.ca

Abstract

Monitors have been used for real-time systems to ensure
proper behavior; however, most approaches do not allow
for the addition of relevant fields required to identify and
react to security vulnerabilities. Contracts can provide a
useful mechanism for identifying and tracking vulnerabil-
ities. Currently, contracts have been proposed for relia-
bility and formal verification; yet, their use in security is
limited. Static analysis methods are able to identify many
known vulnerabilities; however, they suffer from a high rate
of false-positives. The creation of a mechanism that can ver-
ify identified vulnerabilities is therefore warranted. We pro-
pose a contract-based security assertion monitoring frame-
work (CB SAMF) for reducing the number of security vul-
nerabilities that are exploitable. CB SAMF will span mul-
tiple software layers and be used in an enhanced systems
development life cycle (SDLC) including service-oriented
analysis and design (SOAD).

Keywords: contracts, monitors, security engineering,
service-oriented architecture

1 Introduction

Recent years have seen widespread application of tech-
nologies, such as firewall and intrusion detection systems
(IDS), intended to stem the damage caused to consumer
systems. These technologies will never completely fix the
security problem because they do not remove software con-
taining security defects from systems. IDSs have been im-
plemented as monitoring frameworks; yet, IDSs do not fix
software vulnerabilities, they only track and potentially pre-
vent them from being exploited [3, 6, 7]. Specifically, we
still require better tools and methodologies to identify, re-
duce, and remove security defects in software systems.

Since service oriented architecture (SOA) often cou-
ples legacy systems with new systems, in a reconfigured
services-oriented approach focusing on business process,
security for such systems can be complex. While it is desir-

able to have security features designed as a service layer in
the architecture, it does not guarantee security of the over-
all system. Especially when legacy systems are consumed
by the services. Monitors can provide a useful tool dur-
ing SOAD to determine if and when a particular feature or
vulnerability is exploited. The use of contracts to specify
monitoring probes allows for a looser coupling of security
monitoring from actual code and a tighter coupling to secu-
rity policy within a business process.

We propose a contract-based security assertion monitor-
ing framework (CB SAMF) for reducing the number of ex-
ploitable security vulnerabilities during design and testing.
CB SAMF is intended to detect events that contradict the
specified acceptable use of a system. Acceptable use of a
system, network, or application is usually specified in the
form of a security policy document. Risk assessment and
requirements gathering also contribute to the identification
of security assertions. Ultimately, requirement documents
specify the security requirements of the system.

Our form of contract, derived from requirement asser-
tions, identifies environmental and system security condi-
tions necessary for generation of probes which monitor se-
curity assertions during runtime. When a contract violation
occurs during runtime, security vulnerabilities are identified
and reactive countermeasures can be deployed.

Our long term objective in this work is to create arti-
facts that will allow for the transition of security require-
ments/goals throughout the SDLC by creating a model,
framework, and set of tools to assist developers produce
more secure and reliable services. In particular, we desire
the removal of security vulnerabilities during design and
testing rather than dependence on maintenance tools such
as firewalls and IDSs.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work on monitors and contracts;
Section 3 introduces our monitoring framework; Section 4
covers a small case study; and Section 5 presents our clos-
ing remarks.

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.169

1239

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.169

1239

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

2 Related Work

2.1 On Monitors

For security systems, several monitoring approaches
were presented based on policy driven models [3, 4, 7, 15,
13]. For instance, [7] uses a specification based IDS ap-
proach focusing on utilizing security specifications to de-
scribe the intended behavior of programs. Then, during
run-time, they produce traces of the monitored programs
with the ultimate goal of performing real-time intrusion de-
tection.

In [12], Peters and Parnas introduce requirements-based
monitors, derived from the specification of the system,
which are used to ensure that real-time systems behave cor-
rectly. Due to device limitations, this monitoring approach
is prone to both false-positives and false-negatives.

The approach in [14] is also centered on real-time sys-
tem monitoring and debugging practices. The monitoring
framework, Ferret, is based on-top of a para-virtualized ver-
sion of Linux. Ferret enables insertion of monitoring sen-
sors using a sensor directory, registered monitors, and reg-
istered clients resulting in monitoring of a real-time system.

A more recent addition by Barringer et al is the EAGLE
framework [2]. EAGLE’s rule-based framework for imple-
menting trace-monitoring logics is similar to the notion of
contracts. EAGLE can represent future and past-time tem-
poral logic, extended regular expressions, real-time and data
constraints, state machines, interval logics, statistics, and
forms of quantified temporal logics. While their approach
focuses on verification of systems during runtime, it does
not focus on security, collect information relating to secu-
rity, nor provide a mechanism for reactive measures.

2.2 On Contracts

Using the notion of a contract to improve different design
processes in software engineering has been proposed and
researched by many individuals [5, 10, 8, 11].

Older work on design by contract for improving relia-
bility in [11] is also an inspiration for this work. Meyer
discusses preconditions, postconditions, and invariants as
primary components in contracts toward improving reliabil-
ity in software systems. A typical contract outlines benefits
for each party and specific obligations. Meyer argued that
through the use of ”design by contract”, developers could
improve correctness and robustness of systems leading to
the absence of bugs.

Contracts were applied as an approach for specifying
concurrent systems in [1, 8]. Lamport’s work provided a
foundation for formal validation of systems based on their
specifications and state transitions. With the ability to han-
dle linear temporal logic statements, safety properties, and

Figure 1. Relationship between analysis, de-
velopment and runtime artifacts.

liveness properties there were multiple similarities to [2].

3 Monitoring Framework

We present in this section the key components of our
proposed contract-based monitoring framework which re-
late analysis, development, and runtime artifacts. A possi-
ble notation for representing requirements is in the form of
sequence diagrams and propositional temporal logic which
can be directly related to the source code and runtime im-
plementation as seen in Figure 1.

3.1 Security Contracts

The notion of a contract in software engineering is not a
new idea [5, 10, 8, 11]. When applied to security, we must
analyze carefully which properties need to be specified in a
contract to improve security. Many pre and postconditions
are more to do with robustness than security. Historically,
preconditions specify when it is appropriate to call a partic-
ular feature (function/method), while postconditions spec-
ify what is true after a particular feature is called (what has
been accomplished by the function/method).

Our contract needs to bind the caller and callee to deal
with additional properties involving timing, property val-
ues, and other events. A binding contract is the legal
agreement between two or more entities to perform and/or
not perform a set of actions. For example, a contract spec-
ified for supplier X, consumed by consumer Y, guarantees
that the supplier X has fulfilled the postcondition(s), pro-
vided that the consumer Y has satisfied the precondition(s).
The consumer is protected from the supplier since the post-
conditions have been guaranteed by the supplier. The sup-
plier is protected from the consumer since the preconditions
have been guaranteed by the consumer. Our security con-
tract model looks beyond (the traditional one) by including

12401240

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

the following fields to protect the supplier and consumer:

• Requirements - as preconditions (PRE)

• Guarantees - as postconditions (POST)

• References - as invariants (INV)

• Context - as relevant environmental information (CONT)

• History - as some knowledge keeping construct (HIST)

• Response - as a reactive measure (RESP)

The notion of contracts, as in [11], is not suitable for se-
curity monitoring. For example, under normal contracts, a
false precondition does not guarantee that the system will
not process the input. It may allow certain types of attacks,
such as buffer overflows, to continue. The require, guaran-
tee, and references fields of the contract, corresponding to
the pre, post, and invariants mentioned above, do not han-
dle all necessary attributes of security defects. We propose
three new contractual fields. Context which provides sup-
port for environmental influences. History which provides
support for complex vulnerabilities that sometimes result
from a series of actions which may occur in parallel (both
context and history can be useful when dealing with vulner-
abilities such as DoS and race-conditions). Finally, since se-
curity assertion failures should be handled, not just detected
(as in the case of contract proposed by Meyer), response
provides a mechanism to choose how a particular assertion
is handled when exploitation is detected. Resumption and
organized panic for exception handling, used by Meyer, fit
under our broader response category [11].

Work done in [2] relating to program monitoring and
rule-based runtime verification has exposed interesting re-
sults. Specifically, work on linear temporal logic (LTL) and
program states has been core to several attempts towards
runtime verification and is a promising candidate for the no-
tation of our contracts. As such, our notation is derived from
LTL and is inspired by the EAGLE framework [2].

Each contract (C) contains a breakpoint (B) and one
or more assertions (A). Breakpoints identify a monitoring
location/symbol in the target application. The assertion
is a rule which must remain true at the breakpoint. Each
assertion has associated with it zero or more security
contract extensions (E). Assertions can take on one of the
following three forms: PRE, POST, or INV. We do not
represent assertions types separately since they all take
the same form. Each assertion is composed of zero or
more rules (R), relating to the target (recall breakpoint
B), and zero or more monitors (M). The rules, monitors,
and extensions are individually named (N). Rules specify
a property of the state of the program which needs to
remain true, while a monitor enforces one or more rules.
The quantifiers min and max represent liveness and safety
properties respectively and are important for the boundary
cases of a monitor trace [12]. Safety properties state

that if a behavior is unacceptable any extension of that
behavior is also unacceptable. Liveness properties state
that for a given requirement, and any finite duration, the
behavior can always be extended such that it satisfies the
requirement[9, 12]. The body of every rule and monitor
is specified as a boolean valued formula of the syntactic
category Form. Finally, each contract may be instantiated
with the following grammar expressed in EBNF:

C := B (A{E}) {A{E}};

E := {CONT} | {HIST} | {RESP};

A := {R}{M};

R := {max|min}N(T1x1, ..., Tnxn) = F ;

M := mon N = F ;

T := Form | primitive type;

B := symbol | HEX address;

F := exp|true|false|¬F |F1 ∧ F2|F1 ∨ F2|F1 → F2|# F |� F |

F1 · F2|N(F1, . . . , Fn)|xi;

CONT := env N | res N;

HIST := trace N | runningsum N | runningavg N;

RESP := core N | term N | kill N | log N;

We have also defined possible extended behaviors for
context, history and response elements and may extend
these in the future. Context may specify environmental
or resource information (external to the program) which
is needed by the contract. History may contain trace data
or statistically relevant information. Finally, response may
specify an action to perform when an assertion is violated.

With this definition it is possible to use multiple separate
monitors or a single monitor.

3.2 Implementation

3.2.1 Overview.

We choose to implement our prototype monitoring frame-
work on the Linux platform. During implementation we
will be able to analyze existing code, perhaps using static
analysis and other techniques, and combine this with the
misuse case and attack tree derived information to create
contracts intended to detect the exploitation of identified
potential vulnerabilities. From the contracts we then gen-
erate, using a custom compiler, assertion-based probes for
insertion during runtime to monitor executables. The probes
will then feed information back into the controlling monitor
framework for further analysis.

To implement such a system we require a mechanism to
integrate the monitoring probes into existing systems. Some
assertion based frameworks depend on modification of the
original source code and compile time options [11]. Modi-
fication to the original binary can result in different runtime
behavior than the unmodified version (as in overflows). We

12411241

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

desire a mechanism with minimal impact on the normal be-
havior of the system. One approach, which avoids the above
issues, is to use software breakpoints. Breakpoints still ef-
fect the timing of an application; however, other approaches
to monitoring also affect timing. The degree to which tim-
ing is affected depends on the work done at the breakpoint.

3.2.2 Breakpoints.

A breakpoint, in the context of software development, is
typically a stopping or pausing point during software ex-
ecution when a developer can inspect the current context
of execution. As such, it provides a natural avenue for the
development of a security monitoring and testing frame-
work. Ironically, debuggers and breakpoints are also often
the tools of malicious software hackers who are trying to
break software security.

3.2.3 Probes.

A probe is an instrument or mechanism used to investi-
gate and discover properties of something that is unknown.
Probes are used throughout science and engineering for
tasks such as space exploration, medical exams, failure de-
tection and diagnosis, and software debugging. We propose
to use a form of software probes to attach new functionality
to existing code to analyze, diagnose and respond to secu-
rity vulnerabilities.

In recent years kprobes was proposed and integrated into
the Linux kernel. The kprobes Linux kernel patch, con-
tributed by the Linux Technology Center (LTC) at IBM,
added an extension to the normal software breakpoint mech-
anism allowing integration of new code into the kernel dur-
ing runtime. The framework enables developers to add in-
stances of the following three mechanisms to the kernel as
kernel loadable modules:

1. Kprobes: integrate new functionality before or after an executable statement,
or add fault handling code in the case where a fault arises during execution

2. Jprobes: access arguments passed to an executable statement, providing the
ability to examine or override the default functionality of the statement

3. Returnprobes: examine or override the return value of an executable statement

4 Case Study

In this section, we illustrate the proposed monitoring
framework by presenting a case study based on a buffer
overflow vulnerability.

4.1 Buffer Overflow

Any function that does not perform bounds checking in-
ternally, and is “depending” on the caller to do the necessary
checking, is unsafe in languages like C and C++ and could

create the opportunity for a buffer overflow attack. To mon-
itor such a condition we need to know the following:

• Target function for breakpoint

• Name or size of buffer argument being passed to function

• Size of the target buffer

Letting x represent the size of the source buffer and y the
size of the destination buffer, a general contract statement
can be generated. Essentially, we want to say “whenever we
reach a state where x = k, for some k > 0, then eventually
we reach a state where y == k, where the initial precondition
that x must be less than or equal to y must hold”.1 Provided
this assertion holds, we do not have an overflow.

4.2 Contract Model

If the above assertion is violated then we have shown
that the vulnerability is exploitable. In linear temporal logic
using first-order quantification, we can write the following:

�(x > 0→ ∃ k.(k = x ∧ 3y = k)) ∧�(x <= y)

The associated overflow contract takes the following
form:

E = log buffer log

min R(int k) = Sometime(y == k)

mon M = Always(x > 0→ R(x) ∧ x ≤ y)

C = strcpy M E

In the above contract, we satisfy the LTL statement by
creating a contract for the symbol strcpy which has one as-
sociated monitor (M) and one associated extension (E). The
monitor observes two properties of the target breakpoint.
First, whenever x > 0 implies that y will eventually equal
x. This shows the necessary observation that when a source
buffer is placed in a destination buffer, without checking
the bounds, then our destination buffer will ultimately have
the same length as the source (even though this is not valid
for fixed length destination buffers). Second, to capture the
illegal quality that the length of the source buffer cannot ex-
ceed the length of the destination buffer we have the boolean
expression that x must be less-than or equal-to the y. If ei-
ther of these assertions are evaluated as false we will have
violated the contract and the resulting extension will be ex-
ecuted. In this situation, we show that a log entry is sent to
buffer log to track the event.

1The pseudocode uses ‘=’ to refer to assignment, and ‘==’ to refer to
equivalence comparison. The contract uses a notation derived from Eagle
for assignment and equivalence.

12421242

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

While contracts can be written for user-space functions,
contracts can ultimately be created for any layer in the soft-
ware system. Later we will show an example implementa-
tion in the kernel for a buffer-overflow problem.

4.3 Implementation Using kprobes

The monolithic kernel, containing the majority of ker-
nel code, is the most sensitive environment in the Linux OS
(containing the monolithic kernel and modules). Modules
are used typically to implement device drivers and add ad-
ditional functionality to the kernel during runtime but can
only be inserted with root privileges. Below we explore a
module to show that a buffer overflow occurring in the ker-
nel is a severe security risk.

The first module provides a new file descriptor in the
proc filesystem. The proc filesystem is a virtual filesystem
providing an interface to exchange information between
kernel and user-space. Two hooks are placed on the new file
descriptor(/proc/target) for reading (read target()) and writ-
ing (write target()) operations. Once the module has been
loaded and initialized, any read operation performed against
the file descriptor will result in a call to read target and any
write operation will result in a call to write target.

The following code is the main body of write target:

/* Expect integer <= nine digits followed by a ’\n’ */
static int write_target(struct file *file,
const char *buffer, unsigned long count, void *data) {

/* This code should be here to be secure */
//if (count > sizeof(bad_string))
// return -EINVAL;
if (copy_from_user(bad_string, buffer, count))

return -EFAULT;
return count;

}

The two lines which are commented out are the root
cause of the security vulnerability. The array variable
bad string was statically declared as a global variable of
length 27. Since *buffer is not being checked to ensure that
its length will fit inside of the statically allocated space for
bad string, a buffer overflow is highly possible.

Reading the file descriptor will not cause any problems.
Alternatively, a write operation invokes the write target
function with the potential for a buffer overflow. If a call
is made to write containing a buffer with greater than 26
characters we will have an issue.

echo -n "012345678901234567890123456789\
0123456789012345678901234567890" > /proc/target

When the example above executes, the system could en-
ter a hung state (a form of denial of service caused by error
propagation). The system could continue for a period of
time before exhibiting some abnormal behavior. If a buffer
overflow were to effect the call stack of a user space ap-
plication an elevation of privilege attack could be mounted.

The result is dependent upon the contents of memory that
are overwritten and the code that uses that memory region.
Regardless of the outcome, this behavior should not be al-
lowed.

The redirection of standard out for the echo command re-
sults in a write operation against the file /proc/target, pass-
ing the output of the echo argument as a parameter. As with
most POSIX functions in Linux, the write function is im-
plemented in the standard LIBC library to fire off a system
call which then transfers control to the kernel to complete
the operation. On the Intel architecture Linux uses the 0x80
software interrupt to transfer control to the kernel, at which
point we enter the call chain indicated by Figure 2.

Figure 2. Stack trace of call to write target
from the kernel perspective.

For vulnerable kernel code we can make use of probes
as the basis for our monitoring framework. The example
probe has been manually written to show the feasibility of
using probes as a monitoring mechanism. This example is
similar to the example contract above. Noticeable differ-
ences include the name of the function that we are probing
(the breakpoint), the writing to the standard ring-buffer (via
printk) rather than a named log, and the focus on the length
property only.

The kprobe mechanism needs the address of an exe-
cutable instruction at which we wish to break. We obtain
the address using the virtual file /proc/kallsyms which ex-
poses all kernel symbols with their related virtual addresses.
Our probe also requires the address of the buffer on which
the vulnerability is based. Thus, we load the modules as
follows:

insmod buffer_over.ko
grep write_target /proc/kallsyms
e0930000 t write_target [buffer_over]
grep bad_string /proc/kallsyms
e09305e4 d bad_string [buffer_over]

The first command loads the module into the kernel and
initializes it. The second command queries the symbol table
of the kernel to find the address of the function write target.
The first column shows the address of the symbol, the sec-
ond column contains a ‘t’ indicating that the symbol is lo-
cated in the TEXT segment, the third column has the sym-
bol name, and finally the buffer over indicates that the sym-
bol belongs to the named module. The final command

12431243

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

queries the kernel symbol table for the address of the buffer
named bad string. Observe that the second column has a
‘d’ indicating that the symbol is from the DATA segment.
Then our probe is loaded into the kernel using the follow-
ing command:

insmod catch_buffer_probe.ko breakpoint=0xe0930000 \
buffer_addr=0xe09305e4

When the module is loaded the two parameters shown
above are brought into the module using the module param
macro and placed into the associated character strings.

char *breakpoint; /*parameter for breakpoint*/
char *buffer_addr; /*parameter for buffer*/
module_param(breakpoint, charp, 0400);
module_param(buffer_addr, charp, 0400);

To convert the addresses from character strings the probe
defines variables for the breakpoint address, the vulnerable
buffer, the buffer address, and the kprobe.

unsigned long *bp; /*breakpoint address*/
char *bad_buffer; /*buffer*/
unsigned long addr; /*temporary for incoming addr*/
struct kprobe kp; /*kprobe*/

Next the probe defines a function (j write target) that es-
sentially overrides the default write target function using a
jprobe. This new function checks that the incoming buffer
will fit inside the allocated space of the buffer and fire off a
VIOLATION message if the probe is violated.

int j_write_target(struct file *file, const char *buffer,
unsigned long count, void *data)
{

int len = 0;
...
len = strlen(bad_buffer);
printk("The length of the target buffer is: %d\n",

len);
if (count > len) {

/* Security Violation Reaction Here */
printk("VIOLATION!!!\n");

}
jprobe_return();
return 0; /*NOTREACHED*/

}
...
/*jprobe*/
static struct jprobe my_jprobe = {

.entry = (kprobe_opcode_t *) j_write_target
};

The above function is then associated with a jprobe struc-
ture that is later registered with the kernel.

Ultimately the probe needs to be setup and registered in
the initialization routine (invoked by insmod). During ini-
tialization we ensure that the arguments passed in are not
NULL and convert the character string representation of the
addresses into the actual memory addresses.

static int __init init_catch_buffer_probe(void)
{

int ret=0;
/*Bring in the breakpoint address*/
if (breakpoint == NULL) return -EINVAL;

addr = simple_strtoul(breakpoint, NULL, 16);
if (addr == 0) return -EINVAL;
bp = (unsigned long *) addr;

/*Bring in the buffer address*/
...

Once all of the necessary variables are initialized we
setup and register the jprobe and our kprobe. While we do
not need both the kprobe and the jprobe (we only need the
jprobe for this example), the additional constructs are useful
for future probes that we will be creating.

...
my_jprobe.kp.addr = (kprobe_opcode_t*) bp;
...
if ((ret = register_jprobe(&my_jprobe) < 0)) {
...
kp.addr = (kprobe_opcode_t*) bp;
...
if ((ret = register_kprobe(&kp) < 0)) {
...

Similar to how a Java Applet has both an init() and de-
stroy() routine for initializing and cleaning up after an Ap-
plet, a module has both an initialization (as seen above) and
an exit routine. The job of the exit routine is to clean up af-
ter the modules is removed from the system. The only work
our probe needs to do is remove the two registered probes
in the reverse order they were allocated.

unregister_kprobe(&kp);
unregister_jprobe(&my_jprobe);

With the above probe module loaded into the kernel we
can rerun a command with a longer than expected argument
and the probe should capture the exploitation of the vulner-
ability. Finishing with the following listing extracted from
the kernel ring-buffer where all printk() commands are di-
rected:

...
JPROBE_FUNCTION
The value of the incoming buffer is: \
012345678901234567890123456
The lenth of the incoming buffer is: 27
The length of the target buffer is: 26
VIOLATION!!!

5 Conclusion

In summary, our form of contract builds on the work
done by Meyer[11] and Barringer et al[2] by adding logic
for security vulnerability monitoring using contracts. Not
only will CB SAMF be able to monitor security related as-
sertions, reactions to violations and tracking of meaningful
forensic data is possible. Our model is capable of spanning
multiple software architectural layers during SOAD, as our
breakpoint-based contracts will be applied against multiple
software entities providing a more diverse and complete ap-
proach for larger systems composed of multiple layers.

12441244

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

We have shown that it is feasible to implement a monitor-
ing system based on probes which is able to capture the ex-
ploitation of vulnerabilities even at the lowest levels of the
runtime architecture (the kernel). It should also be noted
that in order for the above probe to be generated dynam-
ically a tool should only have to be fed the addresses of
the needed symbols in addition to the vulnerability type and
code. These properties will be derived from the contract
and code. Automation of many of these steps should be
possible. For example, a static analysis tool could be used
to provide the necessary information for the identification
properties needed by the contract. Then the security tester
can choose the other attributes of the contract before asser-
tion probes are generated. Once contracts are defined the
probes can be dynamically generated by extending the Sys-
temtap scripting language and evaluation could be achieved
through the employment of metrics using another probing
framework. Such an approach can be used for both SOAD
and monitoring SOAs during the maintenance phase of the
SDLC.

Finally, in order to assess the tolerance of a given system
to security violations we desire an appropriate metric. The
family of time-to-intrusion metrics is promising. We pro-
pose using, in the future, a metric similar to the minimum-
time-to-intrusion (MTTI) used by Voas et al [16]. Realiza-
tion of metrics, such as MTTI, using probes has the benefit
of not requiring changes to the target source code.

This research was partially supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC), Mathematics of Information Technology and
Complex Systems (MITACS), and industrial partners.

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM
Trans. Program. Lang. Syst., 15(1):73–132, 1993.

[2] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Pro-
gram monitoring with ltl in eagle. ipdps, 17:264b, 2004.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly
detection. In SP ’06: Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy (S&P’06), pages 48–62,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] S. N. Chari and P. Cheng. Bluebox: A policy-driven, host-
based intrusion detection system. ACM Trans. Inf. Syst. Se-
cur., 6(2):173–200, 2003.

[5] A. Février, E. Najm, and J. Stefani. Contracts for odp. In
ARTS ’97: Proceedings of the 4th International AMAST
Workshop on Real-Time Systems and Concurrent and Dis-
tributed Software, pages 216–232, London, UK, 1997.
Springer-Verlag.

[6] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of
execution graphs for anomaly detection. In CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and com-
munications security, pages 318–329, New York, NY, USA,
2004. ACM Press.

[7] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitor-
ing of security-critical programs in distributed systems: a
specification-based approach. In SP ’97: Proceedings of the
1997 IEEE Symposium on Security and Privacy, page 175,
Washington, DC, USA, 1997. IEEE Computer Society.

[8] L. Lamport. A simple approach to specifying concurrent
systems. Commun. ACM, 32(1):32–45, 1989.

[9] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

[10] J. C. McKim Jr. Programming by contract. Computer,
29(3):109–111, 1996.

[11] B. Meyer. Applying ”design by contract”. Computer,
25(10):40–51, 1992.

[12] D. K. Peters and D. L. Parnas. Requirements-based mon-
itors for real-time systems. SIGSOFT Softw. Eng. Notes,
25(5):77–85, 2000.

[13] N. Petroni, T. Fraser, A. Walters, and W. Arbaugh. An ar-
chitecture for specification-based detection of semantic in-
tegrity violations in kernel dynamic data. In 15th USENIX
Security Symposium, pages 289–304, August 2006.

[14] M. Pohlack, B. Döbel, and A. Lackorzyński. Towards run-
time monitoring in real-time systems. In Eighth Real-Time
Linux Workshop, pages 173–184, 2006.

[15] F. B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, 2000.

[16] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller.
Defining an adaptive software security metric from a dy-
namic software failure tolerance measure. Computer As-
surance, 1996. COMPASS ’96, ’Systems Integrity. Software
Safety. Process Security’. Proceedings of the Eleventh An-
nual Conference on, pages 250–263, 17-21 Jun 1996.

12451245

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 2, 2009 at 20:49 from IEEE Xplore. Restrictions apply.

