
HAL Id: inria-00431678
https://inria.hal.science/inria-00431678

Submitted on 14 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Meta-Services Orchestration Architecture
Aymen Baouab, Olivier Perrin, Nicolas Biri, Claude Godart

To cite this version:
Aymen Baouab, Olivier Perrin, Nicolas Biri, Claude Godart. Security Meta-Services Orchestration
Architecture. IEEE Asia-Pacific Services Computing Conference - APSCC 2009, Dec 2009, Biopolis,
Singapore. �inria-00431678�

https://inria.hal.science/inria-00431678
https://hal.archives-ouvertes.fr

Security Meta-Services Orchestration Architecture

Aymen Baouab1 2, Olivier Perrin1, Nicolas Biri2 and Claude Godart1

1INRIA/LORIA (ECOO Team), Nancy, France

{aymen.baouab,olivier.perrin,claude.godart}@loria.fr
2CRP-Gabriel Lippmann (ISC Dept), Belvaux, Luxemburg

biri@lippmann.lu

Abstract

SOA have been deployed as a mean to offer a better flex-

ibility, to increase efficiency through reuse of services and

also to improve interoperability by providing new opportu-

nities to connect heterogeneous platforms. However, those

benefits make security more difficult to control. Fortunately,

new standards are proposed to treat this issue, but their

current use makes the architecture much more complex and

challenges the characteristics of SOA. In this paper, we ad-

dress this issue by separating security services from busi-

ness ones and organizing the architecture referring to the

principle of separation of concerns. Next, we propose a

new model which consists of three components: business

services, security meta-services and an orchestration ser-

vice. Then, we show that the architecture remains secure

while enforcing its flexibility and agility.

1 Introduction

During the last few years, the architecture of IT environ-

ments has significantly changed. Legacy solutions based on

huge monolithic applications lack in agility when respond-

ing to the evolution of IT and business needs. As a conse-

quence, many enterprises have moved to service oriented ar-

chitectures (SOA) aiming to achieve a more flexible system

landscape, which facilitates integration of new components.

Indeed, SOA offers companies new ways to exchange

data with their customers, partners and suppliers. To secure

these exchanges, the use of new suitable security mecha-

nisms is needed. In this type of architecture, third-party

services are often deployed in public areas (usually non-

secure) in order to simplify the exchange and promote inter-

operability. In this case, security at the transport level is not

enough and it is therefore necessary to move up to security

at the application level. To deal with this requirement, sev-

eral standards (WS-Security, SAML, XACML, WS-Trust,

WS-Federation, WS-Policy) which cover security issues of

Web services architectures have been developed. How-

ever, their current use addresses security at deployment time

and not throughout the entire application lifecycle. These

specifications are difficult to integrate into each business

service especially when security requirements change fre-

quently. Implementing these specifications without defining

architectural guidelines makes the architecture much more

complex and challenges the main features of SOA such as

agility, flexibility and interoperability. Thus, as some legacy

applications exposed as business services already have their

own security mechanisms, managing the overall security

chain when composing these business services represents a

difficult task. Security functions must be handled dynami-

cally depending on the security requirements and the legacy

security mechanisms. For instance, when considering the

project of the Luxemburg National Family Benefits Funds

(CNPF) in which we are involved and the technical chal-

lenges encountered while migrating its IT environment, we

have to propose a new architectural model that reduces the

complexity resulting from the combination of various tech-

nologies. In fact, we aim to find a better way to integrate

security that provides a high degree of reusability without

impacting the business layer.

Some specific approaches expose the best practices for

securing SOAs. Most of them focus on the development

of the Enterprise Service Bus (ESB) [2, 11] or similar mid-

dleware solutions [3]. These solutions answer the agility

issues and allows for a transparent access to the services.

However, each change in the IT environment should corre-

spond to an adaptation in the organization of the ESB. The

problem of agility is only moved up to the ESB, but still un-

solved. To address this issue, security functions can be im-

plemented into separated services communicating with the

rest of the system by means of messages. With a such solu-

tion, security will be decoupled not only from the business

logic but also from the middleware system. The problem

is then to find out how to make services operating together

without having unwanted consequences on the security of

the whole system.

In this paper, we address these aspects by introducing

a new approach that overcome these limitations concern-

ing SOA security and we define an adequate architectural

framework called Security Meta-Services Orchestration

Architecture, SMSOA. This architectural framework con-

sists of security meta-services and a central service used for

the orchestration of the meta-services depending on the pol-

icy associated with the business service to be protected.

Section 2 presents the motivations. Section 3 introduces

the meta-service concept. Section 4 describes the most rele-

vant elements of the proposed architecture, their communi-

cation and their composition. Section 5 comments on some

similar approaches and finally, Section 6 concludes.

2 Motivation

A key objective of SOA consists of increasing the flexi-

bility and the agility of the business [10]. When considering

security for SOA, several possibilities can be investigated.

First, one possible architecture is to provide an unique se-

curity component (including authorization, authentication,

audit, etc.) integrated with the ESB. This solution breaks

the modular approach of SOA, and its flexibility and is diffi-

cult to adapt to the specific needs of each service. A second

approach is to include security in each business service of

the SOA. This solution appears to be time consuming and

its cost is very high as it needs to rewrite each business ser-

vice. Furthermore, with a such solution, SOA governance

and security management may become much more compli-

cated to ensure. A third approach is to provide security ser-

vices that can be composed depending on the requirements

of the business service to be protected. This approach is the

one we have chosen. It takes its inspiration from Aspect-

oriented Programming (AOP) [4]. The goal of AOP is to re-

spond to the separation of concerns issue: many modules in

a program share common components as, for instance, log-

ging framework. These components are called crosscutting

concerns, because they ”cut” across several concerns. AOP

aims in finding a way to isolate these crosscutting concerns

in one central place, and to facilitate their management. The

idea of our approach is to apply the separation of concerns

in the SOA context in order to reduce the complexity, to

provide a modular approach, and to strengthen the agility

of the architecture.

3 Meta-services concept

We first introduce the concept of security meta-services

in SOA architectures. Meta-services do not offer business

operations, but act as helper services trying to optimize and

simplify business services and their design. Meta-services

centralize common functions used by multiple business ser-

vices. These common functions are externalized from ex-

isting business services and managed independently. Meta-

services help to improve the efficiency and flexibility and

also have a positive impact onto occurring costs. Concrete

instances of meta-services can be for instance orchestration

services that offer service composition functionalities, secu-

rity services that ensure the protection of business services,

or monitoring services that control the correct execution of

other services.

In our case, the meta-services offer a security service to

other services (Security as a Service). In other words, they

will ensure the security functions needed for the protection

of business services. By externalizing security aspects from

the business logic, Web services will be loosely-connected

through a messaging interface. Moreover, the meta-services

will be shared by different business services. This will re-

duce the complexity of the architecture, increase the degree

of reusability and make the security system more scalable

and more portable.

3.1 Security meta-services taxonomy

The possible meta-services for handling security require-

ments are:

Gateway meta-service This service, located at the feder-

ation perimeter intercepts all incoming and outgoing

messages and appends security relevant information.

Authentication meta-service This entity will verify that

the supplied identification information is sufficient and

correct. It checks the validity of authentication creden-

tials (digital signatures, certificates, tokens, etc.).

Authorization meta-service This meta-service deter-

mines applicable authorization policy, checks message

relevant information (i.e. identity attributes) and

makes an authorization decision.

Audit meta-service It is designed to log certain parts of the

message (passive audit) and to determine whether an

exceptional state is reached. In this case, a notification

describing the situation could be sent to the system ad-

ministrator.

Cryptographic meta-services They are responsible for

applying cryptographic functions (i.e. digital signature

calculation and verification, specific parts or whole

message encryption / decryption). Separating these

functions from the protected business service can be

justified by the fact that they require significant com-

putational power and therefore should be implemented

on more powerful machines.

Verification, validation and filtering meta-services

These meta-services can be located at the federation

perimeter in order to verify that the semantics of

the incoming/outgoing messages is ensured. They

provide attacks prevention mechanisms (i.e. DoS,

XML injection, buffer overflow, replay attacks) [2, 5].

Message filtering can be done by an XML Firewall.

Accounting meta-services These meta-services are de-

signed to meter the usage of protected services which

are not offered free-of-charge.

3.2 Security meta-services granularity

The granularity of meta-services represents an important

issue that should depend on the concrete deployment sce-

nario and the required security functions. It plays a very

important role in the evolution of the agility and the per-

formance of the whole system. A finer granularity leads

to a good separation of concerns which increases flexibility

and agility and makes the meta-services more reusable. On

the other hand, because each intermediate service must pro-

cess the message content, increasing the number of meta-

services implies a higher latency due to the additional net-

work traffic and overhead resulting from XML parsing.

This results to a compromise between agility and flexibil-

ity, on the one side, and performance on the other side.

Otherwise, we need to choose between a specialized meta-

service and a more general meta-service more configurable

and therefore less reusable.

To make the choice on the granularity, it is important

to consider all the needs of the customer and the provider.

This may also depend on the size of the infrastructure, the

average of throughput, the distribution of services (in the

same server, same network, etc.) and available resources

on each machine. One must also consider the frequency of

security parameters changes and the evolution of business

services needs in term of security.

4 The proposed architecture

In our approach, the architecture is composed of security

meta-services, an orchestrator, and business services that

are located in a trusted zone. Each security meta-services

implements one or more security enforcement functions,

depending of the desired granularity. A message reaching

the trusted zone will be intercepted by a gateway service and

be routed to the orchestrator. The response message will be

returned to the orchestrator to eventually invoke some secu-

rity meta-services before being routed to the requester (for

instance, the audit meta-service).

To ensure the security needs of a business service, we

need an entity that determines which meta-services should

be invoked according to the security policies. This task is

done by a central point (an orchestrator) that orchestrates se-

curity meta-services depending on the destination business

service. If one of the security checks failed, an exception

is raised and the orchestrator stops the security process by

returning an access denied to the requester. If all security

functions succeed, the business service is invoked and then

the response is returned to the requester. Eventually, some

meta-services can be invoked after the response of the busi-

ness service in order to secure the outgoing messages.

WS Security

gateway

Orchestrator

Authenti-
cation

Authori-
zation

Audit

Business
Service

1

Business
Service

2

Business
Service

n

Security

Policy
Security

Policy
Security

Policy

Requester

.Security

meta-services

Trusted-zone

0

1

8

2

3

4

5

3',5',7'

(*)

6

7

(*) used for notification

XML firewall

+

Security services

orchestration

Figure 1. Meta-services orchestration

Figure 1 shows a use case scenario (steps are numbered).

In this example, the requester looks for the address of the

business service 2 and required security mechanisms (step

0) by invoking a public registry (i.e. UDDI). It then com-

poses the message and invokes the service. The gateway

service (here gateway and orchestrator are implemented as

a single service) intercepts the message (step 1) and search

for the policy corresponding to the protected service. The

orchestrator invokes the needed meta-services (in this sce-

nario, authentication, authorization and audit) and the busi-

ness service respecting the security process described in the

policy (steps 2,3,3’,4,5,5’,6,7)1. If one security function

fails, the orchestrator stops the process and returns a deny

message to the requester. Otherwise, the gateway returns

the response to the customer service (step 8).

4.1 Specific orchestration

Using WS-BPEL [7], coding all combinations of possi-

ble meta-services (meta-services composition for each se-

curity policy) and updating them whenever a policy change

occurs, represents a complicated task. To reduce this com-

plexity and to improve the agility of the security system,

there are two possible strategies.

4.1.1 One orchestrator per policy

This strategy introduces a specific orchestrator for each

group of business services requiring exactly the same se-

curity functions. In this way, each orchestrator ensures the

1the prime denotes that x and x’ are executed in parallel.

security of his group by invoking a static list of security

meta-services whenever an incoming message reaches his

area.

The gateway meta-service, located in the federation

perimeter, dispatches incoming messages to the specific or-

chestrator according to the message destination. After re-

ceiving a message, the orchestrator invokes security meta-

services and the target business service and then returns the

response to the gateway service before being routed to the

requester. Figure 2 shows a use case with ordered steps.

In this example, zone A includes business services that re-

quire exactly three security functions while zone B includes

business services that require only two security functions.

Gateway

S1

S2

S3

Ba1

Requester

Security

meta-services

Trusted-zone

1

8

Ban

Orch.

A

Bb1

Bbn

Orch.

B

2

3

4

5

6

7

3', 4', 5', 7'

Zone A

Zone B

Figure 2. One orchestrator per policy

The decomposition of the federation into zones allows

to distribute the load on several more specific orchestrators

instead of having a central orchestrator that manages all the

messages. However, there must be an orchestrator for each

policy and therefore an addition (resp. deletion) of an or-

chestrator for each policy addition (resp. deletion).

4.1.2 One orchestrator per business service

The second strategy implements an orchestrator for each

business service (Figure 3). In this way, a change in the

policy might induce a change in the code of the orchestrator,

but we will have a better distribution of load. Implementing

an orchestrator for each business service can avoid all the

problems linked to the compatibility, as we do not need to

define the same interface for each business service in order

to exchange messages with the orchestrator.

Note that in case of one orchestrator per policy (Section

4.1.1), all business services are connected to the same part-

ner link and that is why they should satisfy a well-defined

message format exchange and so a common interface.

Gateway

S1

S2

S3

B1

Requester

Security

meta-services

1

8

Orch.

1

B2

Bn

Orch.

2

2

3

4

5

6

7

3', 4', 5', 7'

Orch.

n

Figure 3. One orchestrator per business ser-

vice.

4.2 Generic orchestration

Another strategy for orchestrating the meta-services is

to use a generic orchestrator, rather than specific orchestra-

tors as in 4.1. In this case, only one orchestrator is imple-

mented to manage the whole system security. This orches-

trator needs to be quite flexible and dynamic to permit the

addition or the removal of security meta-services accord-

ing to changing needs of each protected business service.

Here, WS-BPEL is not well adapted because it does not

allow flexibility in Partner Links. In fact, in BPEL, the part-

ner link information is defined at design time. However, our

scenarios require to define the partner link at run time, de-

pending the policy of the business service. Oracle provides

an ad-hoc solution to this problem, called dynamic service

binding. However, the solution is conceptually poor, as all

the services should be described in one WSDL file that is

then used as the partner link [8]. That means for instance

that no operation, message, input or output can be specified.

It should be considered as a redirection.

To address this problem, we design our own orchestrator

in order to be more generic (independent of the policy and

the business service interface). The orchestrator should be

able to carry a message according to its destination, based

only on data obtained from a policy database. A change

in policy and/or addition/removal of business services and

security meta-services should not cause any change in the

code of the orchestrator. Only a modification in the policy

database will be needed.

To formally specify our architecture, we begin by distin-

guishing five types of components : a set of business ser-

vices B, a set of meta-services S, an orchestrator O, a set of

policies P and a list of operators OP .

4.2.1 Security process description

In order to make the orchestrator completely autonomous,

we define a policy description language which will describe,

for each business service, the security meta-services to call.

To do this, we will first need two operators: ”//” and ”,”.

”S1//S2” means that the orchestrator can invoke both ser-

vices S1 and S2 in parallel, while ”S1,S2” means that the

orchestrator must invoke S2 after S1.

To simplify the security management, we group the busi-

ness services according to their security functions needs.

Therefore, we need two tables in our policy database: one

for the correspondence between each business service and

its security policy (see Figure4.A) and another for the de-

scription of each security policy indicating meta-services to

invoke using our description language (see Figure4.B).

Figure 4. Policy database

Figure 4 shows that for all incoming messages having

the business service B1 as destination, the orchestrator must

invoke S1, S3 and B1 in parallel with S4, wait for their

responses and then, if there is no exception, invokes S4 and

sends the reply to the requester.

Note that to change the policy of a business service, one

can simply change its entry in the first table. To add a new

business service, a new entry can be created and an existing

policy can be selected. However, the second table allows to

change a specific policy (i.e. add/remove of security meta-

services). To add a new policy, a new entry can be created

and the required security meta-services can be selected and

organized. All these changes did not affect the orchestrator

that will be designed to be able to parse any valid policy.

4.2.2 Policy validation

In order to avoid security process execution problems, it is

necessary to validate every policy described with our lan-

guage before its activation. To do this, policies should be

analyzed and should satisfy a specific grammar. Using this

grammar, invalid policies will be rejected by the orchestra-

tor.

Definition 1 (Policy validation) Let S = [S1;S2; ...;Sn],
B = [B1;B2; ...;Bm] and P = [P1;P2; ...;Pl]. Pi (with

0 ≤ i ≤ l) is valid if it takes the following form :

{{S1|S2|...|Sn}{//|, }}∗XB{{//|, }{S1|S2|...|Sn}}
∗

with XB ∈ B and P (XB) = Pi, and {A}∗ means that A is

repeated 0 or more times.

For instance, ”S1//S2, B//S3” and ”S1//B” are valid

policies, while ”S1S2, B//S3” and ”//S1, B,” are not.

4.3 Security process instance state

The orchestrator needs some information (current status)

to identify each received message in order to determine to

which process instance the message is associated and what

is the next step. Furthermore, the orchestrator may need to

transmit some information (identity attributes, credentials,

etc.) from one security meta-service to another. To do this,

there are two possibilities. The first approach called stateful

orchestrator is to store and manage instance identifiers and

variables in the memory of the orchestrator. The second

called stateless orchestrator appends such information to

the message header (i.e. annotations).

A stateful orchestrator must read the destination of each

incoming message, look for the security policy correspond-

ing to this destination, extract the path described by the de-

scription language that we have defined, create an instance

with a new state (in the memory) containing the necessary

information and execute the process. Once implemented,

the orchestrator will be autonomous as it will always be

able to transform a security policy defined by our descrip-

tion language into a new process and be able to execute it.

With a stateless orchestrator, each incoming message

must be annotated with a path containing an ordered list

of security meta-services to invoke and an actual position

indicator. This annotation represents the status of the secu-

rity process and can be implemented as one or more tags

of the SOAP message header. The orchestrator updates the

status indicator after each invocation and then prepares him-

self to invoke the next meta-service. In this case, the or-

chestrator does not need memory to store the state of each

instance. This will improve his treatment capacity and in-

crease the throughput. In addition, with such a solution, it

will have much less risks of memory crash (buffer overflow,

etc.) which makes the orchestrator more reliable.

On the other hand, a stateless orchestrator may have to

deal with some interoperability problems, especially when

the orchestrator needs to call a security service located out-

side the trusted zone (security off-shoring). In this case,

the annotation can be lost or modified by the external ser-

vice which may cause disturbance in the security system.

To tackle this problem, we can combine the two alterna-

tives storing the state in the orchestrator memory only when

an external service invocation occurs. This hybrid solution

aims at combining the advantages of previous solutions to

resolve problems encountered in each particular situation.

4.4 Synthesis

Since the security functions are not bound to the appli-

cation and implemented into separated services, each one

independent of the other, they can be shared by the different

business services located in the same private network or a

trusted area. This will reduce the costs associated with im-

plementation, facilitate upgrades and allow the small func-

tionnal components to be better tested (i.e. using unit tests)

[8]. All these advantages address the agility and the exten-

sibility of the architecture.

Implementing the security aspect using the principle of

the separation of concerns reduces the complexity of the

whole security system and allows for a clear design easy to

configure and document. Configuration may be made by the

orchestration of the security meta-services according to the

needs of each business service (as shown in section 4.2.1).

Another advantage of our architectural design is that the

administration and the control become simpler by centraliz-

ing security. Security administrators can control the whole

system by acting only on the orchestrator. This may also

simplify federated authentication, federated single sign on

(SSO) and federated access control.

However, performance represents a possible disadvan-

tage to our solution. In fact, SMSOA may higher latencies

because of the additional network traffic and message con-

tent processing (i.e. XML parsing by each security meta-

service). However, as descibed in section 3.2, performance

can be modulated by varying the granularity of services.

In conclusion, our approach has several advantages: it

is extensible, it provides a high degree of reusability and it

improves the agility and the flexibility of service-oriented

architecures. In addition, the fact that security services are

independent and can be hosted in different physical loca-

tions represents another advantage.

5 Related Work

[9] outlines a holistic approach to protecting applications

and services with the use of Web Services security infras-

tructure. Here, some security functions are implemented

into a perimeter gateway which enforce security for the en-

tire network. In addition, a service agent will be imple-

mented to enforce individual service security. [1] presents

an approach where a single proxy acting as a gateway is

implementing different security functions to enforce the se-

curity of several services. However, all these approaches

does not respect the principle of separation of concerns. In

[6], security functions are realized into different services

and combined by means of an ESB. However, communi-

cation between security services still not designed and no

architectural analysis is made.

In [8], an architectural model called SOSA was de-

scribed. Security is splitted into small functional compo-

nents (security services) that can be separately developed.

Because components are less complex, it will be easier to

reuse them. This results in a more flexible design for se-

curity system. However, combining services by means of

message routing patterns using itinerary attachment decen-

tralize the security system and make it more difficult to con-

trol and to administrate. Furthermore, it is often necessary

to implement an additional service for the invocation of the

protected business service (and also in case of security off-

shoring) which will increase latency in both directions (ad-

ditional processing of the incoming and the outgoing mes-

sages). Moreover, the fact that each security service must

implement a message routing mecanism represents another

drawback. In fact, in addition to its task, each security ser-

vice needs to determine the next service to which the mes-

sage should be forwarded. This is due to the fact that SOSA

is based on a decentralized message routing pattern which

is called Itinerary Routing.

6 Conclusion

In this paper, we proposed a new architectural framework

for Web services security systems named Security Meta-

Services Orchestration Architecture or SMSOA. The archi-

tecture is composed of three types of components: business

services, security meta-services and orchestrators. Each

meta-service implements one or more security functions

and is invoked by an orchestrator according to business ser-

vices security policies. This results to the separation of the

security aspect from business services which reduce design

complexity and development costs. In addition, orchestra-

tion solution centralize the security system and therefore

easier to control and administrate.

References

[1] G. Brose. Securing web services with soap security proxies.

In ICWS, pages 231–234, 2003.
[2] D. Chappel. Enterprise Service Bus. 2004.
[3] Khalaf R., Nagy W., Curbera F., Duftler M.J. Colombo:

Lightweight middleware for service-oriented computing.

IBM Journal of Research and Development, Volume 44,

Number 4, 2005.
[4] G. Kiczales. Aspect-oriented programming. ACM Comput.

Surv., 28(4es):154, 1996.
[5] Mark Oneill et al. Web Services Security. 2003.
[6] Maryann Hondo, Heather Hinton, Beth Hutchison. Security

patterns within a service-oriented architecture. IBM white

paper, 2005.
[7] OASIS. Web services business process execution language

version 2.0. OASIS Standard, 2007.
[8] C. Opincaru and G. Gheorghe. Service oriented security ar-

chitecture. In EMISA, pages 61–74, 2007.
[9] B. M. M. A. N. K. P. Y. Ramana Turlapati, Roger Goudarzi.

Best practices for securing your soa: A holistic approach.

Java Developers Journal, 2006.
[10] A. Report. State of soa adoption report – gauging the use of

soa systems in the enterprise, January 2008.
[11] H. G. Woolf B. Enterprise Integration Patterns, Designing,

Building, and Deploying Messaging Solutions. 2004.

