
Translating Semantic Web Service Based Business
Process Models

Liliana Cabral and John Domingue
Knowledge Media Institute

The Open University
Milton Keynes, UK

l.s.cabral@open.ac.uk and j.b.domingue@open.ac.uk

Abstract— We describe a model-driven translation approach
between Semantic Web Service based business process
models in the context of the SUPER project. In SUPER we
provide a set of business process ontologies for enabling
access to the business process space inside the organisation
at the semantic level. One major task in this context is to
handle the translations between the provided ontologies in
order to navigate from different views at the business level to
the IT view at the execution level. In this paper we present
the results of our translation approach, which transforms
instances of BPMO to instances of sBPEL.

Keywords: model translation; Semantic Web Services,
ontologies; process models; ATL rules

I. INTRODUCTION
One of the concerns of Business Process Management

(BPM) is to provide process modelling languages and tools to
facilitate bridging between the business and Information
Technology (IT) views. However, one major obstacle to the
complete realization of BPM today is that the business process
space inside the organisation, from the business expert
perspective to the actual implementation is widely not
accessible at the semantic level and thus neither to machine
reasoning. The emerging Semantic Business Process
Management (SBPM) research area [7] addresses this problem
and proposes the use of ontologies and Semantic Web Services
(SWS)[5] in order to provide a unified view on business
processes in a machine understandable way.

Within the SUPER project1, an approach to SBPM has been
developed, which in particular provides a set of integrated
ontologies developed in WSML2 taking into account the use of
Semantic Web Services for business process modelling. More
specifically, we provide ontologies for a number of popular
standards (e.g. BPMN, EPC, BPEL) as well as the novel
Business Process Modelling Ontology (BPMO) [4], which
provides a high-level model of business processes, integrating
organisational aspects, process workflow and services. The
goal is to support a number of BPM life-cycle activities at the
semantic level, including modelling, querying, translation and

1 Semantics Utilised for Process Management within and between Enterprises
(http://www.ip-super.org)
2 http://www.w3.org/Submission/WSML/

execution. One major task within this approach is thus handling
the translations between the provided ontologies in order to
navigate from different views at the business level to the IT
view at the execution level.

In this paper we describe a model-driven approach and
implemented translator for transforming instances of BPMO to
instances of an ontology for BPEL (sBPEL). In particular, our
approach implements mappings using ATL3 rules and uses the
XML format of WSML as both source and target models of the
ATL transformation engine. The result of the translation is a
portable file containing a semantically annotated executable
business process model.

The rest of the paper is structured as follows. Section 2
describes the context and a subset of the business process
ontologies used in the SUPER project. Section 3 describes the
translation approach we adopted and the implementation of the
BPMO2SBPEL translator. Section 4 describes a translation
example from a use case. Finally, we present our conclusions
and related work.

II. BUSINESS PROCESS ONTOLOGIES
As mentioned in the introduction, within the SUPER

project we provide a set of integrated ontologies, which
represent different views and levels of business process
models. In Figure 1 we depict a subset of the available
ontologies (rounded rectangles) for the purpose of explaining
our translation approach. The main ontology is BPMO (see
Section 2.A) to and from which corresponding translations are
performed (large arrows in the picture). BPMO imports UPO
(Upper-level Process Ontology), an ontology defining common
business process concepts, shared by all ontologies. sEPC [6]
and sBPMN [2] are the two ontologies created to semantically
annotate the corresponding standard notations used to model
process workflows at the business level. SBPEL [10] (see
Section 2.B) is an ontology for the BPEL language (with
extensions), which is used by IT experts to execute process
workflows. These ontologies can be grounded to any tool-
specific syntactic format of the respective notation (rectangles
in the picture) via straightforward serializations.

This paper will focus on the translation between BPMO and
sBPEL, taking advantage of the unambiguous meaning of

3 http://www.eclipse.org/M2M/ATL

Business
Process

Modelling
Ontology
(BPMO)Semantic

BPMN
Ontology
(sBPMN)

Semantic
EPC

Ontology
(sEPC) Semantic

BPEL
Ontology
(sBPEL)

EPC
Notation

BPMN
Notation

BPEL4SWS

Upper
Level

Process
Ontology

(UPO)

Translates to

Grounds to

Imports

constructs in the ontologies, in order to facilitate the navigation
from the business level to the execution level.

Figure 1. Business Process Ontologies in SUPER

BPMO and the related ontologies mentioned above are
publicly available at the SUPER website (http://www.ip-
super.org/ontologies). Next, we describe relevant details of
BPMO and sBPEL, which are the ontologies we use in this
paper.

A. BPMO
BPMO 4 is an ontology for high-level business process

workflow models, abstracting from existing business process
notations. Nevertheless, the workflow elements of a BPMO
process diagram comply with a corresponding subset of BPMN
control-flow elements [15] and are informed by, and named
according to Workflow Patterns [1]. Moreover, BPMO
concepts related to interaction activities (tasks) adopt a number
of Web Service attributes also used in BPEL constructs.

Basically, a BPMO process description captures the
business/organisational context of the modelled process and
contains the process workflow, which represents the behaviour
of the process (through control-flow and data-flow constructs)
and process activities (through Tasks). BPMO process
workflow elements are structured into a workflow container
combining features of block-oriented and graph-oriented
workflow patterns. The main purpose of block patterns is to
explicitly represent structured elements and workflow patterns
that can be used to facilitate process verification and the
translation to notations in the execution level.

The Process concept (shown in Listing 1) defines several
organisational attributes, by inheriting from BusinessActivity,
according to the types BusinessDomain, BusinessFunction,
BusinessStrategy, BusinessPolicy, BusinessProcessMetrics,
BusinessProcessGoal and BusinessResource. These business-
level concepts (attribute types) are primarily defined in external
ontologies, which model a specific business domain and
organisation. These ontologies are linked to the BPMO process
by subclassing the UPO concept (note that upo# is the prefix
for the UPO namespace). As a result, we enable the querying
of processes against organisational aspects by business

4 http://ip-super.org/ontologies/process/bpmo/v2.0.1#bpmo

analysts. The Process itself can also have a corresponding Web
Service description (hasWSDescription attribute). In addition,
the Process concept defines the process workflow (attribute
hasWorkflow). The concept Workflow defines the first element
of the workflow (hasFirstWorkflowElement). The workflow is
modelled with Workflow Elements following the first element.

Listing 1. BPMO Process and Business Activity Concepts

concept BusinessActivity subConceptOf upo#BusinessActivity
 hasName ofType (0 1) _string
 hasDescription ofType (0 1) _string
 hasNonFunctionalProperties ofType(0 1)
BusinessActivityNonFunctionalProperties
 hasBusinessDomain ofType upo#BusinessDomain
 hasBusinessFunction ofType upo#BusinessFunction
 hasBusinessStrategy ofType upo#BusinessStrategy
 hasBusinessPolicy ofType upo#BusinessPolicy
 hasBusinessProcessMetrics ofType
upo#BusinessProcessMetrics
 hasBusinessProcessGoal ofType upo#BusinessProcessGoal
 hasBusinessResource ofType upo#Resource

concept Process subConceptOf {BusinessActivity, upo#
BusinessProcessModel}
 hasWSDescription ofType(0 1) SemanticCapability
 hasWorkflow ofType (0 1) Workflow

concept Workflow subConceptOf
upo#ProcessOrchestrationSpecification
 hasHomeProcess ofType (0 1) Process
 hasFirstWorkflowElement ofType(1 1) WorkflowElement

The concepts related to Semantic Web Services in BPMO
are GoalTask, Receive, Send and ReceiveMessage Event (see
Listing 2), which are subconcepts of Task. A Task is also a
Business Activity (as in Listing 1). Tasks have attributes to
represent information about the interaction with a partner
process, such as partner role (hasPartnerRole), inputs
(hasInputDescription) and outputs (hasOutput Description).
Most attribute types in Tasks are defined as SemanticCapability
which is a wrapper for abstracting over domain data instances
or service descriptions.

Listing 2. BPMO Concepts Related to Interaction Tasks

concept BusinessRole subConceptOf upo#Role
 hasName ofType (0 1) _string
 hasDescription ofType (0 1) _string
 hasOrganisation ofType (0 1) upo#Organisation

concept GoalTask subConceptOf Task
 hasPartnerGoal ofType (0 1) SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 messageTo ofType (0 1) Receive
 messageFrom ofType (0 1) Send
 hasInputDescription ofType SemanticCapability
 hasOutputDescription ofType SemanticCapability
 requestsCapability ofType (0 1) SemanticCapability
 providesCapability ofType (0 1) SemanticCapability

concept Send subConceptOf Task
 hasPartnerWebService ofType (0 1)SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 hasReceiveCounterpart ofType (0 1) Receive
 messageTo ofType (0 1) Receive
 hasOutputDescription ofType SemanticCapability
 requestsCapability ofType (0 1) SemanticCapability

concept Receive subConceptOf Task
 hasPartnerWebService ofType (0 1 SemanticCapability
 hasPartnerRole ofType (0 1) BusinessRole
 hasSendCounterpart ofType Send
 messageFrom ofType (0 1) Send
 hasInputDescription ofType SemanticCapability
 providesCapability ofType (0 1) SemanticCapability

concept ReceiveMessageEvent subConceptOf {IntermediateEvent,
Receive}

A GoalTask is an atomic activity, which can be
automatically achieved through a SWS invocation
(synchronous communication). The attribute hasPartnerGoal is
used in this case to refer to a Goal (or request) description. The
hasInputDescription and hasOutputDescription attributes refer
to the semantic descriptions of request and response data
respectively. The requestsCapability and providesCapability
attributes refer to the semantic descriptions of Web Service
operations related to request and response respectively. The
Send and Receive tasks are similar to Goal tasks, but they are
used for asynchronous communication. A Receive task can be
associated with a Send in the same workflow via the
hasSendCounterpart attribute (and conversely for Send).
ReceiveMessageEvent works as a Receive task, but is also
associated to an event, which is triggered when a message is
received.

B. SBPEL
Semantic BPEL (sBPEL)5 is an ontology for BPEL4SWS

[11], which is an extension of BPEL4WS6, a language for
specifying the composition of Web Services using a control-
flow based approach. Control-flow constructs are either
structured activities (e.g. sequence, flow, if), or basic activities
including assign and interaction activities (e.g. receive, reply,
invoke, pick). In addition, links (dependencies) can be added
between activities within a flow (parallel execution) activity in
a graph-based style. BPEL4SWS uses the extensibility
elements of BPEL in order to add semantic annotations of data
and services to the process. It also adds the Interaction and
Conversation extension constructs, which can be used to group
a number of interaction activities for modelling long running
conversational interaction among partners.

WSML XSD

WSML XMI

sBPEL instance

WSML ECORE

WSML XMI

BPMO instance

EMF

ATL

conforms to

Listing 3 sBPEL Concepts related to a Process

concept SemanticProcess subConceptOf bpel#Process
 hasConversation ofType Conversation
 hasPartner ofType Partner
 hasSemanticOnMessage ofType SemanticOnMessage

concept Receive subConceptOf {bpel#Interaction,
bpel#NewActivityType}
 doesCreateInstance ofType (0 1) _boolean
 belongsToConversation ofType (1) Conversation
 hasVariable ofType (1) SemanticVariable

concept Conversation
 hasName ofType (1) _string
 describesInterface ofType (1) InterfaceDescription
 correspondsTo ofType bpmo#Process

concept IncomingInterface subConceptOf InterfaceDescription
 hasWebServiceDescription ofType (1) _string

concept SemanticVariable subConceptOf bpel#Variable
 hasSemanticType ofType (1) _string

concept Partner
 hasName ofType (1) _string
 hasBusinessEntity ofType (0 1) _string
 hasConversation ofType (1 *) Conversation

concept ExtensionActivity subConceptOf bpel#BasicActivity
 hasActivity ofType (1) NewActivityType

For example, as shown in Listing 3, the Receive concept
(sub-concept of Interaction and NewActivityType)

5 http://ip-super.org/ontologies/ process/sbpel/v2.0.0#sbpel
6 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

ontologically represents one of the interaction activities of
BPEL4SWS in sBPEL. The Receive activity can be added to
the control-flow via the ExtensionActivity concept (hasActivity
attribute). Receive must belong to a Conversation
(belongsToConversation attribute), which in turn must define
an interface (describesInterface attribute) that has a Semantic
Web Service description (hasWebServiceDescription attribute).
Note also that Receive (hasVariable attribute) uses
SemanticVariable (hasSemanticType attribute) to annotate the
data received. The example of an instance is given in Section 4.

III. TRANSLATION APPROACH
In this section we describe the implementation of the

BPMO2SBPEL translator, which transforms between instances
of a BPMO model and a sBPEL model. The translator takes as
input a WSML file containing BPMO instances of an
individual business process and then generates as output a
WSML file containing corresponding sBPEL instances (see
example in Section 4). The generated sBPEL file can be used
in a later stage for serialization and then execution in an
appropriate engine.

We have developed a standalone java API for
BPMO2SBPEL (available at http://kmi.open.ac.uk/
projects/super/BPMO2SBPEL-2.0.zip). This API uses the
WSMO4J API (http://wsmo4j.sourceforge.net) to parse and
serialize XML versions of WSML as required; creates the input
files from the XML files; and launches the ATL engine.

Figure 2. ATL Transformation of WSML instances

The translator has been developed using EMF7 (Eclipse
Modelling Framework). The translator rules are written in
ATL 8 (Atlas Transformation Language), which is a hybrid
language (a mix of declarative and imperative constructors),
designed to express model transformations. As illustrated in the
diagram of Figure 2, the ATL engine requires meta-models in
the ECORE format and conforming XMI source and target
models for the transformation. Since our source and target
models are in WSML, we create a WSML meta-model using a
specific EMF tool, which takes a XSD file. We use the XML
syntax of WSML 9 in order to generate the meta-model
(Wsml.ecore) from WSML XSD. In addition, the input WSML
XMI instances are generated (programmatically) from given
WSML XML instances. There is a small issue with mixed
XSD types within WSML XSD, which cannot be processed by
ATL. The work around this problem was to create another
version of the WSML XSD and corresponding meta-model

7 http://www.eclipse.org/modelling/emf
8 http://www.eclipse.org/M2M/ATL
9 http://www.wsmo.org/TR/d16/d16.1/v0.21/xml-syntax/wsml-xml-
syntax.xsd

(syntax.ecore) using strings for primitive types instead of
mixed ones, and use both ECORE source models for the
translation.

The complete specification of the ATL rules that provides
the mappings for our translator is available within the
distribution package together with the API mentioned
previously. The reader is referred to the Eclipse website
mentioned before for details of the ATL language.

A translation from BPMO to sBPEL can be based on
structured or graph elements. Our implementation for
translating a structured BPMO process is restricted to
structured and pattern-based elements of BPMO. That is, we
consider BPMO diagrams (instances) which contain Tasks
(GoalTask, Receive, Send, MediationTask), Events and block
patterns between a StartEvent and an EndEvent or within an
initial Sequence. The block patterns supported are: Sequence,
ParallelSplit Synchronise, MultipleChoiceMerge,
DeferredChoiceMerge, Exclusive, ChoiceMerge, Repeat and
While. In addition, the branches can only contain recursive
single block-patterns. In this case, the instances of BPMO and
the translated instances of sBPEL are structured. Note that
BPMO processes that need not be translated (executed), have
no such restrictions. On the other hand, a graph-based
translation would be from a BPMO diagram, which would
contain elements similar to the above list, with no restriction
for composed branches using block and graph patterns. In this
case, the BPMO instance would contain elements explicitly
linked using control-flow Connectors. One possible
implementation for this case is to detect the composed
branches in BPMO and translate them into sequences in
sBPEL.

The translation involves a number of mapping cases,
expressed in the ATL rules: sBPEL Partner, Role and
Conversation concepts are derived from diverse attributes in
BPMO Tasks; BPMO Tasks can derive multiple chained target
concepts in sBPEL; ordered elements in BPMO (from
sequences and conditional branches) generate linked-lists in
sBPEL; and some target concepts in sBPEL must point back to
the source concept in BPMO. Otherwise, both ontologies are
aligned in the capacity of handling ontological data, SWS
descriptions and semantic based mappings.

IV. TRANSLATION EXAMPLE
In this section we present an example of a simple business

process model in order to illustrate the translation from BPMO
to sBPEL. Figure 3 depicts the workflow diagram of a business
process taken from a use case in the telecommunication
domain within SUPER. The Content Provision Process is the
model of a Telco service provider for downloading Web
content for a customer. This process diagram was created using
WSMO Studio’s BPMO Modeller10, which generates an initial
set of BPMO instances corresponding to the process control-
flow, to which the user can add attribute values (links to
ontology instances and SWS descriptions) using the modeller’s
property editor.

10 http://www.wsmostudio.org/

According to the process workflow the following tasks take
place: a request is received (Receive); the input is mediated
(mapped to inputs of next tasks) (MediationTask); two
invocations (GoalTasks) in parallel (ParallelSplitSynchronise)
are performed to get the license and URL of the content;
outputs are mediated (aggregated); and finally the result is sent
(Send) to the customer. The process (service provider) is in fact
interacting with three partners: the content requester
(customer), the license provider and the content provider.

Figure 3. Example of a BPMO Process Diagram

The BPMO instance representing the first task (Receive
Content Request) is shown in Listing 4, and the result of the
corresponding translation is shown in Listing 5. First, the
instance of Process in BPMO is translated to an instance of
SemanticProcess in sBPEL. A SemanticProcess has more
details than the corresponding BPMO, so attributes like
hasPartner and hasConversation are generated from
information from other elements such as Receive in BPMO.
The structured Sequence concept in BPMO is translated to the
Sequence concept in sBPEL, implemented as a linked list. The
ParallelSplitSynchronise in BPMO is translated to Flow in
sBPEL. The translation of Receive generates a chain of
concepts in sBPEL, which are ExtensionActivity, Receive,
Conversation and IncomingInterface. These correspond
respectively to the translation of Receive_ContentRequest
(BPMO) to the instances Receive_ContentRequest_ sBPEL,
Receive_ContentRequest_sBPELReceive,
Receive_ContentRequest_sBPELConversation and
Receive_ContentRequest_sBPELInterface. Similar chains of
concepts are created for the translation of GoalTask and Send.
Note also the use of the correspondsTo attribute to point back
to the originating BPMO instance.

Listing 4. Example of a BPMO instances

instance Receive_ContentRequest memberOf bpmo#Receive
 bpmo#hasName hasValue "Receive Content Request"
 bpmo#hasHomeProcess hasValue Process_ContentProvision
 bpmo#hasPartnerWebService hasValue
SemanticCapability_ContentRequester_WSMO
 bpmo#hasInputDescription hasValue
SemanticCapability_ContentRequestMessage
 bpmo#providesCapability hasValue
SemanticCapability_ContentRequestOperation
 bpmo#hasPartnerRole hasValue contentRequester

instance SemanticCapability_ContentRequestMessage memberOf
bpmo#SemanticCapability
 bpmo#hasSemanticDescription hasValue "http://ip-
super.org/kmi/ContentProvision/RequestContentWS#contentReque
stMessage"
instance contentRequester memberOf bpmo#BusinessRole
 bpmo#hasName hasValue "Content Requester"
 bpmo#hasOrganisation hasValue kmi

The concept SemanticCapability in BPMO translates to
SemanticVariable in sBPEL. For example, the value of the
attribute hasInputDescription, which provides the URL of the
concept that describes the input message, is translated to
SemanticCapability_ContentRequestMessage_sBPEL
(hasVariable attribute) in sBPEL. This SemanticVariable
(hasSemanticType attribute) has the translated value.

Listing 5. Example of sBPEL instance generated by the translator

instance Receive_ContentRequest_sBPEL memberOf
bpel#ExtensionActivity
 bpel#correspondsTo hasValue _"http://ip-
super.org/examples/process/bpmo/v2.0.1/examples#Receive_Cont
entRequest"
 bpel#hasActivity hasValue
Receive_ContentRequest_sBPELReceive

instance Receive_ContentRequest_sBPELReceive memberOf
sbpel#Receive
 sbpel#hasName hasValue "Receive Content Request"
 sbpel#hasVariable hasValue
SemanticCapability_ContentRequestMessage_sBPEL
 sbpel#belongsToConversation hasValue
Receive_ContentRequest_sBPELConversation

instance SemanticCapability_ContentRequestMessage_sBPEL
memberOf sbpel#SemanticVariable
 bpel#hasName hasValue
"SemanticCapability_ContentRequestMessage _sBPEL"
 bpel#hasType hasValue
SemanticCapability_ContentRequestMessage
_sBPELWSDLMessageType
 sbpel#hasSemanticType hasValue "http://ip-
super.org/kmi/ContentProvision/RequestContentWS#contentReque
stMessage"

instance SemanticCapability_ContentRequestMessage_
sBPELWSDLMessageType memberOf bpel#WSDLMessageType
 bpel#hasDefinition hasValue "#wsdl11.message()"

instance Receive_ContentRequest_sBPELConversation memberOf
sbpel#Conversation
 sbpel#hasName hasValue
"Receive_ContentRequest_sBPELConversation"
 sbpel#describesInterface hasValue
Receive_ContentRequest_sBPELInterface

instance Receive_ContentRequest_sBPELInterface memberOf
sbpel#IncomingInterface
 sbpel#hasWebServiceDescription hasValue "http://ip-
super.org/sws/ContentProvision/wsmo/RequestContentWS#Request
ContentWS"

BPMO as a model which represents business processes at
the business level supports constructs that might not apply to
sBPEL. Thus, similar to the mappings between BPMN and
BPEL [12], the mappings from BPMO to sBPEL can only be
partial. For example, BPMO allows business analysts to create
arbitrary cycles, which are not supported in sBPEL. The way to
restrict the translation is to use only translatable constructs such
as block patterns in BPMO or doing a pre-validation through
the use of axioms, which can guarantee that a valid BPMO
instance contains only suitable elements for the translation.
These axioms can be contained in a separate ontology and
imported for validation of the BPMO instance. This is based on
the fact (see for example [9]) that there is no generic translation
from a graph-based notation such as allowed in BPMO to one
such as sBPEL, which provides mostly structured activities to
model a process and some restricted use of links to enable a
graph-based style.

V. CONCLUSIONS
In this paper we show that we can effectively translate a

business-level process model annotated with BPMO to an

executable process model annotated with sBPEL, using a
model-driven approach based on ATL rules. We presented the
two ontologies and discussed elements related to Semantic
Web Services. The preliminary implementation of our
translator is limited to structured, pattern-based elements of
BPMO. We illustrated our work using an example from a use
case, but the ontologies (http://www.ip-super.org) as well as
the translator’s API and ATL rules are freely available in a
distribution package with complete examples at
http://kmi.open.ac.uk/projects/super/BPMO2SBPEL-2.0.zip.

Regarding the use of ATL rules, we recognize that we do
not follow on the original prescribed use of models in ATL,
since in our approach the two used models (BPMO and
SBPEL) use the same metamodel (WSML). Thus, we get low
type safety from the models, but compensate by relying on the
semantics given by the ontologies. Yet, our approach has
proven to be quite effective as ATL provides not only a rule
engine but also constructs that allows us to replace names
(including namespaces) and check model hierarchies. In
previous work we provided a translation based on WSML
rules, but there the mappings could only imply (sBPEL)
instances, which would have to be consumed at runtime inside
a WSML based environment. With the approach in this paper
we are able to generate a new ontology (file) with mapped
instances, which can be validated against the SBPEL ontology
and later extended.

VI. RELATED WORK
There is substantial work discussing the translation and

mismatches between BPMN and BPEL (e.g. [12], [13]), and
more generically between block and graph oriented workflow
notations [9], which have informed the implementation of our
ontologies and BPMO2sBPEL translator. For instance, the
translation exploits appropriate workflow pattern
representations in BPMO to avoid workflows with acyclic
loops and unsynchronised branches. One main difference from
that work to ours, though, is that we use ontologies and
extensions to support Semantic Web Services.

The Semantic Web approach presented in [8] has similar
goals to our approach using BPMO, as the authors there argue
that the syntactic approach provided by BPEL4WS has
shortcomings that limit its ability to provide seamless
interoperability. They propose the use of semantic-based
technologies (OWL-S) to support automated service discovery,
customization and semantic translation for BPEL4WS based
processes; however, their annotations for services and data are
decoupled from the syntactic control-flow language. BPMO,
instead, provides semantically annotated workflow activities
coupled with semantic descriptions of data and services. In
addition, BPMO allows for semantic data transformation by the
use of Mediation Tasks with Data Mediators that can be
translated to extended assign operations in sBPEL.

The translation approach presented in [3] provides
mappings from BPEL4WS to OWL-S, aiming at providing
semantics to business process models. This work presents a
bottom-up translation, from the syntactic level to the semantic
level; however, it shows that there are a number of constructs
from BPEL, such as synchronization, external (event-based)

choices and handlers, which cannot be mapped to OWL-S. In
addition, input and output parameters in the resulting ontology
need to be annotated with domain ontologies by the user.

ACKNOWLEDGMENT
The work presented in this paper was partly funded by the

European Commission under the SUPER project (FP6-
026850).

REFERENCES
[1] W. Van der Aalst, A. Hofstede, B. Kiepuszewski and A. Barros,

Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51,
2003.

[2] W. Abramowicz, A. Filipowska, M. Kaczmarek and T. Kaczmarek,
“Semantically enhanced Business Process Modelling Notation”, in
Proceedings of the Workshop on Semantic Business Process and Product
Lifecycle Management (SBPM-2007), Vol-251, CEUR-WS, June 2007.

[3] M. Aslam, S. Auer, J. Shen and M. Herrmman, “Expressing Business
Process Models as OWL-S Ontologies”, in Workshop on Grid and Peer-
to-Peer Based Workflows (GPWW) in conjunction with BPM 2006,
LNCS 4103, pp. 400-415.

[4] L. Cabral, B. Norton, and J. Domingue, “The Business Process
Modelling Ontology”, in Proceedings of the 4th International Workshop
on Semantic Business Process Management (SBPM 2009) in
conjunction with ESWC 2009, ACM Proceedings, 2009.

[5] D. Fensel, H. Lausen, A. Polleres, J. Bruijn, M. Stollberg, D. Roman,
and J. Domingue, Enabling Semantic Web Services: the Web Service
Modelling Ontology (WSMO), Springer, 2006.

[6] A. Filipowska, M. Kaczmarek and S. Stein, “Semantically annotated
EPC within Semantic Business Process Management”, in Workshop on
Advances in Semantics for Web Services (semantic4ws), Milan, Italy,
2008.

[7] M. Hepp, F. Leymann, J. Domingue, A. Wahler and D. Fensel,
“Semantic Business Process Management: A Vision Towards Using
Semantic Web Services for Business Process Management”, in
Proceedings of IEEE Intl. Conf. on e-Business Engineering (ICEBE
2005) pp. 535-540.

[8] D. Mandell and S. McIlraith. “Adapting BPEL4WS for the Semantic
Web: The Bottom-Up Approach to Web Service Interoperation”, in
proceedings of the 2nd International Semantic Web Conference (ISWC
2003), LNCS 2870, Springer.

[9] J. Mendling, K. Lassen and U. Zdun, “On the transformation of control
flow between block-oriented and graph-oriented process modelling
languages”, in International Journal of Business Process Integration and
Management, Vol. 3(2), 2008.

[10] J. Nitzsche, D. Wutke and T. Lessen, “An ontology for executable
business processes”, in Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management (SBPM-2007),
Vol-251, CEUR-WS, June 2007.

[11] J. Nitzsche, T. Lessen, D. Karastoyanova and F. Leymann, “BPEL for
Semantic Web Services - BPEL4SWS”, in Proceeding of OTM
Workshops (OTM 2007), Part I, LNCS 4805, 2007.

[12] C. Ouyang, W. Van der Aalst, M. Dumas and A. Hofstede, “From
Business Process Models to Process-oriented Software Systems: The
BPMN to BPEL Way”, available at http://eprints.qut.edu.au/archive/
00005266/01/5266.pdf (2006)

[13] J. Recker and J. Mendling, “On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages”,
available at http://eprints.qut.edu.au/archive/00004637/01/4637.pdf
(2006).

[14] A. Scheer, T. Oliver and A. Otmar, Process Modelling Using Event-
Driven Process Chains, (chapter) in Process-Aware Information
Systems, Wiley, 2005.

[15] P. Wohed, W.Van der Aalst, M. Dumas, M. Hofstede and N. Russell,
“On the suitability of BPMN for Business Process Modelling”, In
Proceedings of the Fourth Business Process Management Conference
(BPM 2006), LNCS 4102, pp.161-176, Springer.

